
Following our research plan, we have mainly done research – and established a
number of significant results – in several areas of set theory:

I. Combinatorics
II. Cardinal invariants of the continuum and ideal theory
III. Set-theoretic topology
In addition to these, G. Sági has done extended research in model theory that

had ramifications to combinatorics.
We presented our results in 38 publications, almost all of which appeared or

will appear in the leading international journals of these fields (5 of these papers
have been submitted but not accepted as yet). We also participated at a number
of international conferences, three of us (Juhász, Sági, Soukup) as plenary and/or
invited speakers at many of these. We now give an overview of our results.

I. Infinitary combinatorics

The "Handbook of set theory" was being prepared by the leading experts of
set theory for more than ten years. The very long chapter [14] contains the most
significant modern results on partition relations, a branch of set theory that was
created by Paul Erdös and Richard Rado in the early fifties. The first fifty pages
of [14] – that was actually written by me – cover the results for infinite resources.
The proofs make very extensive use of elementary submodels and yield somewhat
stronger results than was known before. Here is a list of some of the most interesting
of them:

– Generalisations of the 1991 Baumgartner, Hajnal, Todorcevic theorem (in Sec-
tion 4),

– Shelah’s remarkable positive result for the case of infinitely many colors from
2003 (in Section 6),

– the theorems for polarized partitions in cases of successors of weakly compact
and measurable cardinals in Section 7 and Section 8, respectively.

Erdős and Rado proved that there are triangle-free graphs with arbitrarily large
chromatic number. On the other hand, later Erdős and Hajnal showed that every
uncountably chromatic graph contains copies of all finite bipartite graphs, but They
also proved that for each natural number n there is an uncountably chromatic graph
that omits all cycles of odd length up to 2n+1. This determines which finite graphs
must occur in every uncountably chromatic graphs: these are precisely the bipartite
graphs.

Erdős and Hajnal then started to generalize these results by investigating the
corresponding problem for r-hypergraphs, for 3 ≤ r < ω. A long article of P.
Erdős, F. Galvin and A. Hajnal was devoted to this question. We revisited some
problems which were left open in that paper. In a joint paper with Péter Komjáth,
[2], a class of triple systems is determined such that each of these systems must
occur in every triple system with uncountable chromatic number that omits T0,
the unique triple system with two triples on four vertices. This class contains
all circuits of odd length ≥ 7, where a circuit of length n is a triple system of
the form {x0, x1, y0}, {x1, x2, y1}, . . . , {xn−1, x0, yn−1} with the different variables
pairwise distinct. It is also shown that it is consistent that there are two finite triple
systems that can be separately omitted by uncountably chromatic triple systems,
but not both.

In [3] we intended to investigate the relationship between some theorems in finite
combinatorics and their infinite counterparts: given a “finite” theorem how one cat
get a “infinite” version of it? So we studied the methods of generalizations. We will
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survey some problems from finite combinatorics and we will analyze the relationship
between their proofs and the proofs of their “infinite” versions.

Besides these, the paper gave a proof of a theorem of Erdős, Grünwald and
Vázsonyi giving the full descriptions of graphs having one/two-way infinite Euler
lines. The last section contained some new results: an infinite version of a multiway-
cut theorem was included.

The aim of [31] was to explain how to use elementary submodels to prove new
theorems or to simplify old proofs in infinite combinatorics. The paper mainly
addresses novices learning this technique: we introduced all the necessary concepts
and gave easy examples to illustrate our method, but the paper also contained new
proofs of theorems of Nash-Williams on decomposition of infinite graphs, and an
improvement of a decomposition theorem of Laviolette concerning bond-faithful
decompositions.

In the first 3 sections we recalled and summarizea. ll necessary preliminaries from
set theory, combinatorics and logic, then we gave the first application of elementary
submodels, and we explained why it is natural to consider Σ-elementary submodels
for some large enough finite family Σ of formulas. Next we used elementary submod-
els to prove some classical theorems in combinatorial set theory. All these theorems
have the following Ramsey-like flavor: Every large enough structure contains large
enough “nice” substructures.

In the second part of the paper we proved structure theorems of a different kind:
Every large structure having certain properties can be partitioned into small “nice”
pieces. A typical example is Nash-Williams’s theorem on cycle decomposition of
graphs without odd cuts. To prove these structure theorems it is not enough to
consider just one elementary submodel but we should introduce the concept of
chains of elementary submodels.

Finally, we gave a more elaborate application of chains of elementary submod-
els to eliminate GCH from a theorem concerning bond-faithful decomposition of
graphs.

Given an almost disjoint family A ⊂
[
ω
]ω, one can guess that we can always find

an almost disjoint family B ⊂
[
ω
]ω of size at most a such that A∪ B is a maximal

almost disjoint family. However, it is not the case, as the following surprising results
of Kunen shows: there is an almost disjoint family A ⊂

[
ω
]ω of size 2ω such that

if A ∪ B ⊂
[
ω
]ω is a maximal almost disjoint family, then |B| = 2ω.

In [25] we defined a+(κ) as to be the minimal cardinal µ such that if A ⊂
[
ω
]ω is

an almost disjoint family of size κ, then there is an almost disjoint family B ⊂
[
ω
]ω

of size at most µ such that A ∪ B is a maximal almost disjoint family. Using this
notation, Kunen’s result is the equality a+(2ω) = 2ω.

In [25] we showed that the inequalities ℵ1 = a < a+(ℵ1) = 2ω and a = a+(ℵ1) <
2ω are both consistent. Especially, the first one holds in the Cohen model. We also
gave several constructions of mad families with some additional properties.

Let D denote the partially ordered sets of homomorphism classes of finite directed
graphs, ordered by the homomorphism relation. An (in)finite-(in)finite duality pair
in D is a partition (B,C) of an antichain B ∪C such that B is (in)finite, C is (in)-
finite, and the up-set of B and the down-set of C cover D.

Nesetril and others gave full descriptions of finite-finite duality pairs. An earlier
paper we made the following easy observation: there are continuum many infinite-
infinite duality pairs.
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It is still open whether there are infinite-finite duality pairs. However, in [11] we
could prove that finite-infinite duality pairs do not exist.

– conflict free colorings

A coloring of a set-system A (formally, a map f defined on ∪A) is called conflict
free if every member of A ∈ A has a point whose color differs from the color of any
other point in A. The conflict free chromatic number χCF(A) of A is the smallest ρ
for which A admits a conflict free coloring with ρ colors. Clearly, if all elements of
A have size > 1 (that we always assume) then no member of A is monochromatic
for a conflict free coloring, hence the chromatic number χ(A) ≤ χCF(A).
A is a (λ, κ, µ)-system if |A| = λ, |A| = κ for all A ∈ A, and A is µ-almost

disjoint, i.e. |A∩A′| < µ for distinct A,A′ ∈ A. Erdős and Hajnal investigated the
chromatic numbers of (λ, κ, µ)-systems in the 60’s and our aim in [26] was to run a
parallel study of

χCF(λ, κ, µ) = sup{χCF(A) : A is a (λ, κ, µ)-system}

for λ ≥ κ ≥ µ, actually restricting ourselves to λ ≥ ω and µ ≤ ω. It turned out
that the three cases 1.) ω > κ ≥ µ, 2.) κ ≥ ω > µ, and 3.) ω = µ require very
different methods. Here is a list of our main results:

(1) for any limit cardinal κ (or κ = ω) and integers
n ≥ 0, k > 0, GCH implies

χCF(κ+n, t, k + 1) =

 κ+(n+1−i) if i · k < t ≤ (i+ 1) · k , i = 1, ..., n;

κ if (n+ 1) · k < t ;

(2) if λ ≥ κ ≥ ω > d > 1 , then λ < κ+ω implies χCF(λ, κ, d) < ω
and λ ≥ iω(κ) implies χCF(λ, κ, d) = ω ;

(3) GCH implies χCF(λ, κ, ω) ≤ ω2 for λ ≥ κ ≥ ω2 and
V=L implies χCF(λ, κ, ω) ≤ ω1 for λ ≥ κ ≥ ω1 ;

(4) the existence of a supercompact cardinal implies
the consistency of GCH plus
χCF(ℵω+1, ω1, ω) = ℵω+1 and
χCF(ℵω+1, ωn, ω) = ω2 for 2 ≤ n ≤ ω ;

(5) CH implies χCF(ω1, ω, ω) = χCF(ω1, ω1, ω) = ω1, while
MAω1

implies χCF(ω1, ω, ω) = χCF(ω1, ω1, ω) = ω .

– Rainbow Ramsey Theory

Anti Ramsey (polychromatic Ramsey, rainbow Ramsey) theory deals with the
following kind of problems: given a coloring f of certain subsets of a set X can
you find a large subset Y of X such that f is inhomogeneous (e.g. injective) on
the colored subsets of Y ? Obviously, to get positive results we should have some
assumption concerning the coloring f .

Erdős’s first rainbow Ramsey question (Problem 68) was the following problem:
Assume that c establishes that ω1 9 [ω1]2τ with more than 2 colors. Does there exist
a rainbow triangle?

It was known that if c establishes that ω1 9 [ω, ω1]23, then there exists a rainbow
triangle. Shelah proved that it is consistent that some c establishes that ω1 9 [ω1]2τ
without a rainbow triangle. On the other hand, Erdős and Hajnal proved , that
if c establishes just ω1 9 [ω1;ω1]23, then f realizes each function d : [ω]2 → ω,
especially there is an infinite rainbow subset containing all the colors.
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Recently, in [1], we revisited these problems because in the last decades Todor-
cevic and Moore developed new methods to construct colorings with some strong
properties. We proved that if c establishes just ω1 9 [ω1, ω1]23, then there is an
infinite rainbow set, but it is not necessarily true that f realizes each function
d : [ω]2 → ω.

These theorems considered colorings of the pairs of ω1. Can we “step up” to get
similar theorems for ω2? Especially, Erdős and Hajnal asked the following: Assume
that c establishes ω2 9 [ω1, ω2]22. Does f realize each function d : [ω1]2 → 2?

In the first part of the [10] we showed that if a coloring c establishes ω2 9
[(ω1 : ω)]2 then c establishes this negative partition relation in each Cohen-generic
extension of the ground model, i.e. this property of c is Cohen-indestructible. This
result yields a negative answer to a the above mentioned question of Erdős and
Hajnal: it is consistent that GCH holds and there is a coloring c : [ω2]2 → 2
establishing ω2 9 [(ω1 : ω)]2 such that some coloring g : [ω1]2 → 2 is not realized
by c .

It is also consistent that 2ω1 is arbitrarily large, and there is a function g estab-
lishing 2ω1 9 [(ω1, ω2)]ω1

; but there is no uncountable g-rainbow subset of 2ω1 .
In the second part of [10] we dealt with rainbow Ramsey theorems in which we

had a different type of restriction concerning our colorings. Instead of establishing
negative partition relations we assumed that our colorings are “bounded”: a function
f : [X]n → C is µ-bounded iff |f−1{c}| ≤ µ for each c ∈ C.

We showed that if GCH holds then for each k ∈ ω there is a k-bounded coloring
f : [ω1]2 → ω1 and there are two c.c.c posets P and Q such that

V P |= “f c.c.c-indestructibly establishes ω1 9∗ [(ω1;ω1)]k−bdd”,

but
V Q |= “ ω1 is the union of countably many f -rainbow sets ”.

– splitting covers

Let X be a set, κ be a cardinal number and let H be a family of subsets of X
which covers each x ∈ X at least κ times. What assumptions can ensure that H
can be decomposed into κ many disjoint subcovers?

In [21] we examined this problem under various assumptions on the set X and
on the cover H: among other situations, we consider covers of topological spaces by
closed sets, interval covers of linearl y ordered sets and covers of Rn by polyhedra
and by arbitrary convex sets. We focus on these problems mainly for infinite κ.
Besides numerous positive and negative results, many questions turn out to be
independent of the usual axioms of set theory.

Our investigations were initiated by the question of J. Pach whether any infinite-
fold cover of the plane by axis-parallel rectangles can be decomposed into two
disjoint subcovers. After answering this question in the negative for ω-fold covers,
we started a systematic study of splitting infinite-fold covers in the spirit of J. Pach
et al.; in the present paper we would like to publish our first results and state
numerous open problems.

We have organized the paper to add structure as we go along. First, for any pair
of cardinals κ and λ, we studied the splitting of covers of κ by sets in [κ]≤λ. Then
we discuss the splitting of edge-covers of finite or infinite graphs. In the remaining
sections of the paper we studied covers by convex sets. We showed that a cover of a
linearly ordered set by convex sets is “maximally" decomposable. After completing
our work, it turned out that R. Aharoni, A. Hajnal and E. C. Milner obtained
results earlier which are similar to our results. Since our proofs are significantly
simpler and yield slightly stronger results we decided not to leave them out.
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As a preliminary study to covers by convex sets on the plane, we showed that the
splitting problem for covers by closed sets is independent of ZFC. Roughly speaking,
under Martin’s Axiom an indecomposable cover of R can be obtained even by the
translates of one compact set; while in a Cohen extension of a model with GCH,
every uncountable-fold cover by closed sets is “maximally" decomposable. From
these results we easily got that the splitting problem for covers of Rn by convex sets
is independent of ZFC. This independence was accompanied by two ZFC results. We
show that for very general classes of sets, including e.g. polyhedra, balls or arbitrary
affine varieties, an uncountable-fold cover by such sets is “maximally" decomposable.
On the other hand, we construct an ω-fold cover of the plane by closed axis-parallel
rectangles which cannot be decomposed into two disjoint subcovers. We closed the
paper with a collection of open problems.

II. Cardinal invariants of the continuum and ideal theory

The cofinality spectrum of the group of all permutation of natural numbers,
CF(Sym(ω)), is the set of regular cardinals λ such that Sym(ω) is the union
of an increasing chain of λ proper subgroups. Shelah and Thomas showed that
CF (Sym(ω)) cannot be an arbitrarily prescribed set of regular uncountable cardi-
nals: ifA = 〈λn : n ∈ ω〉 is a strictly increasing sequence of elements of CF(Sym(ω)),
then pcf(A) ⊆ CF(Sym(ω)). On the other hand, they also showed that if K
is a set of regular cardinals which satisfies certain natural requirements, then
CF (Sym(ω)) = K in a certain c.c.c generic extension.

In [30] we investigated the additivity spectrum of certain ideals in a similar style.
The additivity spectrum ADD(I) of an ideal I ⊂ P(I) is the set of all regular
cardinals κ such that there is an increasing chain {Aα : α < κ} ⊂ I with ∪α<κAα /∈
I.

Assume that I = B or I = N or I =M, where B denotes the σ-ideal generated
by the compact subsets of the Baire space ωω.

We showed that if A is a non-empty progressive set of uncountable regular car-
dinals and pcf(A) = A, then ADD(I) = A in some c.c.c generic extension of the
ground model. On the other hand, we also proved that if A is a countable subset
of ADD(I), then pcf(A) ⊂ ADD(I).

For countable sets these results give a full characterization of the additivity
spectrum of I: a non-empty countable set A of uncountable regular cardinals can
be ADD(I) in some c.c.c generic extension iff A = pcf(A).

The study of analytic P-ideals is a central topics in the recent set-theoretic
investigation of the reals.

In [4] we studied some cardinal invariants of analytic P -ideals and some forcing
properties of these ideal.

We gave upper and lower bound so the almost disjointness numbers of certain
analytic P-ideals. Extending a result of Kunen, we showed that for any analytic
P-ideal I, there exists an uncountable Cohen-indestructible I-mad family. Using
Galois-Tukey equivalence of certain relation, we proved that the bounding number
b(I) and the dominating number d(I) are independent from the ideals, they are
always b and d, respectively.

In the last part of this paper we investigated forcing properties of analytic P-
ideals. Especially, if Z denotes the the density zero ideal, then (i) a poset P is
Z-bounding iff it has the Sacks property, and (ii) if P adds a slalom capturing all
ground model reals then P is Z-dominating.

The celebrated theorem of Hechler claims that if Q is a σ-directed poset in V ,
then in some ccc generic extension of the ground model some cofinal subset of
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〈ωω,≤∗〉 is order isomorphic to Q. This result serves as a basic tool to investigate
the behavior of certain cardinal invariants of the reals.

In [24] we gave a far-fetched genaralization of this theorem: if Q is a σ-directed
poset in V , then in some ccc generic extension of the ground model every tall
analytic P-ideal which has a code in the ground model has a cofinal subset which
is order isomorphic to Q.

In [12] we proved that if P is a forcing notion in the ground model and A is an
infinite almost disjoint family, then A can be extended to a P -indestructible MAD
family in some ccc forcing extension of the ground model. Recently, in his PhD
dissertation Farkas generalized this result for idealized almost disjoint families and
for the random forcing.

In [32] we introduced a method for associating cardinal invariants to ideals by
using (classical) partial orders on the set of all ideals on natural numbers. The
Katetov-invariant of the density zero ideal was motivated by analytic consideration,
namely by sequential properties of spaces of probability measures with the weak*
topology.

We had results both on combinatorial properties of these cardinals and on their
possible values in forcing extensions. Furthermore, we investigated the associated
maximality properties of almost disjoint families and towers, and we proved some
consistency results by using the Martin’s Axiom for sigma-centered posets.

III. Set-theoretic topology

– compact spaces

The study of the important class of compact spaces traditionally has occupied
a central place in our investigations. Some of our earlier investigations led to the
quite extensive general study of the convergence and character spectra of compacta
in [15] The convergence spectrum cS(X) of a space X is the set of all sizes of
converging (one-to-one) sequences in X, while the character spectrum χS(X) is
the set of all characters of (non- isolated) points in subspaces of X. For compacta
(that we are really interested in) we always have cS(X) ⊂ χS(X) . Here is a
selection of the results of [15] (X is always a compactum):

(1) If χ(X) > 2ω then ω1 ∈ χS(X) or {2ω, (2ω)+} ⊂ χS(X).
(2) If χ(X) > ω then χS(X) ∩ [ω1, 2

ω] 6= ∅.
(3) If χ(X) > 2κ then κ+ ∈ cS(X), in fact there is a converging discrete set of

size κ+ in X.
(4) If we add λ Cohen reals to a model of GCH then in the extension for every

κ ≤ λ there is X with χS(X) = {ω, κ}. In particular, it is consistent to
have X with χS(X) = {ω,ℵω}.

(5) If all members of χS(X) are limit cardinals then

|X| ≤ (sup{|S| : S ∈ [X]ω})ω.

(6) It is consistent that 2ω is as big as you wish and there are arbitrarily large
X with χS(X) ∩ (ω, 2ω) = ∅.

The last item (6) shows that the character spectrum of a non-first countable com-
pactum may (consistently) omit ω1, the first uncountable cardinal, but it was left
open in [15] if the convergence spectrum can do that. Item (3) implies that this
may only happen if χ(X) ≤ c = 2ω. This problem turned out to be very hard and it
took us in [6] a lot of work to construct, with a very complicated forcing argument,
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a compactum X such that cS(X) = {ω, ω2}. So far, this is the only known (con-
sistent) example of a non-first countable compactum whose convergence spectrum
omits ω1.

A celebrated reflection theorem of A. Dow states that if every subspace of car-
dinality ω1 of a compact space X is metrizable then so is X. Arhangelskii asked if
this is also true for locally compact spaces and in [13] we proved that the answer
to this question is independent of ZFC. More importantly, we introduced in [13] a
reflection principle, we called it Fodor-type reflection principle, that is much weaker
than Fleissner’s Axiom R but still implies most of its known consequences, in par-
ticular (the consistency of) the affirmative answer to Arhangelskii’s question. The
topological methods used to establish this can also be applied under various other
circumstances. Thus another interesting result from [13], proved in ZFC, is that
metrizability has the singular compactness property in the class of locally separable
and countably tight spaces. That is, if every subspace of such a space X of size
smaller than |X| is metrizable so is X, provided that |X| is a singular cardinal.

The interest in compact spaces is partly explained by the fact that the Banach
spaces C(K) of all continuous functions defined on a compact space K provide
many interesting examples in Banach space theory. As an example, by sharpening
our earlier result saying that the square of any compactum K contains a discrete
subspace of size equal to the density of K, in [20] we obtained the following result
that is of interest for functional analysts: Every compactumK possesses a bidiscrete
system of size d(K). A bidiscrete system for K is a set of pairs {(xα, yα) : α < κ} ⊂
K2 such that there are continuous real functions {fα : α < κ} ⊂ C(K) with the
property that fα separates the pair (xα, yα) but does not separate any of the other
pairs. A bidiscrete system thus provides for the Banach space C(K) a so-called
nice biorthogonal system.

The results of [5] are also closely related to compactness. It is well-known that a
space is compact if and only if every infinite subset of it has a complete accumula-
tion point. So it is natural to call the space κ-compact if every subset of size κ has
a complete accumulation point. Moreover, Arhangelskii calls a space uncountably
compact if every uncountable subset of it has a complete accumulation point. The
main result of [5] is an interpolation theorem for κ-compactness, for singular car-
dinals κ that implies the following very surprising result: If a space is ρ-compact
for every uncountable regular cardinal ρ and is ℵω-compact then it is uncountably
compact. It is worth while to mention that the proof of the interpolation theorem
uses some deep results of Shelah’s PCF theory.

– scattered spaces

We continued the study of cardinal sequences of locally compact scattered spaces,
which is a classical but still very active research area in set-theoretic topology.

Every scattered space X can be divided naturally into layers, defined recur-
sively by "Iξ(X) is the set of isolated points of the subspace X \

⋃
ζ<ξ Iζ(X)”. The

supremum of the indexes of non-empty layers is the height of the scattered space.
The sequences of cardinalities of non-empty layers is called the cardinal sequence

of X and denoted by SEQ(X).
The general question is the following: Which functions can be cardinal sequences

of compact scattered spaces of height α? This question has a long history.
Denote Cλ(δ) to denote the set of cardinal sequences of locally compact scattered

spaces of height δ that have λ as their starting and minimal value.
In [16] we established the existence of Cλ(δ)-universal spaces for various λ and δ.

As an application, constructing a suitable universal space we showed the consistency
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of 2ω = ω2 plus Cω(ω2) is as large as possible: it consists of all {ω, ω1, ω2}-valued
sequences of length ω2 that start with ω.

In [17] we addresses the following version of the general question: for which
sequences f of regular cardinals in a ground model with GCH can we find a cardinal-
preserving extension in which GCH holds and f is a cardinal sequence of some LCS
space?

Let α < λ++, Define Dλ(α) = {f ∈ α{λ, λ+} : f(0) = λ, f−1{λ} is < λ-closed
and successor-closed in α }. We showed that for each uncountable regular cardinal
λ and ordinal α < λ++ it is consistent with GCH that Cλ(α) is as large as possible,
i.e.

Cλ(α) = Dλ(α).

Under GCH this gave a consistent characterization of those sequences f or regular
cardinals which can be cardinal sequences of some LCS space in some cardinal and
GCH preserving extension of the ground model.

By using the combinatorial notion of the new ∆ property (NDP) of a function, it
was proved by Roitman that the existence of an LCS spaces with cardinal sequence
〈ω〉_ω1

〈ω2〉 is consistent with ZFC Roitman’s result was generalized in by Koepke
and Martinez, where for every infinite regular cardinal κ, it was proved that the
existence of an LCS space with cardinal sequence 〈κ〉_κ+ 〈κ++〉 is consistent with
ZFC.

In [28] we gave a far-fetching generalization of this results. Especially, we could
prove that both the sequence 〈ω〉_ω1

〈ω3〉 ans the sequence 〈ω1〉_ω2
〈ω4〉 can be cardinal

sequences of locally compact scattered spaces in a suitable generic extension.

Baumgartner and Shelah proved that it is relatively consistent with ZFC that
〈ω〉ω2

is a cardinal sequences of locally compact scattered space Refining their
argument, first Bagaria, proved that ω2{ω, ω1} ⊂ C(ω2) in some ZFC model, then
we showed that 2ω = ω2 and ω2{ω, ω1, ω2} ⊂ C(ω2) is also consistent.

For a long time ω2 was a mystique barrier in both height and width. In [29]
we could construct wider spaces: if GCH holds and λ ≥ ω2 is a regular cardinal,
then in some cardinal preserving generic extension 2ω = λ and every sequence
s = 〈sα : α < ω2〉 of infinite cardinals with sα ≤ λ is the cardinal sequence of some
locally compact scattered space.

We could find the suitable generic extension in three steps: the first extension
added a “strongly stationary strong (ω1, λ)-semimorass” to the ground model; using
that strong semimorass the second extension added a ∆(ω2×λ)-function to the first
extension; finally using the ∆(ω2×λ)-function we added an “LCS space with stem”
to the second model and we showed that those space alone guarantees that every
sequence s = 〈sα : α < ω2〉 of infinite cardinals with sα ≤ λ is the cardinal sequence
of some locally compact scattered space.

– resolvability

A topological space X is called κ-resolvable if it contains κ disjoint dense subsets,
and maximally resolvable if it is ∆(X)-resolvable where ∆(X) is the smallest size
of a non-empty open set in X. Both metric spaces and linearly ordered spaces are
known to be maximally resolvable, and monotonically normal (MN) spaces form
a class that includes them both. Thus it seems natural to raise the question if
MN spaces are maximally resolvable. We had investigated this problem earlier and
found some interesting and unexpected results:

(1) Every dense-in-itself MN space is ω-resolvable.
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(2) If κ is a measurable cardinal then there is a MN space X with ∆(X) = κ
which is not ω1-resolvable.

(3) Every MN space of cardinality < ℵω is maximally resolvable.
(4) From a supercompact cardinal we get the consistency of a MN space X

with |X| = ∆(X) = ℵω that is not ω2-resolvable.

The connection of the harmless looking topological problem with some deep set-
theory comes from a new class of MN spaces that we called them filtration spaces.
These are defined on infinitely branching trees with the help of ultrafilters and the
resolvability properties of these spaces depend on the descendingly completeness
properties of the ultrafilters used in their construction.

We continued this work in [34] and obtained results that shed new light on the
earlier results and completely settled the problems that were left unsolved by them.
We showed in [34] that, for every fixed cardinal λ, all MN spaces of cardinality
less than λ are maximally resolvable if and only if every uniform ultrafilter on a
cardinal less than λ is maximally decomposable. An ultrafilter u on κ is called µ-
decomposable if κ can be partitioned into µ sets in such a way that the union of any
fewer than µ of them is not in u. Moreover, u is maximally decomposable if it is µ-
decomposable for every regular cardinal µ ≤ κ. By some classical results of Kunen
and Prikry, every uniform ultrafilter on a cardinal< ℵω is maximally decomposable,
explaining item (3) above. It has been known that the existence of a uniform
ultrafilter that is not maximally decomposable implies that a measurable cardinal
exists in some inner model, another consequence of this result is the consistency of
the maximal resolvability all MN spaces. In fact, it follows that the existence of
a monotonically normal space which is not maximally resolvable is actually equi-
consistent with the existence of a measurable cardinal.

We could also show in [34], using some results of Woodin, that the consistency
of a measurable cardinal implies the existence of an ω1-irresolvable monotonically
normal space X with |X| = ∆(X) = ℵω. This improves item (4) above to the
maximum possible degree, both by replacing the supercompact with a measurable
and by replacing ω2-irresolvability with ω1-irresolvability.

– D-spaces

A topological space X is a D-space, if for every open neighborhood assignment
η for X there is a closed discrete subset D of X such that η[D] = X.

In [7] we showed without using topological games that a space is D if it is a
finite union of subparacompact scattered spaces. This result can not be extended
to countable unions, since it is known that there is a regular space which is a
countable union of paracompact scattered spaces and which is not D. Nevertheless,
we showed that every space which is the union of countably many regular Lindelöf
C-scattered spaces has the D-property. Also, we prove that a space is D if it is a
locally finite union of regular Lindelöf C-scattered spaces.

IV. Model Theory

In [8] we presented a new and short proof for the well known fact, that first order
resolution calculus endowed with paramodulation is sound and refutation-complete.

A countable structure A is defined to be absolutely ubiquitous, if for any count-
able structure B, A and B are isomorphic, whenever the sets of isomorphism types
of finite substructures of A and B are the same. Continuing investigations initi-
ated by Hodkinson, Ivanov and others, in [18], we proved that a certain subclass
of absolutely ubiquitous structures are ℵ0-stable. This confirms a special case of a
conjecture of Macpherson.
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Sayed Ahmed recently has shown that there exists an infinite dimensional non-
representable Quasi-polyadic Equality Algebra (QPEAω, for short) with a repre-
sentable Cylindric reduct. In [19] we continued related investigations and showed
that if G ⊆ ωω is a semigroup containing at least one constant function then a wide
class of representable Cylindric Algebras occur as the Cylindric reduct of some non-
representable G-PEAω. More concretely, we proved that if A is an ω-dimensional
Cylindric Set Algebra with an infinite base set then there exists a non-representable
G-PEAω whose cylindric reduct is representable and contains an isomorphic copy
of A.

In the survey paper [35] we were summing up the developments of the theory of
polyadic algebras made in the last two decades.

Let c = 2ℵ0 . In [33] we gave a family of pairwise incomparable clones on N
with 2c members, all with the same unary fragment, namely the set of all unary
operations. We also gave, for each n, a family of 2c clones all with the same n-ary
fragment, and all containing the set of all unary operations.

By a celebrated theorem of Morley, a theory T is ℵ1-categorical if and only if it
is κ-categorical for all uncountable κ. In [37] we were taking the first steps towards
extending Morley’s categoricity theorem “to the finite”. In more detail, we were
presenting conditions, implying that certain finite subsets of certain ℵ1-categorical
T have at most one n-element model for each natural number n ∈ ω (counting up
to isomorphism, of course).

Vaught’s Conjecture states, that if T is a complete first order theory in a count-
able language such that T has uncountably many pairwise non-isomorphic count-
ably infinite models then T has 2ℵ0 many pairwise non-isomorphic countably infinite
models.

In [36] we prove that if T has at least ℵ1 many countable models which are
pairwise separable by critical types, then T has continuum many such models, that
is, a certain weak version of Vaught’s conjecture is true. The proofs are based on the
representation theory of Cylindric Algebras and elementary topological properties
of the Stone spaces of these Cylindric Algebras.

Continuing investigations initiated by Sagi, in [38] we applied methods of al-
gebraic logic to study some variants of Vaught’s conjecture. More concretely, let
S ⊆ ωω be a σ-compact monoid. We proved, among other things, that if a com-
plete first order theory Σ has at least ℵ1 many countable models which cannot
be elementarily embedded into each other by elements of S, then, in fact, Σ has
continuum many such models. We also study related questions in the context of
equality free logics and obtain similar results.

Our proofs were based on the representation theory of cylindric and quasi-
polyadic algebras and topological properties of the Stone spaces of these algebras.
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