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We prove the following Helly-type result. Let C1, . . . , C3d be 
finite families of convex bodies in Rd. Assume that for any 
colorful selection of 2d sets, Cik ∈ Cik for each 1 ≤ k ≤ 2d

with 1 ≤ i1 < · · · < i2d ≤ 3d, the intersection 
2d⋂
k=1

Cik is of 

volume at least 1. Then there is an 1 ≤ i ≤ 3d such that ⋂
C∈Ci

C is of volume at least d−O(d2).

© 2020 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

According to Helly’s Theorem, if the intersection of any d + 1 members of a finite 
family of convex sets in Rd is non-empty, then the intersection of all members of the 
family is non-empty.
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A generalization of Helly’s Theorem, known as the Colorful Helly Theorem, was given 
by Lovász, and later by Bárány [2]: If C1, . . . , Cd+1 are finite families (color classes) of 
convex sets in Rd, such that for any colorful selection C1 ∈ C1, . . . , Cd+1 ∈ Cd+1, the 

intersection 
d+1⋂
i=1

Ci is non-empty, then for some j, the intersection 
⋂

C∈Cj

C is also non-

empty.
Another variant of Helly’s Theorem was introduced by Bárány, Katchalski and Pach 

[3], whose Quantitative Volume Theorem states the following. Assume that the intersec-
tion of any 2d members of a finite family of convex sets in Rd is of volume at least 1. 
Then the volume of the intersection of all members of the family is of volume at least 
cd, a constant depending on d only.

They proved that one can take cd = d−2d2 and conjectured that it should hold with 
cd = d−cd for an absolute constant c > 0. It was confirmed with cd ≈ d−2d in [12], whose 
argument was then refined by Brazitikos [5], who showed that one may take cd ≈ d−3d/2. 
For more on quantitative Helly-type results, see the surveys [10,7].

In the present paper, we combine the two directions: colorful and quantitative.

1.1. Ellipsoids and volume

A well known consequence of John’s Theorem (Corollary 2.2), is that any compact 
convex set K with non-empty interior contains a unique ellipsoid E of maximal volume. 
Moreover, E enlarged around its center by a factor d contains K (cf. [1]). It follows that 
the volume of the largest ellipsoid contained in K is of volume at least d−d Vol(K). More 
precise bounds for this volume ratio are known (cf. [1]), but we will not need them.

As shown in [12, Section 3], in the Quantitative Volume Theorem, the d−cd factor is 
sharp up to the absolute constant c. In particular, for every sufficiently large positive 
integer d, there is a family of convex sets satisfying the assumptions of the theorem 
whose intersection is of volume roughly d−d/2.

John’s Theorem and the fact above yield that bounding the volume of intersections 
and bounding the volume of ellipsoids contained in the intersections are essentially equiv-
alent problems: the only difference is a multiplicative factor dd which is of no consequence, 
unless one wants to find the best constants in the exponent. Thus, from this point on, 
we phrase our results in terms of the volume of ellipsoids contained in intersections. Its 
benefit is that this is how in the proofs we actually “find volume”: we find ellipsoids of 
large volume.

1.2. Main result: few color classes

Our main result is the following.

Theorem 1.1 (Colorful Quantitative Volume Theorem with ellipsoids – few color classes). 
Let C1, . . . , C3d be finite families of convex bodies in Rd. Assume that for any colorful 
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selection of 2d sets, Cik ∈ Cik for each 1 ≤ k ≤ 2d with 1 ≤ i1 < · · · < i2d ≤ 3d, 

the intersection 
2d⋂
k=1

Cik contains an ellipsoid of volume at least 1. Then, there exists an 

1 ≤ i ≤ 3d such that 
⋂

C∈Ci

C contains an ellipsoid of volume at least cd2
d−5d2/2 with an 

absolute constant c ≥ 0.

We rephrase this theorem in terms of the volume of intersections, as this form may 
be more easily applicable.

Corollary 1.2 (Colorful Quantitative Volume Theorem – few color classes). Let C1,

. . . , C3d be finite families of convex bodies in Rd. Assume that for any colorful selec-
tion of 2d sets, Cik ∈ Cik for each 1 ≤ k ≤ 2d with 1 ≤ i1 < · · · < i2d ≤ 3d, the 

intersection 
2d⋂
k=1

Cik is of volume at least 1.

Then, there exists an 1 ≤ i ≤ 3d such that Vol
( ⋂

C∈Ci

C

)
≥ cd

2
d−7d2/2 with an 

absolute constant c ≥ 0.

Observe that the smaller the number of color classes in a colorful Helly-type theorem, 
the stronger the theorem is. For example, the Colorful Helly Theorem (see the top of 
the section) is stated with d + 1 color classes, but it is easy to see that it implies the 
same result with � ≥ d + 2 color classes, as the last � − (d + 1) color classes make the 
assumption of the theorem stronger and the conclusion weaker. We note also that the 
Colorful Helly Theorem does not hold with less than d + 1 color classes, as the number 
d + 1 cannot be replaced by any smaller number in Helly’s Theorem.

The novelty of the proof of Theorem 1.1 is the following. As we will see later, similar 
looking statements can be obtained by taking the Quantitative Volume Theorem as a 
“basic” Helly-type theorem, and combining it with John’s Theorem and a combinatorial 
argument. This approach yields results with d(d + 3)/2 color classes, but does not seem 
to yield results with fewer color classes. In order to achieve that, first, we introduce an 
ordering on the set of ellipsoids, and second, we give a finer geometric examination of 
the situation by comparing the maximum volume ellipsoid of a convex body K to other 
ellipsoids contained in K.

We find it an intriguing question whether one can decrease the number of color classes 
to 2d (possibly with an even weaker bound on the volume of the ellipsoid obtained), and 
whether an order d−cd lower bound on the volume of the ellipsoid can be shown.

1.3. Earlier results and simple observations

In 1937, Behrend [4] (see also Section 6.17 of the survey [6] by Danzer, Grünbaum 
and Klee) proved a planar quantitative Helly-type result: If the intersection of any 5 
members of a finite family of convex sets in R2 contains an ellipse of area 1, then the 
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intersection of all members of the family contains an ellipse of area 1. We note that, 
since every convex set in R2 is the intersection of the half-planes containing it, the result 
is equivalent to the formally weaker statement where the family consists of half-planes 
only. This is the form in which it is stated in [6].

In [6, Section 6.17], it is mentioned that John’s Theorem (Theorem 2.1) should be 
applicable to extend Behrend’s result to higher dimensions. We spell out this argument, 
and present a straightforward proof of the following.

Proposition 1.3 (Helly-type theorem with ellipsoids). Let C be a finite family of at least 
d(d + 3)/2 convex sets in Rd, and assume that for any selection C1, . . . , Cd(d+3)/2 ∈ C, 

the intersection 
d(d+3)/2⋂

i=1
Ci contains an ellipsoid of volume 1. Then 

⋂
C∈C

C also contains 

an ellipsoid of volume 1.

The number d(d + 3)/2 is best possible. Indeed, for every dimension d, there exists 
a family of d(d + 3)/2 half-spaces such that the unit ball Bd is the maximum volume 
ellipsoid contained in their intersection, but Bd is not the maximum volume ellipsoid 
contained in the intersection of any proper subfamily of them. That is, the intersection 
of any subfamily of d(d + 3)/2 − 1 members contains an ellipsoid of larger volume than 
the volume of Bd (which we denote by ωd = Vol(Bd)), and yet, the intersection of all 
members of the family does not contain an ellipsoid of larger volume than ωd. This 
follows from the much stronger result, Theorem 4 in [9] by Gruber.

We prove a colorful version of Proposition 1.3.

Proposition 1.4 (Colorful Quantitative Volume Theorem with ellipsoids – many color 
classes). Let C1, . . . , Cd(d+3)/2 be finite families of convex bodies in Rd, and assume that 

for any colorful selection C1 ∈ C1, . . . , Cd(d+3)/2 ∈ Cd(d+3)/2, the intersection 
d(d+3)/2⋂

i=1
Ci

contains an ellipsoid of volume 1. Then for some j, the intersection 
⋂

C∈Cj

C contains an 

ellipsoid of volume 1.

The proof of Proposition 1.4 consists of two parts. First, as our contribution, in the 
geometric part, we introduce an ordering on the set of ellipsoids contained in a convex 
set, and study properties of this ordering, see Section 2.3. Second, a combinatorial part
shows that this ordering yields the statement. This second part is essentially identical 
to the argument given by Lovász and Bárány [2] in their proof of the Colorful Helly 
Theorem, and it was presented in an abstract setting in [8, Theorem 5.3] by De Loera 
et al.

Sarkar, Xue and Soberón [13, Corollary 1.0.5], using matroids, recently obtained a 
result involving d(d + 3)/2 color classes, but with the number of selected sets being 
2d.
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Proposition 1.5 (Sarkar, Xue and Soberón [13]). Let C1, . . . , Cd(d+3)/2 be finite families 
of convex bodies in Rd. Assume that for any colorful selection of 2d sets, Cik ∈ Cik for 

each 1 ≤ k ≤ 2d with 1 ≤ i1 < · · · < i2d ≤ d(d + 3)/2, the intersection 
2d⋂
k=1

Cik contains 

an ellipsoid of volume at least 1. Then, there exists an 1 ≤ i ≤ d(d + 3)/2 such that ⋂
C∈Ci

C has volume at least d−O(d).

For completeness, in Section 3.3, we sketch a brief argument showing that Propo-
sition 1.5 immediately follows from our Proposition 1.4 and the Quantitative Volume 
Theorem.

The structure of the paper is the following. In Section 2, we introduce some preliminary 
facts and definitions, notably, an ordering on the family of ellipsoids of volume at least 
1 that are contained in a convex body. Section 3 contains the proofs of our results.

2. Preliminaries

2.1. John’s ellipsoid

Theorem 2.1 (John [11]). Let K ⊂ Rd be a convex body. Then K contains a unique 
ellipsoid of maximal volume. This ellipsoid is Bd if and only if Bd ⊂ K and there 
are contact points u1, . . . , um ∈ bd(K) ∩ bd(Bd) and positive numbers λ1, . . . , λm with 
d + 1 ≤ m ≤ d(d+3)

2 such that

m∑
i=1

λiui = 0, and Id =
m∑
i=1

λiuiu
T
i ,

where Id denotes the d × d identity matrix and the ui are column vectors.

The following is a well known corollary, see [1, Lecture 3].

Corollary 2.2. Assume that Bd is the unique maximal volume ellipsoid contained in a 
convex body K in Rd. Then dBd ⊇ K.

2.2. Colorful Helly theorem

We recall the Colorful Helly Theorem, as one of its straightforward corollaries will be 
used.

Theorem 2.3 (Colorful Helly Theorem, Lovász, Bárány [2]). Let C1, . . . , Cd+1 be finite 
families of convex bodies in Rd, and assume that for any colorful selection C1 ∈

C1, . . . , Cd+1 ∈ Cd+1, the intersection 
d+1⋂
i=1

Ci is non-empty. Then for some j, the in-

tersection 
⋂

C is also non-empty.

C∈Cj
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Corollary 2.4. Let C1, . . . , Cd+1 be finite families of convex bodies, and L a convex body 
in Rd. Assume that for any colorful selection C1 ∈ C1, . . . , Cd+1 ∈ Cd+1, the intersection 
d+1⋂
i=1

Ci contains a translate of L. Then for some j, the intersection 
⋂

C∈Cj

C contains a 

translate of L.

Proof of Corollary 2.4. We use the following operation, the Minkowski difference of two 
convex sets A and B:

A ∼ B :=
⋂
b∈B

(A− b).

It is easy to see that A ∼ B is the set of those vectors t such that B + t ⊆ A.
By the assumption, for any colorful selection C1 ∈ C1, . . . , Cd+1 ∈ Cd+1, we have 

d+1⋂
i=1

(Ci ∼ L) �= ∅. By Theorem 2.3, for some j, we have 
⋂

C∈Cj

(C ∼ L) �= ∅, and thus, ⋂
C∈Cj

C contains a translate of L. �

2.3. Lowest ellipsoid

We will follow Lovász’ idea of the proof of the Colorful Helly Theorem. The first 
step is to fix an ordering of the objects of study. This time, we are looking for an 
ellipsoid and not a point in the intersection, therefore we need an ordering on the ellip-
soids.

For an ellipsoid E , we define its height as the largest value of the orthogonal projection 
of E on the last coordinate axis, that is, max{xT ed | x ∈ E}, where ed = (0, 0, . . . , 0, 1)T .

Lemma 2.5. Let C be a convex body that contains an ellipsoid of volume ωd := Vol(Bd). 
Then there is a unique ellipsoid of volume ωd such that every other ellipsoid of volume 
ωd in C has larger height. Furthermore, if τ ∈ R denotes the height of this ellipsoid, 
then the largest volume ellipsoid of the convex body Hτ ∩ C is this ellipsoid, where Hτ

denotes the closed half-space Hτ = {x ∈ Rd | xT ed ≤ τ}.

We call this ellipsoid the lowest ellipsoid in C.

Proof of Lemma 2.5. It is not difficult to see that Hτ ∩C does not contain any ellipsoid 
of volume larger than ωd. Indeed, otherwise for a sufficiently small ε > 0, the set Hτ−ε∩C
would contain an ellipsoid of volume equal to ωd, where Hτ−ε denotes the closed half-
space Hτ−ε = {x ∈ Rd | xT ed ≤ τ − ε}.

Thus, by Theorem 2.1, Bd is the unique largest volume ellipsoid of Hτ ∩C. It follows 
that Bd is the unique lowest ellipsoid of C. �
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2.4. Quantitative volume theorem with ellipsoids

We will rely on the following quantitative Helly theorem.

Theorem 2.6 (Quantitative Volume Theorem). Let C1, . . . , Cn be convex sets in Rd. As-

sume that the intersection of any 2d of them is of volume at least 1. Then Vol
(

n⋂
i=1

Ci

)
≥

cdd−3d/2 with an absolute constant c > 0.

As noted in Section 1, it is shown in [12] that the d−3d/2 term cannot be improved 
further than d−d/2.

Corollary 2.7 (Quantitative Volume Theorem with ellipsoids). Let C1, . . . , Cn be convex 
sets in Rd. Assume that the intersection of any 2d of them contains an ellipsoid of volume 

at least 1. Then 
n⋂

i=1
Ci contains an ellipsoid of volume at least cdd−5d/2 with an absolute 

constant c > 0.

Theorem 2.6 was proved by Bárány, Katchalski and Pach [3] with the weaker volume 
bound d−2d2 . In [12], the volume bound cdd−2d was shown, and this argument was 
later refined by Brazitikos [5] to obtain the bound presented above. An inspection of 
the argument in [12] shows that Corollary 2.7 holds with the slightly stronger bound 
cdd−3d/2 as well. However, as this constant in the exponent is of no consequence, we 
instead deduce Corollary 2.7 in the form presented above from Theorem 2.6.

We note that results like Theorem 2.6 are sometimes stated only for halfspaces and 
not convex sets in general, as is the case for example in [5]. However, this yields no loss 
of generality, as any convex set can be approximated (in any meaningful metric) by the 
intersection of finitely many halfspaces.

Proof of Corollary 2.7. Let C1, . . . , Cn be convex sets in Rd satisfying the assumptions 
of Corollary 2.7. In particular, they satisfy the assumptions of Theorem 2.6, and hence, 

Vol
(

n⋂
i=1

Ci

)
≥ cdd−3d/2. Finally, Corollary 2.2 yields that 

n⋂
i=1

Ci contains an ellipsoid 

of volume at least cdd−5d/2 completing the proof of Corollary 2.7. �
3. Proofs

3.1. Proof of Proposition 1.3

We will prove the following statement, which is clearly equivalent to Proposition 1.3.
Assume that the largest volume ellipsoid contained in 

⋂
C∈C

C is of volume ωd :=

Vol(Bd). Then there are d(d + 3)/2 sets in C such that the largest volume ellipsoid 
in their intersection is of volume ωd.
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The problem is clearly affine invariant, and thus, we may assume that the largest 
volume ellipsoid in 

⋂
C∈C

C is the unit ball Bd.

By one direction of Theorem 2.1, there are contact points u1, . . . , um ∈ bd(
⋂

C∈C
C) ∩

bd(Bd) and positive numbers λ1, . . . , λm with d +1 ≤ m ≤ d(d+3)
2 satisfying the equations 

in Theorem 2.1. We can choose C1, . . . Cm ∈ C such that ui ∈ bd(Ci) for i = 1, . . . , m.
By the other direction of Theorem 2.1, Bd is the largest volume ellipsoid of 

m⋂
i=1

Ci, 

completing the proof of Proposition 1.3.

3.2. Proof of Proposition 1.4

Lemma 3.1. Let C1, . . . , Cd(d+3)/2 be convex bodies in Rd. Assume that K :=
d(d+3)/2⋂

i=1
Ci

contains an ellipsoid of volume ωd := Vol(Bd). Set Kj :=
d(d+3)/2⋂
i=1,i�=j

Ci, and let E denote 

the lowest ellipsoid in K. Then there exists a j such that E is also the lowest ellipsoid 
of Kj.

Proof of Lemma 3.1. Let τ denote the height of E . By Lemma 2.5, E is the largest volume 
ellipsoid of K ∩Hτ , where Hτ is the half-space defined in Lemma 2.5.

Suppose that E is not the lowest ellipsoid in Kj for every j ∈ {1, . . . , d(d +3)/2}. Since 
E ⊂ K ⊂ Kj , this means that each Kj contains a lower ellipsoid than E of volume ωd. 
Therefore we can choose a small ε > 0 such that Kj∩Hτ−ε contains an ellipsoid of volume 
ωd for each j, where Hτ−ε denotes the closed half-space Hτ−ε = {x ∈ Rd | xT ed ≤ τ−ε}.

Let us consider now the following d(d+3)
2 + 1 sets: K1, K2, . . . , Kd(d+3)/2, Hτ−ε. If we 

take the intersection of d(d+3)
2 of these sets, we obtain either K, or Kj ∩Hτ−ε for some j. 

By our assumption, K contains an ellipsoid of volume ωd. By the choice of ε, we have that 
Kj ∩Hτ−ε also contains an ellipsoid of volume ωd. Hence, we can apply Proposition 1.3, 
which yields that C1 ∩ · · · ∩ Cd(d+3)/2 ∩ Hτ−ε = K ∩ Hτ−ε also contains an ellipsoid 
of volume ωd. This contradicts the fact that E is the lowest ellipsoid in K, and thus, 
Lemma 3.1 follows. �

We will prove the following statement, which is clearly equivalent to Proposition 1.4.
Assume that for every colorful selection C1 ∈ C1, . . . , Cd(d+3)/2 ∈ Cd(d+3)/2, the inter-

section 
d(d+3)/2⋂

i=1
Ci contains an ellipsoid of volume ωd. We will show that for some j, the 

intersection 
⋂

C∈Cj

C contains an ellipsoid of volume ωd.

By Lemma 2.5, we can choose the lowest ellipsoid in each of these intersections. Let 
us denote the set of these ellipsoids as B. Since we have finitely many intersections, there 
is a highest one among these ellipsoids. Let us denote this ellipsoid by Emax.
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Emax is defined by some C1 ∈ C1, . . . , Cd(d+3)/2 ∈ Cd(d+3)/2. Once again let Kj =
d(d+3)/2⋂
i=1,i �=j

Ci and K =
d(d+3)/2⋂

i=1
Ci. By Lemma 3.1, there is a j such that Emax is the lowest 

ellipsoid in Kj . We will show that Emax lies in every element of Cj for this j.
Fix a member C0 of Cj . Suppose that Emax �⊂ C0. Then Emax �⊂ C0 ∩ Kj . By the 

assumption of Proposition 1.4, C0 ∩Kj contains an ellipsoid of volume ωd, since it is the 
intersection of a colorful selection of sets. Since C0 ∩ Kj ⊂ Kj , the lowest ellipsoid of 
C0 ∩Kj is at least as high as the lowest ellipsoid of Kj . But the unique lowest ellipsoid 
of Kj is Emax, and Emax �⊂ C0 ∩Kj . So the lowest ellipsoid of C0 ∩Kj lies higher than 
Emax. This contradicts that Emax was chosen to be the highest among the ellipsoids in 
B. So Emax ⊂ C0. Since C0 ∈ Cj was chosen arbitrarily, we obtain that Emax ⊂

⋂
C∈Cj

C, 

completing the proof of Proposition 1.4.

3.3. Proof of Proposition 1.5

Consider an arbitrary colorful selection of d(d +3)/2 convex bodies. By Corollary 2.7, 
their intersection contains an ellipsoid of volume at least cdd−5d/2. It follows immediately 
from Proposition 1.4, that the intersection of one of the color classes contains an ellipsoid 
of volume at least cdd−5d/2, completing the proof of Proposition 1.5.

3.4. Proof of Theorem 1.1

We will prove the following statement, which is clearly equivalent to Theorem 1.1.
Assume that the intersection of all colorful selections of 2d sets contains an ellipsoid 

of volume at least ωd := Vol(Bd). Then, there is an 1 ≤ i ≤ 3d such that 
⋂

C∈Ci

C contains 

an ellipsoid of volume at least cd2
d−5d2/2ωd with an absolute constant c ≥ 0.

Lemma 3.2. Assume that Bd is the largest volume ellipsoid contained in the convex set 
C in Rd. Let E be another ellipsoid in C of volume at least δωd with 0 < δ < 1, where 
ωd = Vol(Bd). Then there is a translate of δ

dd−1 Bd which is contained in E.

Proof of Lemma 3.2. If the lengths of all d semi-axes a1, . . . , ad of E are at least λ for 
some λ > 0, then clearly, λBd + c ⊂ E , where c denotes the center of E . We will show 
that all the semi-axes are long enough.

By Corollary 2.2, E ⊂ C ⊂ dBd. Therefore, ai ≤ d for every i = 1, . . . , d. Since the 
volume of E is a1 · · · adωd ≥ δωd, we have ai ≥ δ

dd−1 for every i = 1, . . . , d, completing 
the proof of Lemma 3.2. �

Consider the lowest ellipsoid in the intersection of all colorful selections of 2d −1 sets. 
We may assume that the highest one of these ellipsoids is Bd. By possibly changing the 
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indices of the families, we may assume that the selection is C1 ∈ C1, . . . , C2d−1 ∈ C2d−1. 
We call C2d, C2d+1, . . . , C3d the remaining families.

Consider the half-space H1 = {x ∈ Rd | xT ed ≤ 1} ⊃ Bd. By Lemma 2.5, Bd is the 
largest volume ellipsoid contained in M := C1 ∩ · · · ∩ C2d−1 ∩H1.

Next, take an arbitrary colorful selection C2d ∈ C2d, C2d+1 ∈ C2d+1, . . . , C3d ∈ C3d of 
the remaining d + 1 families. We claim that the intersection of any 2d sets of

C1, . . . , C2d−1, H1, C2d, . . . , C3d

contains an ellipsoid of volume at least ωd. Indeed, if H1 is not among those 2d sets, 
then our assumption ensures this. If H1 is among them, then by the choice of H1, the 
claim holds.

Therefore, by Theorem 2.7, the intersection

3d⋂
i=1

Ci ∩H1

contains an ellipsoid E of volume at least δωd, where δ := cdd−3d/2. Clearly, E ⊂ M .
Since Bd is the maximum volume ellipsoid contained in M , by Lemma 3.2, we have 

that there is a translate of δ
dd−1 Bd which is contained in E and thus in 

3d⋂
i=2d

Ci.

Thus, we have shown that any colorful selection C2d ∈ C2d, C2d+1 ∈ C2d+1, . . . , C3d ∈

C3d of the remaining d +1 families, 
3d⋂

i=2d
Ci contains a translate of the same convex body 

cdd−5d/2Bd. It follows from Corollary 2.4 that there is an index 2d ≤ i ≤ 3d such that ⋂
C∈Ci

C contains a translate of cdd−5d/2Bd, which is an ellipsoid of volume cd
2
d−5d2/2ωd, 

finishing the proof of Theorem 1.1.

3.5. Proof of Corollary 1.2

By Corollary 2.2, the volume of the largest ellipsoid in a convex body is at least d−d

times the volume of the body. Corollary 1.2 now follows immediately from Theorem 1.1.
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