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Abstract: In this work, amorphous hydrogen-free silicon nitride (a-SiNx) and amorphous hydro-
genated silicon nitride (a-SiNx:H) films were deposited by radio frequency (RF) sputtering applying
various amounts of hydrogen gas. Structural and optical properties were investigated as a function
of hydrogen concentration. The refractive index of 1.96 was characteristic for hydrogen-free SiNx

thin film and with increasing H2 flow it decreased to 1.89. The hydrogenation during the sputtering
process affected the porosity of the thin film compared with hydrogen-free SiNx. A higher porosity is
consistent with a lower refractive index. Fourier-transform infrared spectroscopy (FTIR) confirmed
the presence of 4 at.% of bounded hydrogen, while elastic recoil detection analysis (ERDA) confirmed
that 6 at.% hydrogen was incorporated during the growing mechanism. The molecular form of
hydrogen was released at a temperature of ~65 ◦C from the film after annealing, while the blisters
with 100 nm diameter were created on the thin film surface. The low activation energy deduced from
the Arrhenius method indicated the diffusion of hydrogen molecules.

Keywords: SiNx:H; refractive index; activation energy; structure

1. Introduction

Hydrogenated silicon nitride (SiNx:H) films are widely used in the microelectronics
industry to enhance the efficiency of silicon-based light emitters [1] or to improve the
efficiency of silicon solar cells as the antireflective and passivation layer on the front
surface of such device structures. Silicon nitride (Si3N4, hereinafter referred to as SiN)
thin films may be applied as inorganic gate insulators in organic thin film transistors
(OTFTs) [2]. SiN:H is also an appropriate material for charge trap functional region of
non-volatile memory (NVM) structures [3]. Their tunable refractive index together with the
low extinction coefficient enable the application of SiNx as an excellent antireflection thin
film [4]. Furthermore, SiNx:H containing multilayer stacks with a gradient refractive index
profile were recommended to further decrease the optical losses [5]. Apart from the optical
properties, the passivation effect of SiNx:H layers is also substantial since recombination
losses significantly restrict the performance of solar cells. Hydrogenated silicon nitride
films have been reported to show a good surface and bulk passivation effect after annealing
due to atomic hydrogen diffusion to the surface [6]. As dangling bonds are healed by
hydrogen, the number of recombination centers can be reduced, which results in increasing
carrier lifetime. However, the molecular hydrogen migration requires a higher activation
energy and low diffusivity [7].
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The most common techniques for deposition of the silicon nitride films with or with-
out hydrogen addition are different types of chemical vapor deposition (CVD), such as
plasma-enhanced chemical vapor deposition (PECVD) [8,9], remote plasma-enhanced CVD
(RPECVD) [10], electron cyclotron resonance (ECR) [11,12], hot-wire CVD (HWCVD) [13],
and extended thermal plasma CVD (ETPCVD) [14]. CVD-deposited film always contains
hydrogen but its amount cannot be directly controlled during the preparation process,
only by several deposition parameters, such as the ratio of precursor gases or the substrate
temperature [9,12]. Due to this fact, the magnetron sputtering technique could be the
alternative fabrication method for directly controlled hydrogen concentration via adjusting
the applied hydrogen gas flow to the chamber [15].

Direct current (DC) magnetron sputtering [16], radio frequency (RF) sputtering [17],
and high-power impulse magnetron sputtering (HiPIMS) [18] were also proved to be proper
methods to produce SiNx:H thin films at a lower substrate temperature. In the case of
different sputtering techniques, it is possible to directly control the amount of hydrogen by
adjusting the applied hydrogen gas flow. K. Mokeddem et al. developed the DC magnetron
sputtering (DCMS) technique to prepare hydrogenated amorphous silicon nitride thin films
in argon gas flow mixed with molecular hydrogen and nitrogen [16]. These films presented
a large band gap and showed a nearly stoichiometric composition, and both nitrogen
and hydrogen were incorporated into the structure. F.L. Martinez et al. used electron
cyclotron resonance plasma-enhanced CVD for amorphous hydrogenated silicon nitride
(a-SiNx:H) film deposition under different values of gas flow ratio, deposition temperature,
and microwave power [12]. The formation of Si–H and N–H as competitive processes
occurred during the film growth. They showed that the substitution of N–H bonds with
Si–H bonds was driven by the tendency for chemical order or maximum bonding energy. V.
Tiron et al. used the reactive HiPIMS technique to fabricate SiNx:H thin films. Their coating
showed a very smooth surface with a dense homogeneous amorphous and amorphous to
nanocrystalline structure [18]. This coating revealed a diffusion process of atomic H into
the Si substrate, indicating the presence of numerous hydrogen bonds (Si–H and N–H)
that could passivate structural defects and reduce the number of recombination centers in
silicon bulk.

The physical, electrical, and optical properties of amorphous SiNx and SiNx:H thin
films strongly depend on film composition and the applied deposition technique. Ellip-
sometry is a widely used non-destructive technique for the optical characterization of a
wide range of thin layer-on-substrate material systems. The optical properties cannot be
deduced directly from the raw measurement data but indirectly from the ellipsometric
modeling process. Therefore, the choice of the applied ellipsometric model is an important
point of data evaluation. Boulesbaa et al. developed an effective medium approximation
(EMA) model, which considers SiNx:H films as a mixture of silicon (Si), stoichiometric
silicon nitride, and hydrogen (H2) [19]. In addition to experimental work, the optical
properties of SiN:H films have also been studied by theoretical models. F. de Brito Mota
et al. developed an interatomic potential to describe a-SiNx:H thin films of varying nitrogen
content [20]. They found that hydrogen incorporation into silicon nitride films leads to
the reduction of dangling bonds corresponding to undercoordinated silicon and nitrogen
atoms. Tao et al. calculated the optical properties of SiNx:H films based on the density
functional theory [21]. They found that the hydrogen incorporation into the silicon nitride
films had a healing effect by saturating the dangling bonds, which leads to the decrease of
absorption coefficient and refractive index of the films.

Different deposition conditions may result in modified coating structure and material
properties. In this work, amorphous hydrogen-free (a-SiNx) and a-SiNx:H thin films were
deposited by RF sputtering onto two kinds of substrates (Si (001) and glass) with various
amounts (0–12 sccm) of hydrogen. The effects of the hydrogen flow on the optical and
structural properties were investigated.



Coatings 2021, 11, 54 3 of 13

2. Experimental Section

Both types of silicon nitride thin films (a-SiNx, a-SiNx:H) were deposited by a Ley-
bold Z400 Radio Frequency Sputtering (RFS) tool (Figure 1). The base pressure was
2 × 10−5 mbar. A circular Si target with a diameter of ~76 mm (Kurt J. Lesker Comp., un-
doped with 99.99% purity) and N2 gas source were applied for deposition of the hydrogen-
free silicon nitride films.
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Figure 1. Schematic view of the sputtering system.

In the case of SiNx:H films, N2 and hydrogen with a flow rate in the range from 0 to
12 sccm were added. The gas flow rates were controlled by adjustable mass flow controllers
(MFCs). The sputtering parameters are summarized in Table 1.

Table 1. Summary of sputtering parameters (U = 2 kV, ptotal = 2.5 × 10−2 mbar for all thin films. Single-side polished (SSP),
double-side polished (DSP). * fully closed valve.

Nr. Thin Film pH2 (10−4 mbar) pH2 % of Total
Pressure (%)

Sputtering
Time (min) Flow (sccm) Substrate

R1 a-SiNx 0 0 30 0 * SSP
R2 a-SiNx 0 0 80 0 * SSP, DSP glass
S1 a-SiNx:H 0.5 0.2 30 0.9 SSP
S2 a-SiNx:H 0.8 0.32 30 1.6 SSP
S3 a-SiNx:H 1.5 0.6 30 3 SSP
S4 a-SiNx:H 3.3 1.32 30 6 SSP
S5 a-SiNx:H 7.9 3.16 30 12 SSP
S6 a-SiNx:H 3.3 1.32 80 12 SSP, DSP glass

Single-side and double-side polished (SSP and DSP, respectively) intrinsic un-doped
crystalline (001) Si wafers and ~40 mm × 40 mm size soda lime glass slides with nominal
thickness of 4 mm (Guardian Orosháza Ltd., Orosháza, Hungary) were used as substrates.
The target–substrate distance was constantly kept as 50 mm. The sputtering process was
applied at room temperature. The thin film properties are not directly determined by
the process parameters because the plasma diagnostic results are not available. Fourier-
transform infrared spectroscopy (FTIR) was used for investigating the hydrogen bond
configuration. FTIR measurements were performed by a Varian 7000 FTIR spectrometer
(Agilent Technologies, Santa Clara, CA, USA) connected to a UMA 600 IR microscope
equipped with a mercury–cadmium–telluride (MCT) detector. The absorbance spectra were
recorded in the wavenumber range between 600 and 4000 cm−1 with spectral resolution
of 4 cm−1. The evaluation of the measured spectra including the baseline correction by
adjusted polynomial fit was done using Origin 2019b (64-bit) software, version 9.6.5.169.
Transmission electron microscopy (TEM, Philips CM20 with 200kV accelerating voltage,
Hillsboro, OR, USA) and Cs-corrected (S)TEM (FEI Themis 200 with accelerating voltage
200 kV) were applied for the structural characterization of the thin films. TEM samples
were prepared by conventional Ar ion milling technique. Scanning electron microscopy
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(SEM, LEO 1540 XB with accelerating voltage 5 kV) was used to investigate the morphology
of the thin films’ surfaces before and after annealing. SE measurements were performed
by a Woollam M2000DI UV–VIS ellipsometer (Woollam Co., Lincoln, NE, USA) at the
angles of 70◦ and 75◦ with a compensator frequency of 20 Hz. The wavelengths used for
the measurements ranged from 200 to 1600 nm. The hydrogen-free SiNx thin film was
modeled by the Cauchy–Urbach equation and it was considered as a mixture of silicon (Si),
hydrogen-free stoichiometric silicon nitride (Si3N4), and void. Based on this consideration,
the thin films were modeled by the Bruggeman-type EMA model. All modeling and
calculations were performed using Woollam VASE software (versions of 3.83 and 3.84). The
activation energy of the surface modification was determined from the Arrhenius equation
using an optical measurement configuration, the details of which are given elsewhere [22].
The 1.6 MeV Rutherford backscattering spectrometry/elastic recoil detection analysis
(RBS/ERDA) measurements were performed in a scattering chamber with a two-axis
goniometer, which was connected to the 5 MV EG-2R Van de Graaff accelerator operated
at the Wigner Research Center of Physics in Budapest, Hungary. The 4He+ analyzing ion
beam was collimated using two sets of four-sector slits. The width × height of the beam
spot was 0.2 mm × 1 mm. The beam divergence was kept below 0.06◦. The beam current
was measured using a transmission Faraday cup. The vacuum in the scattering chamber
was kept at about 10−4 Pa. Hydrocarbon deposition was avoided by liquid N2-cooled traps
along the beam path and around the wall of the chamber. A Mylar foil with thickness
of 6 µm was placed before the window of the ERDA detector to capture backscattered
He+ ions. Kapton foil as reference was used for calibration of the hydrogen content of the
samples. ORTEC Si surface barrier detectors mounted at scattering angles of Θ = 165◦ and
20◦ were used to detect RBS and ERDA spectra, respectively. The detector resolution was
about ~20 keV. The spectra were measured at sample tilt angles of 7◦ and 80◦ for RBS, and
80◦ for ERDA.

3. Results and Discussion
3.1. Optical Characterization of Thin Films

The refractive index and extinction coefficient are related to the interaction between a
thin film and the incident light, indicating the optical properties of the thin films. SE is one
of the most popular tools for characterizing the optical properties of different materials.
The polarization state of the light changes while it is reflected or transmitted by the sample.
Detection and interpretation of this change are the basis of the ellipsometric method. The
thin films, reference R1 and thin films with hydrogen addition (S1–S6), were measured

by SE in reflectance mode, where the complex reflectance ratio (
−
ρ) is recorded by the

instrument. This quantity is usually expressed by the ψ and ∆ ellipsometric angles in the
following form:

−
ρ =

−
rp
−
rs

= tgψ× ei∆ (1)

where
−
ρ ,

−
rp, and

−
rs refer to the complex reflectance ratio, reflectance coefficient in p (parallel

to the incident plane), and s (perpendicular to the incident plane) directions, respectively.
The evaluation of the measurement data includes the modeling and fitting procedure. The
differences between the modeled (generated) and real (measured) ψ and ∆ ellipsometric
angles are minimized by adjusting the free parameters of the applied model. The effects of
the hydrogen flow applied to the different optical properties of the a-SiNx:H thin films are
shown in Figure 2. The refractive index of 1.96 is characteristic for the reference thin film
(R1) sputtered in nitrogen atmosphere (Figure 2a). The addition of hydrogen until 3 sccm
gives no or minimal effect on the refractive index. The increasing of hydrogen flow from
6 to 12 sccm results in a decrease in the refractive index from 1.96 to 1.89 (Figure 2a). We
note that K. Mokkedem et al. reported a refractive index of 1.8 for hydrogenated silicon
nitride thin films deposited under similar conditions using DC magnetron sputtering [16].
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The refractive index of stoichiometric SiN is greatly dependent upon the deposition
conditions, but it is greater than 2.0 at 630 nm [23]. The lower values of our RF-sputtered
thin films indicate the presence of the non-stoichiometric SiNx phase. The extraction of
the optical constants using the optical reflection spectra alone is usually very infrequent
and complicated. The extinction coefficient values exhibit a large difference between the
thin films grown with or without hydrogen (Figure 2b). There is a shift in the extinction
coefficient from 400 to 300 nm, when hydrogen/nitrogen reactive sputtering is used.

The refractive index measured at 550 nm wavelength has a decreasing character as
the partial pressure of hydrogen is increased during the sputtering process (Figure 3). K.
Mokkedem et al. showed that the refractive index of their films vs. partial pressure of
H2 had a similar character. They confirmed the effect of the hydrogen partial pressure
on the refractive index. These variations may be explained by hydrogen and nitrogen
incorporation into the thin films [16].
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3.2. Bonding Configuration and Chemical Composition

Understanding the chemical properties of silicon nitride and the role played by the
hydrogen atoms that are incorporated during the growth of the film is a key factor for
a-SiNx:H applicability. FTIR is a widely used method for characterization of the bonding
configuration in thin films. FTIR measurements allow to characterize the bonds involved
in the material, and eventually to determine the bond densities and thus hydrogen concen-
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tration thanks to the method developed by Lanford and Rand [24]. In the case of a-SiNx:H,
the presence of different hydrogen bonds can also be assumed based on the Lanford–Rand
method [24].

Absorbance spectra of a-SiNx (R2) and a-SiNx:H (S6) revealed the bonding configu-
ration of the investigated thin films (Figure 4), consisting of typical absorption bands for
different hydrogen bonding to nitrogen and silicon. The peak at 880 cm−1 is associated
with the Si–N stretching mode [25]. Peaks observed at 1175, 2200, and 3335 cm−1 refer to
the presence of the N–H bending mode, Si–H stretching mode, and N–H stretching mode,
respectively [26].
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The concentrations of the N–H and Si–H bonds (CY−H) were calculated using the
Lanford–Rand method [24] defined in the following form:

CY−H =
AY−H

ln10 × σY−H
=

∫ (Y−H)f

(Y−H)s α(ω)d(ω)

ln10 × σY−H
(2)

where Y corresponds to silicon (Si) or nitrogen (N) atoms, AY−H, σY−H, (Y − H)s, (Y − H)f,
α(ω) are the concentration of Y–H bond in the cm−3 unit, the normalized absorption
area of the Y–H band, the absorption cross-section of the Y–H bond in the cm2 unit, the
beginning wavenumber of the Y–H band in the cm−1 unit, the final wavelength of the Y–H
band in the cm−1 unit, and the spectral absorption coefficient, respectively.

The σN−H and σSi−H absorption cross-sections were determined by Lanford and
Rand [24]: σN−H = 5.3 × 10−18 cm2 and σSi−H = 7.4 × 10−18 cm2. These values were
used in Equation (2) above. Table 2 summarizes the parameters and the results of the
calculations for both Si–H and N–H bond concentrations.

Table 2. Calculation parameters and results of the Si–H and N–H bond concentrations.

Bond (Y–H)s (cm−1) (Y–H)f (cm−1) AY–H σY–H (10−18 cm−2) CY–H (1020 cm−3)

N–H 3026 3502 0.066 5.3 3.49

Si–H 1994 2299 0.016 7.4 0.61

If the hydrogen is one coordinated, then the total concentration of bonded hydrogen
atoms in the film can be calculated by the sum of the concentration of N–H and Si–H bonds:

CH, bound = CN−H + CSi−H (3)
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Based on Equation (3), the amount of total bonded hydrogen content of the S6 sample
is 4.1 × 1020 at/cm3.

Rutherford backscattering spectrometry (RBS) in combination with elastic recoil de-
tection analysis (ERDA) measurements were performed to obtain thin film elemental
concentration depth profiles.

The atomic concentrations of silicon, nitrogen, free (unbounded), and bounded hy-
drogen as well as thin film atomic densities were determined (Table 3) from measured
RBS/ERDA spectra, considering the layer thicknesses determined from TEM measure-
ments. The samples show comparable atomic densities; only a-SiNx:H sputtered with high
hydrogen flow (S4) showed a lower value of ~4.9 × 1022 at/cm3. In the case of the thin (S1)
and thick a-SiNx:H (S6) samples, the atomic density of measured hydrogen was found to
be 0.46 × 1022 and 0.59 × 1022 at/cm3, respectively (Table 3). We note that RBS/ERDA is
not sensitive to the chemical bonding states and measures all the hydrogen content even if
it is in atomic, bounded, or in H2 molecular form.

Table 3. Atomic layer densities and concentrations (at.%) and atomic densities (at/cm3) for the Si, N, and H components of
a-SiNx:H layers as evaluated from RBS/ERDA measurements using layer thicknesses (in nm) obtained from TEM analysis.
* fully closed valve.

H2 Flow
(sccm)

Atomic Layer Density
(1022 at/cm3)

Silicon (Si) Nitrogen (N) Hydrogen (H)

at.% (1022 at/cm3) at.% (1022 at/cm3) at.% (1022 at/cm3)

0 * 6.8 43.2 3.1 50 3.59 6.8 0.46

0.9 6.25 40.4 2.48 52 3.19 7.6 0.47

1.6 6.6 43.3 2.73 45.3 2.85 11.4 0.75

3 4.9 35.2 1.72 52.4 2.57 12.4 0.61

12 6 33.1 1.99 57 3.42 9.9 0.59

Lanford et al. noted that the exact values of hydrogen content cannot be measured by
FTIR, but a good approximation of the bonding structure is represented [24]. In contrast to
effusion measurements, FTIR shows only the bonded amount of hydrogen in the material,
whereas the effusion measurement detects the total hydrogen content including atomic
hydrogen as well.

However, effusion of hydrogen is mostly detected as molecular H2. In RF-sputtered
a-SiNx:H (S6), the concentration of bonded hydrogen calculated from FTIR spectra is only
4 at.%. The ERDA measurement confirmed 10 at.% of the total hydrogen concentration
(Table 3). This means that 6 at.% hydrogen was incorporated during growth in molecular
form. This fact is in good agreement with density measurements (Table 3). According
to Dekkers et al., a low-density material induces the release of hydrogen in molecular
form (H2) and a denser SiNx makes the hydrogen desorption slower but its atomic form is
preferred [27].

3.3. Activation Energy

Owing to the annealing chemical reactions such as breaking up and rebuilding of
different bonds, diffusion of hydrogen atoms or molecules could take place. The energy
must be provided for a certain chemical reaction (activation energy) of the process. As
a result of chemical reactions, the annealing quality of the layer surface can be changed.
The estimated activation energy can be detected by this change. The arrangement of the
measurement described in Ref. [22] enables the determination of onset time of the layer
surface change by monitoring the elapsed time and the alteration of the reflectivity of the
sample surface.

The a-SiNx:H thin film sputtered at a H2 flow of 6 sccm (S4) was investigated at
different temperatures. The temperature and the corresponding onset time values are
summarized in Table 4. The Arrhenius equation [28] describes the rate constant of a
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chemical reaction as a function of the temperature in terms of two empirical factors, namely
Eexp experimental activation energy and A pre-exponential factor:

r(T) = Ae−
Eexp
kBT (4)

where r, T, and kB refer to the rate constant, temperature in K units, and Boltzmann
constant, respectively. A and Eexp can be determined from the parameters (increment and
slope) of linear fit on ln(k) against 1/T experimental points.

Table 4. Measurement data of the a-SiNx:H thin film sputtered at a H2 flow of 6 sccm (S4) for the
Arrhenius plot.

Temperature (K) Onset Time (s)

320 292

323 149

326 57

330 28

The r reaction rate constant against the inverse temperature of annealing and the
linear fit on the data points are shown in Figure 5. The experimental activation energy
(Eexp) deduced from the slope of the fitted line is Eexp = 2.19 ± 0.17 eV. It must be noted
that the error of Eexp is much bigger than the error of the linear fit due to the uncertainty of
time and temperature measurement.
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3.4. Structural and Morphological Characterization

Structural investigations confirmed the film thickness between ~142 nm and 155 nm
(Figure 6). The selected area electron diffractions (SAEDs) proved that the deposited
layer structure is amorphous without any crystalline structure (Figure 6). The SAED was
provided by the ProcessDiffraction program [29–31].
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Such a large difference indicates a more complex incorporation mechanism of hy-
drogen in the silicon–nitrogen network and the presence of voids in a-SiNx:H thin films.
These structural observations correlated with the refractive index values. The refractive
index decreased with increasing hydrogen flow and porosities during the growth process
of the thin films. Similar results were obtained by AJ. Flewitt et al. when the nitrogen
incorporation into a-Si:N:H films was caused by the dissociation of NH3 molecules, leading
to the reaction with a growing surface. This process resulted in a lower refractive index of
the a-SiNx:H [32].

TEM provides direct information on the structure of materials. Furthermore, the
high-angle annular dark-field (HAADF) STEM allows the visibility of the porosities. The
detailed study confirmed the dense thin film (Figure 7a) during hydrogen-free sputtering
and the porous structure with nanometer-scale porosities homogenously distributed in the
thin film sputtered at 1.6 sccm hydrogen flow (Figure 7b).
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The out-diffusion of hydrogen due to annealing plays a prominent role in the densifi-
cation of thin films. The temperature of 800 ◦C was considered as a critical temperature,
since the a-SiNx thin films are often subjected to thermal processes including rapid thermal
annealing [33]. Morphological investigations of the thin film’s surface before (Figure 8a)
and after (Figure 8b) annealing show that the surface of a-SiNx:H thin film changes due
to heat treatment (Figure 8). The hydrogen, because of its molecular form, is released at a
temperature of ~65 ◦C from the film. Blisters with a diameter of the order of 100 nm are
created on the surface of the thin films. It is known from the literature [10,34,35] that, upon
annealing, both hydrogen and nitrogen releases from a-SiNx:H thin film were observed.
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Similar to the effect reported in Ref. [22], blisters on the layer surface could be burst
bubbles filled with hydrogen and/or nitrogen containing molecules. Initially, the volume
of these bubbles was increasing due to thermal expansion of the fill-up gas during heat
treatment. Then, at a critical point (at a given temperature after a certain time), the bubbles
burst, leading to blister creation on the surface.
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4. Conclusions

Amorphous hydrogenated silicon nitride thin films (a-SiNx:H) have widespread appli-
cations from device passivation to light emitting diodes and antireflective coatings for solar
cells. Chemical vapor deposition (CVD) and physical vapor deposition (PVD) are the most
common techniques for silicon nitride film deposition with or without hydrogen addition.
CVD-deposited film always contains hydrogen and its amount cannot be controlled directly
during the preparation process. Due to this fact, the alternative fabrication method for
controlled hydrogen concentration in a direct way from zero hydrogen content by adjusting
the applied hydrogen gas flow to the chamber could be PVD (e.g., RF sputtering).

In this work, a-SiNx:H films were sputtered at various H2 flows with average thickness
of 150 nm, and the effect of hydrogen incorporation on structural and optical properties was
studied. The detailed structural characterization confirmed the formation of a dense thin
film at hydrogen-free sputtering and a porous structure with homogenously distributed
nanometer-scale porosities caused by hydrogen addition. The refractive index of 1.96
was characteristic for hydrogen-free SiNx thin films. Hydrogen flows up to 3 sccm were
found to have no or minimal effect on the refractive index; for flows from 6 to 12 sccm, the
refractive index decreased from 1.96 to 1.89, which can be explained by the hydrogen and
nitrogen incorporation into the thin films. The calculations from FTIR spectra showed that
a-SiNx:H sputtered at 6 sccm H2 flow presented a concentration of bounded hydrogen of
~4 at.%. The ERDA measurements confirmed a total hydrogen content of 10 at.%. This
means that 6 at.% hydrogen was incorporated in a molecular form during the layer growth,
which explained the lower density of the thin films. The out-diffusion of hydrogen due
to annealing plays a prominent role in the densification of thin films. The molecular form
of hydrogen is released at a temperature of ~65 ◦C from the film. Blisters with 100 nm
diameter are created on the surface of the thin films. The low activation energy calculated
by the Arrhenius method refers to significant diffusion of hydrogen molecules.
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