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Abstract
The isoconversional (or model-free) methods cannot provide meaningful kinetic description for most samples in thermal 
analysis. Nevertheless, they can serve as empirical models. A usable empirical model should describe well the observed 
data and should be suitable for predictions, too. For this purpose, the functions in the isoconversional kinetic equation were 
parametrized, and the parameters were determined by the method of least squares. This procedure ensures that the data 
calculated from the model would be close to the experimental data. The present work supplemented a preceding work of 
Várhegyi (Energy and Fuels 33:2348–2358, 2019) by further considerations and by various evaluations on the TGA curves 
of a wood sample. The prediction capabilities of the models were also tested. It was found that an evaluation based on three 
experiments with constant heating rates could predict well two further experiments with stepwise temperature programs. 
Furthermore, a modification of the model was proposed and examined. The aim of this modification was to improve the fit 
quality without increasing the number of parameters in the least-squares procedure.

Keywords  Non-isothermal kinetics · Least-squares evaluation · Isoconversional methods · Model-free methods · Biomass · 
Wood · Spruce

List of symbols
α	� Reacted fraction [dimensionless]
A/s−1	� Pre-exponential factor
Ã(α)/s−1	� A(α) f(α)/(1 − α) at α < 1
Ãn(α)/s−1	� A(α) f(α)/(1 − α)n at α < 1
E/kJ mol−1	� Activation energy
f(α)	� Empirical function expressing the change 

in the reactivity as the reactions proceed 
[dimensionless]

g(α)/s	� The integral of [A(α) f(α)]−1 by α in Eq. (13)
hj/s−1	� Height of an experimental dα/dt curve
m	� The mass of the sample normalized by the 

initial dry sample mass [dimensionless]

of	� Objective function minimized in the least-
squares evaluation [dimensionless]

Nexper	� Number of experiments evaluated together 
by the method of least squares

Nj	� Number of evaluated data on the jth experi-
mental curve

n	� A number in Eq. (14) [dimensionless]
R	� Gas constant (8.3143 × 10−3 kJ mol−1 K−1)
reldev/%	� The deviation between the observed and 

calculated data expressed as per cent of the 
corresponding peak height

reldev5/%	� Root mean square of the reldev values of five 
experiments

t/s	� Time
T	� Temperature [°C, K]
x	� 2α − 1 [dimensionless]
Z(α)	� A parameter transformation defined by 

Eq. (11)

Subscripts
i	� Digitized point on an experimental curve
j	� Experiment
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Introduction

The kinetic evaluation of non-isothermal experiments is usu-
ally based on isoconversional methods in thermal analysis. 
The corresponding kinetic equations have the form

Here, α is the reacted fraction, while A(α) f(α) and E(α) 
are empirical functions [1, 2]. The kinetic evaluations by 
Eq.  (2) are frequently called “model-free” methods to 
emphasize that no assumptions are made on the mecha-
nism of the reactions. The literature of the “model-free” 
or isoconversional evaluations is huge. Around 4500 sci-
entific articles contain the characteristic terms of these 
methods in the Web of Science database, of which ca. 
500 appeared within a year [3]. The survey of this vast 
literature is out of the scope of the present work. Instead, 
the current state of these methods is illustrated by the 
best-cited works of this field from 2018 [4–6]. They deal 
with the kinetics of organic samples with highly complex 
chemical composition. A few recent works on similarly 
complex samples are also listed from the Journal of Ther-
mal Analysis and Calorimetry [7–14]. Many further ref-
erences can be found in the work of Cai et al. [6] which 
is an overview of the application of the isoconversional 
methods for biomass pyrolysis till 2017. Cai et al. [6] gave 
a critical summary of the available isoconversional evalu-
ation techniques, too.

Let us have a look on the kinetic meaning of Eq. (1). 
It assumes one pool of reactants for which the reactivity 
varies as the reaction proceeds. However, most of the sam-
ples of practical interest contains more than one sort of 
reacting species, as it was the case in the studies [4–14] as 
well as in the nearly 100 works reviewed by Cai et al. [6]. 
Each species has its own reacted fraction, its own reactiv-
ity parameters, and its own concentration in the sample. 
See, e.g. Ref. [15] for a brief recent overview. Equation (1) 
can only formally describe the events taking place in a 
complex organic sample. On the other hand, Eq. (1) can 
be used to find empirical models that describe the reac-
tions formally and predict the behaviour of the samples 
in reactor modelling and other tasks [16–19]. Note that 
Eq. (1) can easily be solved numerically if the E(α) and 
A(α) f(α) functions are approximated by polynomials or 
other smooth functions. Such approximations occur in 
other works, too [10, 14].

In a recent work, Várhegyi went further in this way 
[20]. He accepted that the aim of the isoconversional 
kinetic evaluation is the finding of empirical models. A 
good empirical model, however, should provide a good fit 
between the experimental and the calculated data. Besides, 

(1)d�∕dt = A(�) f (�) exp

(
−
E(�)

RT

)

a dependable model should be based on a wide + range 
of experimental information. Accordingly, nonlinear T(t) 
programs were also considered, i.e. experiments with 
stepwise, constant reaction rate (CRR) and modulated 
T(t) programs were also included in the numerous evalu-
ations and were evaluated together with constant heating 
rate experiments [20]. Simple, versatile E(α) and A(α) f(α) 
functions were proposed, and their parameters were evalu-
ated by the method of least squares. The present paper 
aims at adding further considerations, explanations and 
examples to this work. Besides, a simple modification of 
the model is presented that aims at an improvement in the 
fit quality without increasing the number of parameters in 
the least-squares procedure.

About the experiments used in this work

The considerations of the present work are illustrated by 
evaluations on experiments that were published earlier 
with other sort of kinetic evaluations. For this purpose, five 
TGA experiments were selected from the 36 experiments 
in the work of Barta-Rajnai et al. [21]. The experiments 
had been carried out on spruce samples in a high-purity 
inert gas flow employing relatively low sample masses 
(1–4 mg).1 The corresponding temperature programs are 
shown in Fig. 1.
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Fig. 1   The temperature programs of the experiments evaluated

1  Reference [21] contains more than five experiments for this sample. 
However, the isothermal experiments were not suitable for the pre-
sent work. One reason was the lack of a subsequent heating to higher 
temperature, and hence the α-values could not be calculated for them. 
Another reason was the too low reaction rates in one of the omitted 
experiments. For example, the peak reaction rate was 4 × 10−5  s−1 
(0.16 µg s−1) at 225 °C which was commensurable to the reliability 
limit of the experiments.
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Evaluation by the method of least squares 
and characterization of the fit quality

As mentioned above, we aim at finding such empirical meth-
ods which approximate well the experimental data. This can 
be achieved by the method of least squares. We have a choice 
of using the TGA data or their derivatives. This depends on 
the goals of the modelling. It is well known that the DTG 
curves contain characteristic features which can hardly be 
observed on the TGA curves. If the models are supposed to 
reproduce such fine details, it is well worth approximating 
the DTG curves by the method of least squares. We shall 
turn back to this point later in the treatment.

In the present work, the experimental reacted fractions 
were defined as follows:

Here, m is the sample mass normalized by the initial sam-
ple mass. 150 °C is a temperature where the drying of the 
samples has terminated, while the chemical reactions have 
not been started, while 700 °C is a convenient ending point 
where the TGA curves are flat enough. (Strictly speaking, 
the slow carbonization of the chars continues till very high 
temperatures. However, the char of the biomass materials 
frequently contains carbonates which may give disturbing 
side reactions above ca. 700 °C.)

The experimental dα/dt values were obtained by 
approximating the αobs(t) values by smoothing splines 
[22]. The root mean square difference between the original 
m(t) and the smoothing spline was typically much below 
1 µg. Such small differences do not introduce considerable 
systematic errors into the least-squares kinetic evaluations 
[23].

The fitting of the αobs values is carried out by finding the 
model parameters which minimize the following objective 
function, of:

Where Nexper is the number of experiments evaluated 
together and Nj is the number of ti time values in experi-
ment j. When the (dα/dt)obs curves are evaluated, the objec-
tive function is

(2)�
obs(t) ≅

mobs
150 ◦C

− mobs(t)

mobs
150 ◦C

− mobs
700 ◦C

(3)of =

Nexper∑
j=1

Nj∑
i=1

[
�
obs
j

(
ti
)
− �

calc
j

(
ti
)]2

∕Nj

Where hj is the highest experimental point on the given 
curve:

The division by hj serves for the normalization and has 
been used in the thermal analysis for decades [24]. It is 
needed because large differences may arise in the heights 
of the (dα/dt)obs curves. In the present work, the peak height 
was 14 times higher at 40 °C min−1 than at 2.5 °C min−1. 
Without a normalization, the 40 °C min−1 experiment would 
have dominated the objective function.

Note that the majority of the evaluations in work 
[20] were based on the least-squares evaluation of the 
(− dm/dt)obs. That procedure is similar to the present one 
except that it requested one or more additional scale fac-
tor parameters,2 and, in this way, increased the number of 
unknowns in the evaluation. The evaluations by Eqs. (3) 
and (4) were only briefly treated. The present work is 
entirely based on evaluations by Eqs. (3) and (4).

The obtained fit quality can be characterized separately 
for each of the experiments evaluated together. For this pur-
pose, the relative deviation (reldev, %) will be used. The 
root mean square (rms) difference between the observed and 
calculated values is expressed as the per cent of peak maxi-
mum. At the evaluation of the (dα/dt)obs curves, we get for 
experiment j:

The fit quality for a given group of experiments is charac-
terized by the root mean square of the corresponding relative 
deviations. For example, the root mean square reldev of five 
experiments is denoted by reldev5. The fit quality of the αobs 
evaluations can be characterized analogously.

The least-squares evaluations were carried out by sim-
ple, but safe numerical methods. The experimental temper-
ature values were connected by linear interpolation, and 
Eq. (1) is solved by a Runge–Kutta method [25] for each 
experiment in each [ti−1, ti] interval. The minimization 

(4)
of =

Nexper∑
j=1

Nj∑
i=1

[(
d�

dt

)obs

j

(
ti
)
−
(

d�

dt

)calc

j

(
ti
)]2

Njh
2
j

(5)hj = max
(
d�

dt

)obs

j

(6)

reldev (%) = 100

⎧⎪⎪⎨⎪⎪⎩

Nj�
i=1

��
d�

dt

�obs

j

�
ti
�
−
�

d�

dt

�calc

j

�
ti
��2

Njh
2
j

⎫⎪⎪⎬⎪⎪⎭

0.5

2  When (− dm/dt)obs is evaluated, a scale factor is needed to convert 
(dα/dt)calc to (− dm/dt)calc [20].
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of the objective function was carried out by a variant of 
the Hooke–Jeeves method. The Hooke–Jeeves method is 
a slow, but simple and dependable direct search algorithm 
[26]. See further details in Ref. [20].

Simple, but versatile formulas 
for the modelling

We need parametric A(α) f(α) and E(α) functions for the 
least-squares evaluation. The objective function of the evalu-
ation, Eq. (3) or (4), is minimized by the parameters of the 
A(α) f(α) and E(α) functions. A(α) f(α) must satisfy the fol-
lowing two conditions:

and

Here, Eq.  (8) means that the reaction stops when 
dα/dt = 0. The minimization is easier if these conditions are 
fulfilled at any combination of the parameters. Accordingly, 
we shell rearrange Eq. (1) as proposed in Ref. [20].

Let us introduce the Ã(α) notation as follows:

where Ã(α) = A(α) f(α)/(1 − α) at α < 1. Ã can have any finite 
positive value at α = 1 because it is multiplied by zero there. 
Note that the factor (1 − α) is not connected to any first-order 
reaction in Eq. (9); it ensures only that dα/dt = 0 at α = 1, so 
that we do not have to deal with the fulfilment of this condi-
tion during the least-squares curve fitting. Keeping in mind 
that Ã(α) is positive, Eq. (9) can be rearranged as

In this equation, ln Ã(α) and E(�)
RT

 have—obviously—simi-
lar magnitudes. A general and widespread way for function 
approximations is the use of polynomials because they have 
a simple form, their handling is easy, and they can approxi-
mate a wide range of functions. Accordingly, the approxima-
tion of ln Ã(α) and E(α) by polynomials is a practical way. 
The coefficients of the polynomials can be determined by 
the method of least squares so that the objective function, 
Eq. (3) or (4), would be minimal.

If the minimization is carried out by simple direct search 
methods, like in the present work, then the interrelations (i.e. 
the “compensation effects”) between the variables should be 
decreased. One step into this direction is the replacement 

(7)A(𝛼)f (𝛼) > 0 at 𝛼 < 1

(8)A(�)f (�) = 0 at � = 1

(9)d𝛼∕dt = Ã(𝛼) exp

(
−
E(𝛼)

RT

)
(1 − 𝛼)

(10)d𝛼∕dt = exp

(
ln Ã(𝛼)−

E(𝛼)

RT

)
(1 − 𝛼)

of the ln Ã(α) polynomial by a Z(α) polynomial during the 
minimization:

Where Tmid is the temperature in the middle or near to 
the middle of the given temperature interval. (The ln Ã(α) 
polynomial is obviously calculated after the least-squares 
minimization from Eq. (10).) This transformation was intro-
duced in the nineties on models with constant ln A and E 
values [27].

The interrelationships between the coefficients within a 
given polynomial can also be diminished by simple transfor-
mations. The easiest way is to introduce an x = 2α − 1 vari-
able and write the polynomials as a function of x instead of 
α. Note that x varies in the [− 1,1] interval. A further step in 
this direction is to express the E(α), ln Ã(α) and Z(α) poly-
nomials by Chebyshev polynomials of the first kind instead 
of the powers of x [20, 25].

Least‑squares evaluations: results 
and discussion

The least-squares evaluations were carried out at various 
orders of the E(α) polynomials. Following the advice in Ref. 
[20], the fifth-order polynomials were used for the ln Ã(α) 
functions. Table 1 gives a summary of the results.

The comparison of the left-hand side and right-hand 
side of Table 1 shows that the evaluation of the αobs and 
(dα/dt)obs gives different results. The aims of the model-
ling should determine which way should be taken. (We 
shall return to this point later.) The first row in the table 
shows the evaluation by zero-order E(α) polynomials. In 
this case, E does not depend on α; all reactivity differ-
ences are described only by ln Ã(α). The corresponding 
curves and fit qualities are shown in the figures of the 
Electronic Supplementary Material belonging to this 
paper. The practical significance of this sort of modelling 
is discussed later, in a separate section. The corresponding 
fit quality is already suitable for every practical purpose; 
the relative deviations are small compared to the other 
sort of uncertainties in a modelling work. The number of 
parameters (polynomial coefficients) is seven at zero order 
E(α). When the evaluation is based on five experiments, 
the number of unknowns is 1.4 per experiment.

As the order of the E(α) polynomials increases, the 
number of parameters also increases while the relative 
deviation slowly decreases. There are 10 polynomial coef-
ficients at the third-order E(α) polynomials, hence the 
number of unknown parameters is 2 per experiment. In 
the following part of this section and in the next section, 

(11)Z(𝛼) = ln Ã(𝛼)−
E(𝛼)

RTmid
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the evaluations with the third-order E(α) polynomials are 
shown in more details. Figures 2 and 3 display the corre-
sponding experimental and calculated curves. The reldev 
values (fit qualities) are also indicated in the figures.

For many samples, the peak shape in the dα/dt curves 
contains important information about the samples and/or 
the reactions. In the case of biomass samples, the hemicel-
lulose and cellulose peaks are more or less overlapping. 
See, e.g. the shoulders on the peaks in Fig. 3a–c, which 
indicate a moderate overlap of the two peaks. If we wish 
to have models that reflect such characteristics, we should 
fit the (dα/dt)obs curves, i.e. we should minimize the objec-
tive function of Eq. (4). Figure 4 indicates that the fitting 
of the αobs values does not necessarily reproduce well the 
characteristics of the (dα/dt)obs peaks.

Figure 5 shows that the two sorts of evaluations pro-
vide somewhat different E(α) functions. The differences 
appear mainly at higher values of α. Note that the TGA 
curves of the biomasses, coals, and many other organic 
materials contain a long tailing section which corresponds 
to the slow carbonization of the formed chars at higher 
temperatures. When the αobs values are evaluated, the fit of 
the long tailing sections influences more the values of the 
objective function than the fit in the much shorter domain 
of the main pyrolysis reactions. On the other hand, the 
evaluation of the (dα/dt)obs curves by the method of least 
squares emphasizes the fit where the reaction rates are 
high.

A simple prediction test

An empirical model is supposed to predict the behav-
iour of the samples at such temperature programs, too, 
which were not used in its determination. To test these 
aspects, the least-squares evaluations were carried out 
on the constant heating rate experiments only and it was 
checked how the obtained models describe the two step-
wise experiments. The fit qualities of the predictions are 

listed in Table 2. The best fit qualities were obtained at 
the third-order E(α) polynomials, though the difference 
between the second- and third-order E(α) polynomials 
was very small at the α-evaluations. The fit between the 
predicted and observed curves is shown in Fig. 6 for the 
model variants with the third-order E(α) polynomials. The 
favourable results of the present prediction tests can prob-
ably be connected to the highly different heating rates in 
the constant heating rate experiments. Note that the peak 
reaction rate, max (dα/dt)obs, proved to be 14 times higher 
in the 40 °C min−1 experiment than in the 2.5 °C min−1 
experiment. In this way, the constant heating rate experi-
ments represented a relatively wide range of experimental 
conditions. On the other hand, only 0.5 and 2 mg sample 
masses were employed at 40 and 10 °C min−1, respec-
tively, to avoid the heat and mass transfer limitations [21]. 

Empirical models with constant E

As mentioned above, the modelling with zero-order E(α) 
polynomials, i.e. with constant E parameters, gave compa-
rable fit qualities to the fit qualities of the modelling with 
E(α) polynomials with orders 1–5. See, e.g. the reldev values 
in Tables 1 and 2. The Electronic Supplementary Material 
contains figures that show the fit between the observed and 
calculated curves in this case. With constant E, Eq. (1) is 
simplified to

In Eq. (1), the A(α) f(α) function alone approximates 
the variation of the reactivity with α. An immediate 
advantage is the lower number of unknown parameters. 
The approximation of A(α) f(α) is carried out by a fifth-
order polynomial (which describes ln Ã(α), as outlined 
above), hence the model has seven unknown param-
eters (six polynomial coefficients plus the E parameter). 
Accordingly, the number of parameters per experiment 

(12)d�∕dt = A(�)f (�) exp
(
−

E

RT

)

Table 1   Least-squares 
evaluation of the αobs and 
(dα/dt)obs curves at various 
orders of the E(α) polynomials

The order of the polynomials for ln Ã(α) was five in all cases. Notation: reldev5/% is the overall fit quality 
for the five evaluated experiments, while Emean/kJ mol−1, Emin/kJ mol−1 and Emax/kJ mol−1 are the mean and 
the extrema of the obtained E(α) polynomials

Order
of E(α)

Evaluation of αobs Evaluation of (dα/dt)obs

reldev5 Emean Emin Emax reldev5 Emean Emin Emax

0 0.78 179 179 179 2.35 172 172 172
1 0.73 182 164 200 2.35 172 168 176
2 0.72 185 172 219 2.30 166 148 173
3 0.72 185 172 221 2.24 161 111 174
4 0.71 185 155 214 2.18 157 71 173
5 0.66 188 159 236 2.14 157 46 173
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was only 1.4 when five experiments were evaluated (as 
mentioned above), and 2.3 when three experiments were 
evaluated. In both cases, the model parameters were math-
ematically well-defined by the available experimental 

information. Besides, the least-squares minimization 
itself is faster and safer at a lower number of unknowns 
in the evaluations.
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and 5, respectively



1050	 G. Várhegyi et al.

1 3

However, the real importance of this type of models is 
the fast numerical solution of Eq. (12) when larger systems 
(e.g. reactors) are modelled.3 Let us consider here that the 
variables, α and T, are separable in Eq. (12):

Please note that the separation of a kinetic differential 
equation means that α occurs only at one side of the equa-
tion after the separation. If E is a function of α, then this 
operation cannot be carried out and the solutions based 

(13)
d�

A(�)f (�)
= exp

(
−

E

RT

)
dt

on Eq. (13) are erroneous. Accordingly, the integral iso-
conversional methods prior to the seminal works of Vya-
zovkin are mathematically erroneous [1, 2, 28, 29]. These 
erroneous methods include, among others, the widely used 
Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose 
(KAS) methods.4

Temperature/°C

10 °C min–1

reldev = 6.0%
observed d /dt
predicted d /dt

200 300 400 500 600 700
0.0

0.5

1.0
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d

/d
t ×

 1
03  /s

–1

Fig. 4   The model obtained from the least-squares evaluation of 
the αobs curves cannot predict well the characteristics of the DTG 
curves. (Note that the least-squares evaluation of the (dα/dt)obs curves 
resulted in a reldev = 2.7% for this experiment, as shown in Fig. 3b.)

E
/k

J 
m

ol
–1

(a)  Evaluation of (t) curves

E( ): 0 order  (179.3 kJ mol–1)
E( ): 1st order
E( ): 2nd order
E( ): 3rd order

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

50

100

150

200
(b)  Evaluation of d /dt curves

E( ): 0 order  (171.8 kJ mol–1)
E( ): 1st order
E( ): 2nd order
E( ): 3rd order

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

50

100

150

200
E

/k
J 

m
ol

–1

Fig. 5   E(α) polynomials obtained from the least-squares evaluation of the αobs curves (a) and (dα/dt)obs curves (b)

Table 2   Prediction of the 
stepwise experiments from 
the evaluation of the constant 
heating rate experiments. 
reldev2/% values are listed for 
the α and dα/dt evaluations

The distance between the 
observed and predicted val-
ues was characterized by the 
relative deviations (reldev/%) 
for the experiments with step-
wise T(t), and the root mean 
squares of the obtained values, 
reldev2/%, are listed in the table

Order
of E(α)

α
eval.

dα/dt
eval.

0 0.93 1.95
1 0.79 1.97
2 0.76 1.90
3 0.76 1.75
4 0.81 1.89
5 0.88 1.88

4  The ICTAC Kinetics Committee [1] formulated this problem in the 
literature as:
  “All integral isoconversional equations considered so far … are 
based on solving the temperature integral under the assumption that 
the value of Eα remains constant over the whole interval of integra-
tion, i.e. Eα is independent of α. In practice, Eα quite commonly var-
ies with α… A violation of the assumption of the Eα constancy intro-
duces a systematic error in the value of Eα. The error can be as large 
as 20–30% in the case of strong variations of Eα with α…”.

3  The speed of the solution of Eq.  (12) is irrelevant during a least-
squares kinetic evaluation because the computer time is virtually free 
nowadays. It may be important, however, in larger modelling works 
when very high number of solutions is needed.
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There are many analytic approximations for the integral 
of the right-hand side of Eq. (13) when the temperature–time 
function is linear or consists of linear sections. General 
quadrature formulas can be used for the other T(t) functions. 
There are no analytical approximations for the integration of 
the left-hand side. In case of larger modelling works, when 
the solution of Eq. (12) should be calculated many times 
with the same kinetic parameters, one can integrate the left-
hand side with a quadrature prior to the start of the model-
ling itself. We can denote the integral of the left-hand side 
by the usual g(α) notation. The g(α) values obtained by the 
numerical integration can be stored in an array together with 
the corresponding α and A(α) f(α) values. (So that each α, 
A(α) f(α), and g(α) triplet occupies a row in an array contain-
ing several thousand rows.) Whenever a new value arises 
for the integral of the right-hand side during the work, the 
nearest g(α) value can easily be found in the array by a fast 
binary search algorithm [30] even if the array is huge. The 
α and A(α) f(α) values stored alongside with g(α) provide 

the corresponding conversion and allow the fast estimation 
of the reaction rate.

Please note that the numerous simple one-reaction-step 
models in the literature of thermal analysis cannot describe 
well the data shown in Figs. 2 and 3. A less-formal mod-
elling for the pyrolysis of woods and other lignocellulosic 
materials should be based on three or more pseudo-compo-
nents with three or more kinetic equations [15, 21].

A modification of the model

The term (1 − α) in Eq. (9) ensures mathematically that dα/dt 
is zero at α = 1. Obviously, other functions can also be used 
for this purpose. Among others, we can use a power function 
(1 − α)n with any n > 0 value:

(14)d𝛼∕dt = Ãn(𝛼) exp

(
−
E(𝛼)

RT

)
(1 − 𝛼)n
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Fig. 6   The model obtained from the evaluation of the constant heating rate experiments predicted well the stepwise experiments
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Here, n is a fixed number and Ãn(α) = A(α) f(α)/(1 − α)n at 
α < 1. ln Ãn(α) is approximated by polynomials in the same 
way as ln Ã(α) was in the treatment above. If a small n value 
is used, e.g. n = 0.5, then the sharp descend of (1 − α)0.5 after 
its maximum helps the model to mimic sharply terminating 
dα/dt curves. This may be useful when gasification or com-
bustion reactions are described. On the other hand, larger n 
values result in (1 − α)n functions with a longer tailing and 
it may help the model to approximate the long, flat tailing 
sections of the dα/dt peaks of the biomass decomposition 
processes. The aim of the use of an n in eq. (14) is to achieve 
an improved fit quality without increasing the number of 
parameters in the least-squares procedure.

All calculations of the present paper were carried out 
by Eq. (14) at n = 0.5, 1, 2 and 3. (The results outlined in 
the previous sections correspond, obviously, to n = 1.) The 
effects of the various n values are shown in Table 3. E(α) 
polynomials from 0 to 5 orders were employed. In the upper 
part of Table 3, the results obtained at different degrees of 
E(α) were averaged. The average values are denoted by ital-
ics in the table. It is worth observing that the fit quality 
improves as n is increasing: the corresponding reldev5 val-
ues gradually decrease as n increases. The central and lower 
parts of Table 3 show the results at zero order and third order 
E(α). They show the same tendencies as the average values: 
the fit quality tends to improve as n increases. The best fit 
qualities were achieved at n = 3. The only exception was the 
evaluation of the αobs data with zero order E(α); then reldev5 
was practically identical at n = 2 and n = 3. (Rounded to three 
decimals, the corresponding values were 0.764 and 0.767, 

respectively.) Obviously, the order of the E(α) polynomials 
also influenced the fit quality: a higher number of parameters 
(polynomial coefficients) resulted in better fit qualities. In 
the case of third-order E(α) polynomials, the change in n 
from 1 to 3 decreases reldev5 from 0.72 to 0.63 when αobs is 
evaluated and from 2.24 to 2.09 when (dα/dt)obs is evaluated.

We also calculated how the parameters from the evalua-
tion of the αobs data predict the (dα/dt)obs curves and how the 
parameters from the evaluation of the (dα/dt)obs data predict 
the αobs curves. The corresponding columns are marked by 
string “(test)” in Table 3. The data in column “reldev5 of 
dα/dt (test)” show a marked decrease as n increases. On the 
other hand, the values in column “reldev5 of α(t) (test)” do 
not exhibit a definite dependence on n. One may be inter-
ested in a model that describes well both the (dα/dt)obs and 
the αobs data. In the present work, we did not modify the 
objective function for this purpose; we just examined which 
of the obtained model variants is the most favourable in 
this respect. For a comparison, we added the best-fitting 
reldev5 and the test reldev5 values at each evaluation. This 
sum was 2.17 + 1.32 = 3.49 when (dα/dt)ob was evaluated 
with zero order E(α). All other model variants gave worse 
results in this respect. Keeping in mind that the number of 
the unknown parameters is only seven in this case (one E 
value and 6 polynomial coefficients for ln Ãn(α)), the use of 
this model variant is highly advisable.

Table 3 also lists the means of the E(α) polynomials, 
Emean. This quantity depends on whether αobs or (dα/dt)obs 
is evaluated, and it also depends on the order of the E(α). 
(See the Emean values in Table 1, too.) Nevertheless, the 

Table 3   Least-squares 
evaluation of the αobs and 
(dα/dt)obs curves at various n 
values

The order of the E(α) polynomials is shown in the first column. Here, “0–5” indicates the average results of 
six evaluations from the zeroth order to the fifth order E(α). These average numbers are denoted by italics 
in the table. The order of the polynomials for ln Ãn(α) was five in all cases. Notation: reldev5/% is the over-
all fit quality for the five evaluated experiments, while Emean/kJ mol−1 is the mean of E(α)
Italics value distinguishes the average values from the simple values

Order
of E(α)

n Evaluation of αobs Evaluation of (dα/dt)obs

reldev5 
of α(t)
(best fit)

reldev5 
of dα/dt
(test)

Emean reldev5 
of dα/dt
(best fit)

reldev5 
of α(t)
(test)

Emean

0–5 ½ 0.74 4.55 183 2.31 1.42 163
0–5 1 0.72 4.41 184 2.26 1.37 164
0–5 2 0.68 4.22 185 2.17 1.41 165
0–5 3 0.66 4.01 186 2.09 1.57 165
0 ½ 0.80 3.85 179 2.42 1.38 172
0 1 0.78 3.63 179 2.35 1.32 172
0 2 0.76 3.27 180 2.25 1.28 172
0 3 0.77 2.99 180 2.17 1.32 172
3 ½ 0.74 4.65 184 2.27 1.42 159
3 1 0.72 4.53 185 2.24 1.38 161
3 2 0.67 4.47 187 2.16 1.36 163
3 3 0.63 4.31 188 2.09 1.50 165
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dependence of Emean on n proved to be negligible in those 
groups of evaluations which differed only in the value of n.

Conclusions

The isoconversional (or model-free) methods cannot pro-
vide meaningful kinetic description for most samples in the 
thermal analysis. Nevertheless, they can serve as empirical 
models. A usable empirical model should describe well the 
observed data and should be suitable for predictions, too. 
For this purpose, the functions in the isoconversional kinetic 
equation should be parametrized, and these parameters 
should be determined by the method of least squares. This 
procedure ensures that the data calculated from the model 
would be close to the experimental data.

The present work supplemented a preceding work of 
Várhegyi [20] by further considerations and evaluations. 
In this way, the results of the predecessor work [20] were 
strengthened in several points:

•	 The E(α) and A(α) f(α) functions in the isoconversional 
kinetic equation can be well approximated by simple, 
versatile formulas.

•	 A good fit can be obtained between the calculated and 
the observed data by the method of least squares.

•	 The shape of the DTG peaks may contain important 
information about the studied reactions, and about the 
studied samples. If the model is wished to reflect these 
characteristics, the curve fitting should be carried out 
on the (dα/dt)obs data.

•	 When the obtained empirical kinetics is intended to be 
used as a submodel in the modelling of larger systems, 
the speed of the calculations is vitally important. In such 
cases, model variants with constant E parameters can 
be used, because they allow much faster calculations. 
At constant E parameters, the A(α) f(α) function alone 
approximates the variation of the reactivity with α.

•	 The prediction capabilities of the models were also tested 
in the present work. It was found that an evaluation based 
on three experiments with constant heating rates could 
predict well two further experiments with stepwise tem-
perature programs.

•	 A modification of the model was proposed and examined. 
The aim was to improve the fit quality without increasing 
the number of parameters in the least-squares procedure. 
The possibilities of this modification were examined by 
numerous test evaluations, and a specific model vari-
ant was proposed for the kinetic description of biomass 
pyrolysis.
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