
Published as a conference paper at ICLR 2020

ADVERSARIAL LIPSCHITZ REGULARIZATION

Dávid Terjék
Robert Bosch Kft.
Budapest, Hungary
david.terjek@hu.bosch.com

ABSTRACT

Generative adversarial networks (GANs) are one of the most popular approaches
when it comes to training generative models, among which variants of Wasserstein
GANs are considered superior to the standard GAN formulation in terms of learn-
ing stability and sample quality. However, Wasserstein GANs require the critic to
be 1-Lipschitz, which is often enforced implicitly by penalizing the norm of its
gradient, or by globally restricting its Lipschitz constant via weight normalization
techniques. Training with a regularization term penalizing the violation of the
Lipschitz constraint explicitly, instead of through the norm of the gradient, was
found to be practically infeasible in most situations. Inspired by Virtual Adversarial
Training, we propose a method called Adversarial Lipschitz Regularization, and
show that using an explicit Lipschitz penalty is indeed viable and leads to competi-
tive performance when applied to Wasserstein GANs, highlighting an important
connection between Lipschitz regularization and adversarial training.

1 INTRODUCTION

In recent years, Generative adversarial networks (GANs) (Goodfellow et al., 2014) have been
becoming the state-of-the-art in several generative modeling tasks, ranging from image generation
(Karras et al., 2018) to imitation learning (Ho and Ermon, 2016). They are based on an idea of
a two-player game, in which a discriminator tries to distinguish between real and generated data
samples, while a generator tries to fool the discriminator, learning to produce realistic samples on
the long run. Wasserstein GAN (WGAN) was proposed as a solution to the issues present in the
original GAN formulation. Replacing the discriminator, WGAN trains a critic to approximate the
Wasserstein distance between the real and generated distributions. This introduced a new challenge,
since Wasserstein distance estimation requires the function space of the critic to only consist of
1-Lipschitz functions.

To enforce the Lipschitz constraint on the WGAN critic, Arjovsky et al. (2017) originally used
weight clipping, which was soon replaced by the much more effective method of Gradient Penalty
(GP) (Gulrajani et al., 2017), which consists of penalizing the deviation of the critic’s gradient norm
from 1 at certain input points. Since then, several variants of gradient norm penalization have been
introduced (Petzka et al., 2018; Wei et al., 2018; Adler and Lunz, 2018; Zhou et al., 2019b).

Virtual Adversarial Training (VAT) (Miyato et al., 2019) is a semi-supervised learning method for
improving robustness against local perturbations of the input. Using an iterative method based
on power iteration, it approximates the adversarial direction corresponding to certain input points.
Perturbing an input towards its adversarial direction changes the network’s output the most.

Inspired by VAT, we propose a method called Adversarial Lipschitz Regularization (ALR), en-
abling the training of neural networks with regularization terms penalizing the violation of the
Lipschitz constraint explicitly, instead of through the norm of the gradient. It provides means to
generate a pair for each input point, for which the Lipschitz constraint is likely to be violated with
high probability. In general, enforcing Lipschitz continuity of complex models can be useful for
a lot of applications. In this work, we focus on applying ALR to Wasserstein GANs, as regular-
izing or constraining Lipschitz continuity has proven to have a high impact on training stability
and reducing mode collapse. Source code to reproduce the presented experiments is available at
https://github.com/dterjek/adversarial_lipschitz_regularization.

1

ar
X

iv
:1

90
7.

05
68

1v
3

 [
cs

.L
G

]
 3

 J
an

 2
02

0

https://github.com/dterjek/adversarial_lipschitz_regularization

Published as a conference paper at ICLR 2020

Our contributions are as follows:

• We propose Adversarial Lipschitz Regularization (ALR) and apply it to penalize the violation
of the Lipschitz constraint directly, resulting in Adversarial Lipschitz Penalty (ALP).

• Applying ALP on the critic in WGAN (WGAN-ALP), we show state-of-the-art performance
in terms of Inception Score and Fréchet Inception Distance among non-progressive growing
methods trained on CIFAR-10, and competitive performance in the high-dimensional setting
when applied to the critic in Progressive Growing GAN trained on CelebA-HQ.

2 BACKGROUND

2.1 WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GANs) provide generative modeling by a generator network g
that transforms samples of a low-dimensional latent space Z into samples from the data space X ,
transporting mass from a fixed noise distribution PZ to the generated distribution Pg . The generator is
trained simultaneously with another network f called the discriminator, which is trained to distinguish
between fake samples drawn from Pg and real samples drawn from the real distribution Pr, which is
often represented by a fixed dataset. This network provides the learning signal to the generator, which
is trained to generate samples that the discriminator considers real. This iterative process implements
the minimax game

min
g

max
f

Ex∼Pr log(f(x)) + Ez∼PZ log(1− f(g(z))) (1)

played by the networks f and g. This training procedure minimizes the approximate Jensen-Shannon
divergence (JSD) between Pr and Pg (Goodfellow et al., 2014). However, during training these two
distributions might differ strongly or even have non-overlapping supports, which might result in
gradients received by the generator that are unstable or zero (Arjovsky and Bottou, 2017).

Wasserstein GAN (WGAN) (Arjovsky et al., 2017) was proposed as a solution to this instability.
Originating from Optimal Transport theory (Villani, 2008), the Wasserstein metric provides a distance
between probability distributions with much better theoretical and practical properties than the JSD.
It provides a smooth optimizable distance even if the two distributions have non-overlapping supports,
which is not the case for JSD. It raises a metric dX from the space X of the supports of the probability
distributions P1 and P2 to the space of the probability distributions itself. For these purposes, the
Wasserstein-p distance requires the probability distributions to be defined on a metric space and is
defined as

Wp(P1, P2) =

(
inf

π∈Π(P1,P2)
E(x1,x2)∼πdX(x1, x2)p

) 1
p

, (2)

where Π(P1, P2) is the set of distributions on the product space X ×X whose marginals are P1 and
P2, respectively. The optimal π achieving the infimum in (2) is called the optimal coupling of P1 and
P2, and is denoted by π∗. The case of p = 1 has an equivalent formulation

W1(P1, P2) = sup
‖f‖L≤1

Ex∼P1
f(x)− Ex∼P2

f(x), (3)

called the Kantorovich-Rubinstein formula (Villani, 2008), where f : X → R is called the potential
function, ‖f‖L ≤ 1 is the set of all functions that are 1-Lipschitz with respect to the ground metric
dX , and the Wasserstein-1 distance corresponds to the supremum over all 1-Lipschitz potential
functions. The smallest Lipschitz constant for a real-valued function f with the metric space (X, dX)
as its domain is given by

‖f‖L = sup
x,y∈X;x 6=y

|f(x)− f(y)|
dX(x, y)

. (4)

Based on (3), the critic in WGAN (Arjovsky et al., 2017) implements an approximation of the
Wasserstein-1 distance between Pg and Pr. The minimax game played by the critic f and the
generator g becomes

min
g

max
‖f‖L≤1

Ez∼PZf(g(z))− Ex∼Prf(x), (5)

2

Published as a conference paper at ICLR 2020

a formulation that proved to be superior to the standard GAN in practice, with substantially more
stable training behaviour and improved sample quality (Arjovsky et al., 2017), although recent GAN
variants do not always use this objective (Brock et al., 2019). With WGAN, the challenge became
effectively restricting the smallest Lipschitz constant of the critic f , sparking the birth of a plethora
of Lipschitz regularization techniques for neural networks.

2.2 LIPSCHITZ FUNCTION APPROXIMATION

A general definition of the smallest Lipschitz constant of a function f : X → Y is

‖f‖L = sup
x,y∈X;x 6=y

dY (f(x), f(y))

dX(x, y)
, (6)

where the metric spaces (X, dX) and (Y, dY) are the domain and codomain of the function f ,
respectively. The function f is called Lipschitz continuous if there exists a real constant K ≥ 0
for which dY (f(x), f(y)) ≤ K · dX(x, y) for any x, y ∈ X . Then, the function f is also called
K-Lipschitz. Theoretical properties of neural networks with low Lipschitz constants were explored in
Oberman and Calder (2018), Bartlett (1998) and Drucker and LeCun (1992), showing that it induces
better generalization.

Learning mappings with Lipschitz constraints became prevalent in the field of deep learning with the
introduction of WGAN (Arjovsky et al., 2017). Enforcing the Lipschitz property on the critic was
first done by clipping the weights of the network. This approach achieved superior results compared
to the standard GAN formulation, but still sometimes yielded poor quality samples or even failed
to converge. While clipping the weights enforces a global Lipschitz constant, it also reduces the
function space, which might not include the optimal critic any more. Soon this method has been
replaced by a softened one called Gradient Penalty (GP) (Gulrajani et al., 2017). Motivated by the
fact that the optimal critic should have unit gradient norm on lines connecting the coupled points
(x1, x2) ∼ π∗ according to (2), they proposed a regularizer that enforces unit gradient norm along
these lines, which not only enforces the Lipschitz constraint, but other properties of the optimal
solution as well. However, π∗ is not known in practice, which is why Gulrajani et al. (2017) proposed
to apply GP on samples of the induced distribution Pi, by interpolating samples from the marginals
P1 and P2. The critic in the WGAN-GP formulation is regularized with the loss

λEx∼Pi(‖∇xf(x)‖2 − 1)2 (7)

where Pi denotes the distribution of samples obtained by interpolating pairs of samples drawn from
Pr and Pg , and λ is a hyperparameter acting as a Lagrange multiplier.

Theoretical arguments against GP were pointed out by Petzka et al. (2018) and Gemici et al. (2018),
arguing that unit gradient norm on samples of the distribution Pi is not valid, as the pairs of samples
being interpolated are generally not from the optimal coupling π∗, and thus do not necessarily need to
match gradient norm 1. Furthermore, they point out that differentiability assumptions of the optimal
critic are not met. Therefore, the regularizing effect of GP might be too strong. As a solution, Petzka
et al. (2018) suggested using a loss penalizing the violation of the Lipschitz constraint either explicitly
with

λEx,y∼Pτ
(
|f(x)− f(y)|
‖x− y‖2

− 1

)2

+

(8)

or implicitly with
λEx∼Pτ (‖∇xf(x)‖2 − 1)

2
+ (9)

where in both cases (a)+ denotes max(0, a). The first method has only proved viable when used on
toy datasets, and led to considerably worse results on relatively more complex datasets like CIFAR-10,
which is why Petzka et al. (2018) used the second one, which they termed Lipschitz Penalty (LP).
Compared to GP, this term only penalizes the gradient norm when it exceeds 1. As Pτ they evaluated
the interpolation method described above, and also sampling random local perturbations of real and
generated samples, but found no significant improvement compared to Pi. Wei et al. (2018) proposed
dropout in the critic as a way for creating perturbed input pairs to evaluate the explicit Lipschitz
penalty (8), which led to improvements, but still relied on using GP simultaneously.

A second family of Lipschitz regularization methods is based on weight normalization, restricting
the Lipschitz constant of a network globally instead of only at points of the input space. One such

3

Published as a conference paper at ICLR 2020

technique is called spectral normalization (SN) proposed in Miyato et al. (2018), which is a very
efficient and simple method for enforcing a Lipschitz constraint with respect to the 2-norm on a
per-layer basis, applicable to neural networks consisting of affine layers and K-Lipschitz activation
functions. Gouk et al. (2018) proposed a similar approach, which can be used to enforce a Lipschitz
constraint with respect to the 1-norm and ∞-norm in addition to the 2-norm, while also being
compatible with batch normalization and dropout. Anil et al. (2019) argued that any Lipschitz-
constrained neural network must preserve the norm of the gradient during backpropagation, and to
this end proposed another weight normalization technique (showing that it compares favorably to SN,
which is not gradient norm preserving), and an activation function based on sorting.

2.3 VIRTUAL ADVERSARIAL TRAINING

VAT (Miyato et al., 2019) is a semi-supervised learning method that is able to regularize networks to
be robust to local adversarial perturbation. Virtual adversarial perturbation means perturbing input
sample points in such a way that the change in the output of the network induced by the perturbation
is maximal in terms of a distance between distributions. This defines a direction for each sample
point called the virtual adversarial direction, in which the perturbation is performed. It is called
virtual to make the distinction with the adversarial direction introduced in Goodfellow et al. (2015)
clear, as VAT uses unlabeled data with virtual labels, assigned to the sample points by the network
being trained. The regularization term of VAT is called Local Distributional Smoothness (LDS). It is
defined as

LLDS = D (p(y|x), p(y|x+ rvadv)) , (10)
where p is a conditional distribution implemented by a neural network, D(p, p′) is a divergence
between two distributions p and p′, for which Miyato et al. (2019) chose the Kullback-Leibler
divergence (KLD), and

rvadv = arg max
‖r‖2≤ε

D (p(y|x), p(y|x+ r)) (11)

is the virtual adversarial perturbation, where ε is a hyperparameter. VAT is defined as a training
method with the regularizer (10) applied to labeled and unlabeled examples. An important detail is
that (10) is minimized by keeping p(y|x) fixed and optimizing p(y|x+ rvadv) to be close to it.

The adversarial perturbation is approximated by the power iteration rvadv ≈ εrk, where

ri+1 ≈
∇rD (p(y|x), p(y|x+ r))

∣∣∣
r=ξri∥∥∥∥∇rD (p(y|x), p(y|x+ r))
∣∣∣
r=ξri

∥∥∥∥
2

, (12)

r0 is a randomly sampled unit vector and ξ is another hyperparameter. This iterative scheme is an
approximation of the direction at x that induces the greatest change in the output of p in terms of the
divergence D. Miyato et al. (2019) found that k = 1 iteration is sufficient in practical situations.

3 ADVERSARIAL LIPSCHITZ REGULARIZATION

Adler and Lunz (2018) argued that penalizing the norm of the gradient as in (9) is more effective
than penalizing the Lipschitz quotient directly as in (8), as the former penalizes the slope of f in all
spatial directions around x, unlike the latter, which does so only along (x− y). We hypothesize that
using the explicit Lipschitz penalty in itself is insufficient because if one takes pairs of samples x, y
randomly from Pr, Pg or Pi (or just one sample and generates a pair for it with random perturbation),
the violation of the Lipschitz penalty evaluated at these sample pairs will be far from its maximum,
hence a more sophisticated strategy for sampling pairs is required. As we will show, a carefully
chosen sampling strategy can in fact make the explicit penalty favorable over the implicit one.

Consider the network f as a mapping from the metric space (X, dX) to the metric space (Y, dY). Let
us rewrite (6) with y = x+ r to get

‖f‖L = sup
x,x+r∈X;0<dX(x,x+r)

dY (f(x), f(x+ r))

dX(x, x+ r)
. (13)

A given mapping f is K-Lipschitz if and only if for any given x ∈ X , taking the supremum over r in
(13) results in a value K or smaller. Assuming that this supremum is always achieved for some r, we

4

Published as a conference paper at ICLR 2020

can define a notion of adversarial perturbation with respect to the Lipschitz continuity for a given
x ∈ X as

radv = arg max
x+r∈X;0<dX(x,x+r)

dY (f(x), f(x+ r))

dX(x, x+ r)
, (14)

and the corresponding maximal violation of the K-Lipschitz constraint as

LALP =

(
dY (f(x), f(x+ radv))

dX(x, x+ radv)
−K

)
+

. (15)

We define Adversarial Lipschitz Regularization (ALR) as the method of adding (15) as a regularization
term to the training objective that penalizes the violation of the Lipschitz constraint evaluated at
sample pairs obtained by adversarial perturbation. We call this term Adversarial Lipschitz Penalty
(ALP).

To put it in words, ALP measures the deviation of f from being K-Lipschitz evaluated at pairs of
sample points where one is the adversarial perturbation of the other. If added to the training objective,
it makes the learned mapping approximately K-Lipschitz around the sample points it is applied at.
We found that in the case of the WGAN critic it is best to minimize (15) without keeping f(x) fixed.
See Appendix A.1 for the semi-supervised case and Appendix A.2 for how VAT can be seen as a
special case of Lipschitz regularization.

3.1 APPROXIMATION OF radv

In general, computing the adversarial perturbation (14) is a nonlinear optimization problem. A crude
and cheap approximation is radv ≈ εrk, where

ri+1 ≈
∇rdY (f(x), f(x+ r))

∣∣∣
r=ξri∥∥∥∥∇rdY (f(x), f(x+ r))
∣∣∣
r=ξri

∥∥∥∥
2

, (16)

is the approximated adversarial direction with r0 being a randomly sampled unit vector. The derivation
of this formula is essentially the same as the one described in Miyato et al. (2019), but is included
in Appendix A.3 for completeness. Unlike in VAT, we do not fix ε, but draw it randomly from a
predefined distribution Pε over R+ to apply the penalty at different scales.

Theoretically, ALR can be used with all kinds of metrics dX and dY , and any kind of model f , but
the approximation of radv imposes a practical restriction. It approximates the adversarial perturbation
of x as a translation with length ε with respect to the 2-norm in the adversarial direction, which is
only a perfect approximation if the ratio in (15) is constant for any ε > 0. This idealized setting is
hardly ever the case, which is why we see the search for other approximation schemes as an important
future direction. There is a large number of methods for generating adversarial examples besides
the one proposed in VAT (Shafahi et al., 2019; Wong et al., 2019; Khrulkov and Oseledets, 2018),
which could possibly be combined with ALR either to improve the approximation performance or to
make it possible with new kinds of metrics. The latter is important since one of the strengths of the
Wasserstein distance is that it can be defined with any metric dX , a fact that Adler and Lunz (2018)
and Dukler et al. (2019) built on by extending GP to work with metrics other than the Euclidean
distance. Adler and Lunz (2018) emphasized the fact that through explicit Lipschitz penalties one
could extend WGANs to more general metric spaces as well.

3.2 HYPERPARMETERS

In practice, one adds the Monte Carlo approximation of the expectation (averaged over a minibatch
of samples) of either (15) or the square of (15) (or both) to the training objective, multiplied by a
Lagrange multiplier λ. While VAT adds the expectation of (10) to the training objective, for WGAN
we have added the square of the expectation of (15). To train the Progressive GAN, we have added
both the expectation and its square. In the semi-supervised setting, we added only the expectation
similarly to VAT. We have found these choices to work best in these scenarios, but a principled answer
to this question is beyond the scope of this paper. The target Lipschitz constant K can be tuned by
hand, or in the presence of labeled data it is possible to calculate the Lipschitz constant of the dataset

5

Published as a conference paper at ICLR 2020

(Oberman and Calder, 2018). The hyperparameters of the approximation scheme are k, ξ and those
of Pε.

Choosing the right hyperparameters can be done by monitoring the number of adversarial pertur-
bations found by the algorithm for which the Lipschitz constraint is violated (and hence contribute
a nonzero value to the expectation of (15)), and tuning the hyperparameters in order to keep this
number balanced between its maximum (which is the minibatch size) and its minimum (which is
0). If it is too high, it means that either K is too small and should be increased, or the regularization
effect is too weak, so one should increase λ. If it is too low, then either the regularization effect is too
strong, or ALR is parametrized in a way that it cannot find Lipschitz constraint violations efficiently.
In the former case, one should decrease λ. In the latter, one should either decrease K, tune the
parameters of Pε, or increase the number of power iterations k for the price of increased runtime. We
have not observed any significant effect when changing the value of ξ in any of the tasks considered.

3.3 COMPARISON WITH OTHER LIPSCHITZ REGULARIZATION TECHNIQUES

In terms of efficiency when applied to WGANs, ALR compares favorably to the implicit methods
penalizing the gradient norm, and to weight normalization techniques as well, as demonstrated
in the experiments section. See Appendix A.4 for a showcase of the differences between weight
normalization methods, implicit penalty methods and explicit penalty methods, represented by SN,
LP and ALR, respectively. The key takeaways are that

• penalty methods result in a softer regularization effect than SN,

• ALR is preferable when the regularized network contains batch normalization (BN) layers,
and

• ALR gives more control over the regularization effect, which also means there are more
hyperparameters to tune.

The performance of ALR mostly depends on the speed of the approximation of radv. The current
method requires 1 step of backpropagation for each power iteration step, which means that running
time will be similar to that of LP and GP with k = 1. SN is much cheaper computationally than each
penalty method, although we believe ALR has the potential to become relatively cheap as well by
adopting new techniques for obtaining adversarial examples (Shafahi et al., 2019).

4 WGAN-ALP

We specialize the ALP formula (15) with f being the critic, dX(x, y) = ‖x−y‖2, dY (x, y) = |x−y|
and K = 1, and apply it to the WGAN objective to arrive at a version with the explicit penalty, which
uses adversarial perturbations as a sampling strategy. It is formulated as

Ez∼PZf(g(z))− Ex∼Prf(x) + λEx∼Pr,g
(
|f(x)− f(x+ radv)|

‖radv‖2
− 1

)2

+

, (17)

where Pr,g is a combination of the real and generated distributions (meaning that a sample x can
come from both), λ is the Lagrange multiplier, and the adversarial perturbation is defined as

radv = arg max
r;0<‖r‖2

|f(x)− f(x+ r)|
‖r‖2

. (18)

This formulation of WGAN results in a stable explicit Lipschitz penalty, overcoming the difficulties
experienced when one tries to apply it to random sample pairs as shown in Petzka et al. (2018).

To evaluate the performance of WGAN-ALP, we trained one on CIFAR-10, consisting of 32× 32
RGB images, using the residual architecture from Gulrajani et al. (2017), implemented in TensorFlow.
Closely following Gulrajani et al. (2017), we used the Adam optimizer (Kingma and Ba, 2015) with
parameters β1 = 0, β2 = 0.9 and an initial learning rate of 2 × 10−4 decaying linearly to 0 over
100000 iterations, training the critic for 5 steps and the generator for 1 per iteration with minibatches
of size 64 (doubled for the generator). We used (17) as a loss function to optimize the critic. K = 1
was an obvious choice, and we found λ = 100 to be optimal (the training diverged for λ = 0.1, and

6

Published as a conference paper at ICLR 2020

was stable but performed worse for λ = 10 and 1000). The hyperparameters of the approximation of
radv were set to ξ = 10, Pε being the uniform distribution over [0.1, 10], and k = 1 power iteration.
Both batches from Pr and Pg were used for regularization.

We used Inception Score (Salimans et al., 2016) and FID (Heusel et al., 2017) as our evaluation
metrics. The former correlates well with human judgment of image quality and is the most widely
used among GAN models, and the latter has been shown to capture model issues such as mode
collapse, mode dropping and overfitting, while being a robust and efficient metric (Xu et al., 2018).
We monitored the Inception Score and FID during training using 10000 samples every 1000 iteration,
and evaluated them at the end of training using 50000 samples. We ran the training setting described
above 10 times with different random seeds, and calculated the mean and standard deviation of
the final Inception Scores and FIDs, while also recording the maximal Inception Score observed
during training. We report these values for WGAN-ALP and other relevant GANs (Gulrajani et al.,
2017; Petzka et al., 2018; Zhou et al., 2019a; Wei et al., 2018; Miyato et al., 2018; Adler and Lunz,
2018; Karras et al., 2018) in Table 1. We did not run experiments to evaluate competing models,
but included the values reported in the corresponding papers (with the exception of the FID for
WGAN-GP, which was taken from Zhou et al. (2019a)). They used different methods to arrive at the
cited results, from which that of Adler and Lunz (2018) is the one closest to ours. We show some
generated samples in Figure 1a.

Table 1: Inception Scores and FIDs on CIFAR-10

Inception Score

Method Average Best FID

WGAN-GP 7.86± .07 18.86± .13
WGAN-LP 8.02± .07
LGAN 8.03± .03 15.64± .07
CT-GAN 8.12± .12
SN-GAN 8.22± .05 21.70± .21
BWGAN 8.31± .07 16.43
Progressive GAN 8.56± .06 8.80
WGAN-ALP (ours) 8.34± .06 8.59 12.96± .35

(a) No BN in critic (b) BN in critic

Figure 1: Generated CIFAR-10 samples

We also trained WGAN-LP in our implementation. During training, the best observed Inception
Score and FID were 8.13 and 18.49, while at the end of training the best final Inception Score and

7

Published as a conference paper at ICLR 2020

FID were 8.01 and 15.42. To see that ALR indeed restricts the Lipschitz constant of the critic, we
monitored the gradient norms during training, which converged to ≈ 5 with λ = 100. This was
also the case using LP with λ = 0.1, but the number of Lipschitz constraint violations found by the
algorithm were much higher in this case than with ALR.

Our toy example in Appendix A.4 showed that when the regularized network contains BN layers, ALR
seems to work better than competing methods. In order to see if this still applies in more complex
settings, we have trained a variant of WGAN in which the critic contains BN layers (WGAN-BN).
Gulrajani et al. (2017) did not use BN in the critic as they argued that GP is not valid in that setting,
and indeed when we trained WGAN-BN with GP, the best Inception Score observed during training
was only 6.29. When we applied ALP to WGAN-BN, the results were nearly on par with the original
setting without BN, producing an even better maximal Inception Score of 8.71. We leave the question
of how BN affects Lipschitz continuity for future work. Generated samples are shown in Figure 1b.

Gulrajani et al. (2017) made the distinction between one-sided and two-sided penalties, represented
by (9) and (7). The latter is based on the fact that in WGAN, the optimal critic has unit gradient norm
on lines connecting points from the optimal coupling π∗. Petzka et al. (2018) showed that since π∗ is
not known in practice, one should use the one-sided penalty, while Gemici et al. (2018) proposed
a method to approximate π∗ with an auto-encoding scheme. In the limit ‖r‖2 → 0 the expression
inside the arg max operator in (18) is equivalent to the directional derivative of f along r, and the
vector radv corresponding to the maximum value of the directional derivative at x is equivalent to
∇xf(x). Since the critic f corresponds to the potential function in the dual formulation of the optimal
transport problem, at optimality its gradient at x points towards its coupling y, where (x, y) ∼ π∗.
From this perspective, sampling pairs (x, x+ radv) using (18) can be seen as an approximation of
the optimal coupling π∗. To test how reasonable this approximation is, we have trained a WGAN
variant with the two-sided explicit penalty formulated as

Ez∼PZf(g(z))− Ex∼Prf(x) + λEx∼Pr,g
(
|f(x)− f(x+ radv)|

‖radv‖2
− 1

)2

, (19)

which performed similarly to the one-sided case with λ = 10, but was less stable for other values of
λ. The findings of Petzka et al. (2018) were similar for the case of the implicit penalty. Improving
the approximation scheme of radv might render the formulation using the two-sided penalty (19)
preferable in the future.

To show that ALR works in a high-dimensional setting as well, we trained a Progressive GAN on
the CelebA-HQ dataset (Karras et al., 2018), consisting of 1024× 1024 RGB images. We took the
official TensorFlow implementation and replaced the loss function of the critic, which originally
used GP, with a version of ALP. Using (17) as the training objective was stable until the last stage of
progressive growing, but to make it work on the highest resolution, we had to replace it with

Ez∼PZf(g(z))− Ex∼Prf(x)

+ λEx∼Pr,g

((
|f(x)− f(x+ radv)|

‖radv‖2
− 1

)2

+

+

(
|f(x)− f(x+ radv)|

‖radv‖2
− 1

)
+

)
, (20)

meaning that we used the sum of the absolute and squared values of the Lipschitz constraint violation
as the penalty. The optimal hyperparameters were λ = 0.1, Pε being the uniform distribution over
[0.1, 100], ξ = 10 and k = 1 step of power iteration. The best FID seen during training with the
original GP version was 8.69, while for the modified ALP version it was 14.65. The example shows
that while ALP did not beat GP in this case (possibly because the implementation was fine-tuned
using GP), it does work in the high-dimensional setting as well. For samples generated by the best
performing ALR and GP variants see Appendix A.5.

5 CONCLUSIONS

Inspired by VAT, we proposed ALR and shown that it is an efficient and powerful method for
learning Lipschitz constrained mappings implemented by neural networks. Resulting in competitive
performance when applied to the training of WGANs, ALR is a generally applicable regularization
method. It draws an important parallel between Lipschitz regularization and adversarial training,
which we believe can prove to be a fruitful line of future research.

8

Published as a conference paper at ICLR 2020

ACKNOWLEDGEMENTS

The author would like to thank Michael Herman from Bosch Center for Artificial Intelligence (BCAI)
for the fruitful discussions, and the Advanced Engineering team in Budapest, especially Géza Velkey.

REFERENCES

J. Adler and S. Lunz. Banach wasserstein GAN. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada, pages 6755–6764, 2018. URL http://papers.nips.
cc/paper/7909-banach-wasserstein-gan.

C. Anil, J. Lucas, and R. B. Grosse. Sorting out lipschitz function approximation. In Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, pages 291–301, 2019. URL http://proceedings.mlr.press/
v97/anil19a.html.

M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?
id=Hk4_qw5xe.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, pages 214–223, 2017. URL http://proceedings.mlr.press/v70/
arjovsky17a.html.

P. L. Bartlett. The sample complexity of pattern classification with neural networks: The size of the
weights is more important than the size of the network. IEEE Trans. Information Theory, 44(2):
525–536, 1998. doi: 10.1109/18.661502. URL https://doi.org/10.1109/18.661502.

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural
image synthesis. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019. URL https://openreview.net/forum?id=
B1xsqj09Fm.

M. Deza and E. Deza. Encyclopedia of Distances. Encyclopedia of Distances. Springer Berlin
Heidelberg, 2009. ISBN 9783642002342.

H. Drucker and Y. LeCun. Improving generalization performance using double backpropagation.
IEEE Trans. Neural Networks, 3(6):991–997, 1992. doi: 10.1109/72.165600. URL https:
//doi.org/10.1109/72.165600.

Y. Dukler, W. Li, A. T. Lin, and G. Montúfar. Wasserstein of wasserstein loss for learning generative
models. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, pages 1716–1725, 2019. URL http:
//proceedings.mlr.press/v97/dukler19a.html.

A. Galloway, A. Golubeva, T. Tanay, M. Moussa, and G. W. Taylor. Batch normalization is a cause
of adversarial vulnerability. CoRR, abs/1905.02161, 2019. URL http://arxiv.org/abs/
1905.02161.

M. Gemici, Z. Akata, and M. Welling. Primal-dual wasserstein GAN. CoRR, abs/1805.09575, 2018.
URL http://arxiv.org/abs/1805.09575.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville,
and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, pages 2672–2680. 2014. URL http://papers.nips.cc/
paper/5423-generative-adversarial-nets.

9

http://papers.nips.cc/paper/7909-banach-wasserstein-gan
http://papers.nips.cc/paper/7909-banach-wasserstein-gan
http://proceedings.mlr.press/v97/anil19a.html
http://proceedings.mlr.press/v97/anil19a.html
https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=Hk4_qw5xe
http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.1109/18.661502
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm
https://doi.org/10.1109/72.165600
https://doi.org/10.1109/72.165600
http://proceedings.mlr.press/v97/dukler19a.html
http://proceedings.mlr.press/v97/dukler19a.html
http://arxiv.org/abs/1905.02161
http://arxiv.org/abs/1905.02161
http://arxiv.org/abs/1805.09575
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets

Published as a conference paper at ICLR 2020

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6572.

H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree. Regularisation of neural networks by enforcing
lipschitz continuity. CoRR, abs/1804.04368, 2018. URL http://arxiv.org/abs/1804.
04368.

Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In
Advances in Neural Information Processing Systems 17 [Neural Information Pro-
cessing Systems, NIPS 2004, December 13-18, 2004, Vancouver, British Columbia,
Canada], pages 529–536, 2004. URL http://papers.nips.cc/paper/
2740-semi-supervised-learning-by-entropy-minimization.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved train-
ing of wasserstein gans. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 5767–5777, 2017. URL http://papers.nips.cc/paper/
7159-improved-training-of-wasserstein-gans.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, pages 6626–6637, 2017. URL http://papers.nips.cc/paper/
7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.

J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pages 4565–4573, 2016. URL http://papers.
nips.cc/paper/6391-generative-adversarial-imitation-learning.

A. Householder. The Theory of Matrices in Numerical Analysis. A Blaisdell book in pure and applied
sciences : introduction to higher mathematics. Blaisdell Publishing Company, 1964.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved quality,
stability, and variation. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018. URL
https://openreview.net/forum?id=Hk99zCeAb.

V. Khrulkov and I. V. Oseledets. Art of singular vectors and universal adversarial perturbations.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018, pages 8562–8570, 2018. doi: 10.1109/CVPR.2018.00893.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/Khrulkov_
Art_of_Singular_CVPR_2018_paper.html.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial
networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018. URL https:
//openreview.net/forum?id=B1QRgziT-.

T. Miyato, S. Maeda, M. Koyama, and S. Ishii. Virtual adversarial training: A regularization method
for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell., 41(8):
1979–1993, 2019. doi: 10.1109/TPAMI.2018.2858821. URL https://doi.org/10.1109/
TPAMI.2018.2858821.

A. M. Oberman and J. Calder. Lipschitz regularized deep neural networks converge and generalize.
CoRR, abs/1808.09540, 2018. URL http://arxiv.org/abs/1808.09540.

10

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1804.04368
http://arxiv.org/abs/1804.04368
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning
https://openreview.net/forum?id=Hk99zCeAb
http://openaccess.thecvf.com/content_cvpr_2018/html/Khrulkov_Art_of_Singular_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Khrulkov_Art_of_Singular_CVPR_2018_paper.html
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=B1QRgziT-
https://doi.org/10.1109/TPAMI.2018.2858821
https://doi.org/10.1109/TPAMI.2018.2858821
http://arxiv.org/abs/1808.09540

Published as a conference paper at ICLR 2020

H. Petzka, A. Fischer, and D. Lukovnikov. On the regularization of wasserstein gans. In 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings, 2018. URL https://openreview.net/
forum?id=B1hYRMbCW.

T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved
techniques for training gans. In Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 2226–2234, 2016. URL http://papers.nips.cc/paper/
6125-improved-techniques-for-training-gans.

A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. P. Dickerson, C. Studer, L. S. Davis, G. Taylor, and
T. Goldstein. Adversarial training for free! CoRR, abs/1904.12843, 2019. URL http://arxiv.
org/abs/1904.12843.

C. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften.
Springer Berlin Heidelberg, 2008. ISBN 9783540710509.

X. Wei, B. Gong, Z. Liu, W. Lu, and L. Wang. Improving the improved training of wasserstein gans: A
consistency term and its dual effect. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.
URL https://openreview.net/forum?id=SJx9GQb0-.

E. Wong, F. R. Schmidt, and J. Z. Kolter. Wasserstein adversarial examples via projected sinkhorn
iterations. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, pages 6808–6817, 2019. URL http:
//proceedings.mlr.press/v97/wong19a.html.

Q. Xu, G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu, and K. Q. Weinberger. An empirical study
on evaluation metrics of generative adversarial networks. CoRR, abs/1806.07755, 2018. URL
http://arxiv.org/abs/1806.07755.

Z. Zhou, J. Liang, Y. Song, L. Yu, H. Wang, W. Zhang, Y. Yu, and Z. Zhang. Lipschitz generative
adversarial nets. pages 7584–7593, 2019a. URL http://proceedings.mlr.press/v97/
zhou19c.html.

Z. Zhou, J. Shen, Y. Song, W. Zhang, and Y. Yu. Towards efficient and unbiased implementation of
lipschitz continuity in gans. CoRR, abs/1904.01184, 2019b. URL http://arxiv.org/abs/
1904.01184.

11

https://openreview.net/forum?id=B1hYRMbCW
https://openreview.net/forum?id=B1hYRMbCW
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans
http://arxiv.org/abs/1904.12843
http://arxiv.org/abs/1904.12843
https://openreview.net/forum?id=SJx9GQb0-
http://proceedings.mlr.press/v97/wong19a.html
http://proceedings.mlr.press/v97/wong19a.html
http://arxiv.org/abs/1806.07755
http://proceedings.mlr.press/v97/zhou19c.html
http://proceedings.mlr.press/v97/zhou19c.html
http://arxiv.org/abs/1904.01184
http://arxiv.org/abs/1904.01184

Published as a conference paper at ICLR 2020

A APPENDIX

A.1 SEMI-SUPERVISED LEARNING

Since VAT is a semi-supervised learning method, it is important to see how ALR fares in that
regime. To show this, we have replicated one of the experiments from Miyato et al. (2019). We
trained the ConvLarge architecture to classify images from CIFAR-10 with the same setting as
described in Miyato et al. (2019), except that we did not decay the learning rate, but kept it fixed at
3× 10−4. We split the 50000 training examples into 4000 samples for the classification loss, 45000
samples for regularization and 1000 for validation, with equally distributed classes. Test performance
was evaluated on the 10000 test examples. We have found that unlike in the unsupervised setting,
here it was important to assume f(x) fixed when minimizing the regularization loss, and also to
complement the smoothing effect with entropy minimization (Grandvalet and Bengio, 2004). The
baseline VAT method was ALR specialized with K = 0, dX being the Euclidean metric, dY being
the KL divergence, fixed ε = 8 and λ = 1. This setting achieved maximal validation performance
of 84.2% and test performance 82.46%. After some experimentation, the best performing choice
was K = 0, dX being the l2 metric, dY the mean squared difference over the logit space (which
parametrize the categorical output distribution over which the KL divergence is computed in the case
of VAT), Pε being the uniform distribution over [1, 10] and λ = 1. This way the maximal validation
performance was 85.3% and test performance 83.54%. Although this ≈ 1% is improvement is not
very significant, it shows that ALR can be a competitive choice as a semi-supervised learning method
as well.

A.2 VIRTUAL ADVERSARIAL TRAINING AS LIPSCHITZ REGULARIZATION

VAT was defined by considering neural networks implementing conditional distributions p(y|x),
where the distribution over discrete labels y was conditioned on the input image x Miyato et al.
(2019). To see why LDS (10), the regularization term of VAT, can be seen as special kind of Lipschitz
continuity, we will use a different perspective. Consider a mapping f : X → Y with domain X
and codomain Y , where X is the space of images and Y is the probability simplex (the space of
distributions over the finite set of labels).

Since a divergence is in general a premetric (prametric, quasi-distance) on the space of probability
measures (Deza and Deza, 2009), and Lipschitz continuity is defined for mappings between metric
spaces, let us restrict the divergence D from the VAT formulation to be a metric dY . Miyato et al.
(2019) used KLD in their experiments, which is not a metric, but one can use e.g. the square root
of JSD or the Hellinger distance, which are metrics. Let us metrize the space of images X with dX
being the Euclidean metric. From this perspective, the network f is a mapping from the metric space
(X, dX) to the metric space (Y, dY). Let us also assume that we aim to learn a mapping f with the
smallest possible ‖f‖L by setting K to 0.

To enforce the condition x+ r ∈ X in (14), we bound the Euclidean norm of r from above by some
predefined ε > 0. If we make the additional assumption that the supremum is always achieved with
an r of maximal norm ε, the denominator in (14) will be constant, hence the formulas with and
without it will be equivalent up to a scaling factor. With these simplifications, (14) and (15) reduce to

rV ATadv = arg max
0≤‖r‖2≤ε

dY (f(x), f(x+ r)) (21)

and
LV ATALP = dY (f(x), f(x+ radv)), (22)

which are equivalent to (11) and (10), respectively. Let us consider the question of keeping f(x) fixed
when minimizing (22) an implementation detail. With this discrepancy aside, we have recovered VAT
as a special case of Lipschitz regularization.

A.3 DERIVATION OF THE APPROXIMATION OF radv

We assume that f and dY are both twice differentiable with respect to their arguments almost
everywhere, the latter specifically at x = y. Note that one can easily find a dY for which the last
assumption does not hold, for example the l1 distance. If dY is translation invariant, meaning that

12

Published as a conference paper at ICLR 2020

dY (x, y) = dY (x+ u, y + u) for each u ∈ Y , then its subderivatives at x = y will be independent
of x, hence the method described below will still work. Otherwise, one can resort to using a proxy
metric in place of dY for the approximation, for example the l2 distance.

We denote dY (f(x), f(x+ r)) by d(r, x) for simplicity. Because d(r, x) ≥ 0 and d(0, x) = 0, it is
easy to see that

∇rd(r, x)
∣∣
r=0

= 0, (23)

so that the second-order Taylor approximation of d(r, x) is d(r, x) ≈ 1
2r
TH(x)r, where H(x) =

∇∇rd(r, x)
∣∣
r=0

is the Hessian matrix. The eigenvector u of H(x) corresponding to its eigenvalue
with the greatest absolute value is the direction of greatest curvature, which is approximately the
adversarial direction that we are looking for. The power iteration (Householder, 1964) defined by

ri+1 :=
H(x)ri
‖H(x)ri‖2

, (24)

where r0 is a randomly sampled unit vector, converges to u if u and r0 are not perpendicular.
Calculating H(x) is computationally heavy, which is why H(x)ri is approximated using the finite
differences method as

H(x)ri ≈
∇rd(r, x)

∣∣
r=ξri

−∇rd(r, x)
∣∣
r=0

ξ
=
∇rd(r, x)

∣∣
r=ξri

ξ
(25)

where the equality follows from (23). The hyperparameter ξ 6= 0 is introduced here. In summary, the
adversarial direction is approximated by the iterative scheme

ri+1 :=
∇rd(r, x)

∣∣
r=ξri∥∥∥∇rd(r, x)
∣∣
r=ξri

∥∥∥
2

, (26)

of which one iteration is found to be sufficient and necessary in practice.

A.4 TOY EXAMPLE

To showcase the differences between weight normalization methods, implicit penalty methods and
explicit penalty methods, represented by SN, LP and ALR, respectively, we devised the following
toy example. Suppose that we want to approximate the following real-valued mapping on the
2-dimensional interval [−4, 4]2:

f(x, y) =

{
0 if 1 ≤

√
x2 + y2 ≤ 2,

1 otherwise
(27)

for −4 ≤ x, y ≤ 4. In addition, we want the approximation to be 1-Lipschitz. It is easy to see that
the optimal approximation with respect to the mean squared error is

f̂opt(x, y) =

1 if

√
x2 + y2 ≤ 0.5,

1.5−
√
x2 + y2 if 0.5 <

√
x2 + y2 ≤ 1.5,√

x2 + y2 − 1.5 if 1.5 <
√
x2 + y2 ≤ 2.5,

1 otherwise.

. (28)

This example has connections to WGAN, as the optimal critic is 1-Lipschitz, and its approximation
will provide the learning signal to the generator in the form of gradients. Therefore, it is important
to closely approximate the gradient of the optimal critic, which is achieved indirectly by Lipschitz
regularization. In this example, we will see how closely the different Lipschitz regularization methods
can match the gradient of the optimal approximation f̂opt.

We implemented the example in PyTorch. For the approximation f̂ , we use an MLP with 3 hidden
layers containing 20, 40 and 20 neurons, respectively, with ReLU activations after the hidden layers,
and a variant which also has batch normalization (BN) before the activations, since it has been
found that BN hurts adversarial robustness (Galloway et al., 2019), and hence it should also hurt
Lipschitz continuity. We trained the networks for 214 iterations, with batches consisting of an input, a

13

Published as a conference paper at ICLR 2020

corresponding output, and an additional input for regularization. The inputs are drawn uniformly at
random from [−4, 4]2 and the output is defined by (27). The minibatch size was 64 for input-output
pairs, and 1024 for regularization inputs. We used heatmaps to visualize the gradient norm surfaces
of the optimal and learned mappings, with the color gradient going from black at 0 to white at 1, see
Figure 2. This example is not intended to rank the competing Lipschitz regularization methods, as it
always depends on the particular application which one is the best suited, but to show that they are
fundamentally different and competent in their own way.

(a) colormap (b) ‖∇xf̂opt‖2 (c) ‖∇xf̂‖2 (no regularization) (d) ‖∇xf̂SN‖2

(e) ‖∇xf̂LP,λ=0.1‖2 (f) ‖∇xf̂LP,λ=1‖2 (g) ‖∇xf̂LP,λ=10‖2

(h) ‖∇xf̂ALP,λ=0.1,k=0‖2 (i) ‖∇xf̂ALP,λ=1,k=0‖2 (j) ‖∇xf̂ALP,λ=10,k=0‖2

(k) ‖∇xf̂ALP,λ=0.1,k=1‖2 (l) ‖∇xf̂ALP,λ=1,k=1‖2 (m) ‖∇xf̂ALP,λ=10,k=1‖2

(n) ‖∇xf̂ALP,λ=0.1,k=5‖2 (o) ‖∇xf̂ALP,λ=1,k=5‖2 (p) ‖∇xf̂ALP,λ=10,k=5‖2

Figure 2: Gradient norm surfaces of optimal and learned approximations of f

Without any kind of regularization, the network learned to approximate the target function very well,
but its gradients look nothing like that of f̂opt, although somehow it is a better match with BN.

When we apply SN to the MLP layers, the result without BN will be a very smooth mapping with
maximum gradient norm far below 1. SN is not compatible with BN, the result being only slightly
better than the unregularized case. A detail not visible here is that because SN considers weight
matrices as linear maps from Rn to Rm and normalizes them layer-wise, it regularizes globally
instead of around actual data samples. In this case, on the whole of R2 instead of just [−4, 4]2. For
WGANs trained on CIFAR-10, the input space consists of 32× 32 RGB images with pixel values in
[−1, 1], but the trained mapping is regularized on R32×32×3 instead of just [−1, 1]32×32×3 (which

14

Published as a conference paper at ICLR 2020

contains the supports of the real and fake distributions). This can hurt performance if the optimal
mapping implemented by a particular network architecture is K-Lipschitz inside these supports, but
not in some other parts of R32×32×3.

When the network is regularized using LP (9), the regularization strength can be controlled by tuning
the value of λ. We trained with λ = 0.1, 1 and 10. Without BN, the highest of these values seems to
work the best. With BN, the resulting mapping is visibly highly irregular.

With ALR, in addition to λ, we have additional control over the regularization by the hyperparameters
of the approximation scheme of radv . After some experimentation, we have found the best Pε for this
case was the uniform distribution over [10−6, 10−5]. We trained with λ = 0.1, 1 and 10, and k = 0, 1
and 5 power iterations. Arguably, both with and without BN the λ = 1 and k = 5 case seems like the
best choice. Without BN, the results are quite similar to the LP case, but when BN is introduced, the
resulting mappings are much smoother than the ones obtained with LP.

15

Published as a conference paper at ICLR 2020

A.5 IMAGES GENERATED BY PROGRESSIVE GAN TRAINED ON CELEBA-HQ

Figure 3: Images generated using Progressive GAN trained with ALR

16

Published as a conference paper at ICLR 2020

Figure 4: Images generated using Progressive GAN trained with GP

17

	1 Introduction
	2 Background
	2.1 Wasserstein Generative Adversarial Networks
	2.2 Lipschitz Function Approximation
	2.3 Virtual Adversarial Training

	3 Adversarial Lipschitz Regularization
	3.1 Approximation of radv
	3.2 Hyperparmeters
	3.3 Comparison with other Lipschitz regularization techniques

	4 WGAN-ALP
	5 Conclusions
	A Appendix
	A.1 Semi-supervised learning
	A.2 Virtual Adversarial Training as Lipschitz regularization
	A.3 Derivation of the approximation of radv
	A.4 Toy example
	A.5 Images generated by Progressive GAN trained on CelebA-HQ

