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Abstract: Excessive consumption of petroleum products carries the risk that these toxic 

chemicals enter and accumulate in the environment via transportation, usage or improper 

storage, thus hazarding natural habitats or human health. Bioremediation is a cost-effective 

and environmentally friendly technique that involves the use of microorganisms or plants in 

order to neutralize environmental pollutants. Considering that bacteria occur not only in 

aqueous but even in oil phases, intermediates, by-products or wastes can pose hidden reser-

voirs of effective microbial degraders with potential application in oil bioremediation. Us-

ing mazut (a residual fuel oil from atmospheric distillation of crude oil) as an origin matrix, 

thirteen bacterial strains were isolated. The best performing strains, identified as Rhodococ-

cus sp. PAE1 and Rhodococcus sp. PAE8, were able to degrade structurally variant hydro-

phobic compounds (including hexadecane, cooking oil, mazut or lubricant oil) in aqueous 

systems. Thus, they were used in further small-scale soil/groundwater experiments in order 

to model the bioremediation process of a local ares exposed to years lubricant oil pollution. 

Our study represents a targeted tool for the bioremediation of oil-polluted aquatic and ter-

restrial environments and revealed that oily wastes can be considered as valuable sources of 

new hydrocarbon-utilizing isolates. 
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1. INTRODUCTION 

Since hydrophobic organic compounds pose serious risks to natural communities or 

human health, pollution of soils and waters by petroleum products or other oil-

related compounds are still among the major environmental concerns that human-

kind must cope with. Petroleum products can enter into the environment through 

accidental oil spills or reckless human activity [1–5]. Areas close to vehicle traffic 

or where handling and maintenance operations of vehicles take place are consid-

ered to be particularly vulnerable, since the probability of contamination inevitably 

increases [6]. 
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Mazut is a residual fuel oil from the atmospheric distillation process of crude oil 

[7]. It is a viscous mixture of hydrocarbons with high carbon number, PAHs, resins 

and cycloalkanes, often having complex structure with high heavy metal and sulfur 

content. These properties make mazut cumbersome for both biodegradation and 

further refining [7–8]. Nonetheless, mazut can be further processed by vacuum dis-

tillation in order to produce diesel oils, base oils, lubricants and heavy fuel oils [9]. 

Lubricant oils (LOs) are widely used for reducing friction in the engines of motor-

ized vehicles such as cars, motorcycles or locomotives. Therefore, used lubricant 

oils (ULOs), containing long-chain hydrocarbons, additives and heavy metals, are 

considered widespread, hazardous pollutants and hence potential targets for envi-

ronmental rehabilitation processes [10–12]. Several physicochemical and biologi-

cal waste management techniques are available for neutralizing oil-related pollu-

tants in the environment but most of these methods still need further developments 

[13–15]. Bioremediation utilizes the degradative capability of plants and/or micro-

organisms for the decontamination of polluted environments [16–19]. As an envi-

ronmentally sound and cost-effective approach, it is considered to be one of the 

most promising rehabilitation technologies [16–18]. 

Bacterial communities occur in aqueous and even in oil phases [20]. Thus, iso-

lation and examination of bacterial strains with the ability to degrade hydrocarbons 

from these oily environments can provide a promising tool for biological remedia-

tion and also a better understanding of the microbial community structure and in 

oil-polluted niches. 

The aim of this study was to provide useful tools for the bioremediation of 

aqueous and terrestrial environments polluted by petrochemical products. To this 

end, isolation from mazut was carried out to gain new isolates with the ability to 

degrade petrochemicals and hydrophobic organic compounds, even if they have 

as high structural complexity as mazut and LOs do. 

 

2. EXPERIMENTAL 

2.1. Bacterial strains 

Hydrocarbonoclastic bacteria were isolated from mazut using liquid minimal me-

dium. Pure strains were selected, characterized [21] and tested for hydrocarbon 

biodegradation. The two most effective strains – PAE1 and PAE8 – were identified 

according to their 16S rDNA gene homology [22]. 

 

2.2. Biodegradation tests in aqueous systems 

The best performing Rhodococcus sp. PAE1 strain was used in subsequent biodeg-

radation tests performed in aqueous systems. Pollution of hydrophobic compounds 

was modelled by hexadecane, representing easily biodegradable n-alkanes; cooking 

oil, representing a wide-spread contaminant in municipal sewage; and mazut for a 

complex hydrocarbon mixture that is hard to biodegrade. All vials were capped and 

respiration activities were monitored by gas chromatography (GC). At the end of 
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the experiments, the remaining contaminants were extracted with diethyl ether or 

chloroform and then bioconversion (B%) values were calculated using gas chroma-

tography coupled to mass spectrometry (GC-MS) and/or gravimetric data and ap-

plying the following equation [23]: B% = [(Contaminantscell-free samples-Contami-

nantsinoculated samples)/Contaminantscell-free samples]x100. Data are expressed as mean ± 

SE (standard error). Statistical significance was analyzed using one-way analysis of 

variance (ANOVA) followed by Duncan’s test. 

 

2.3. Small-scale ex situ soil bioremediation tests 

The most effective hexadecane-degrader Rhodococcus sp. PAE1 and Rhodococcus 

sp. PE8 strains were tested for LO biodegradation and then used in small-scale soil 

experiments in order to model the bioremediation process of a long-time ULO-

polluted area. Soil samples from a local ULO-polluted site were used to construct 

ex situ soil microcosms in order to model various bioremediation approaches. Re-

habilitation treatments included biostimulation (BS, 30% soil moisture was set with 

the addition of minimal medium, which contained soluble, inorganic nutrients, 

such as nitrogen and phosporus) and bioaugmentation combined with biostimula-

tion (BAS, in addition to biostimulation, oil-degrader Rhodococcus sp. PAE1 or 

Rhodococcus sp. PAE8 strains were introduced into the polluted soil at an inocula-

tion level of 109 cells per gram soil). Non-treated control (NTC) samples represent-

ed a natural loss in the ULO-concentration. All samples were incubated for 40 

days. All ULO-polluted soil microcosms were closed and respiration activities 

were monitored by gas chromatography (GC) for 30 days. The headspaces of the 

vials were refreshed every two days to maintain proper aeration. At the end of the 

experiments, the remaining ULOs were extracted with carbon disulfide as solvent. 

The extracts were analyzed with an infrared oil-measuring equipment to determine 

the concentration of total petrol hydrocarbons (TPHs). Bioconversion (B%) was 

calculated applying the following equation: B%=[(TPHnon-treated soil-TPHtreated 

soil)/TPHnon-treated soil]x100. Data are expressed as mean ± SE (standard error). Statis-

tical significance was analyzed using one-way analysis of variance (ANOVA) fol-

lowed by Duncan’s test. 

 

3. RESULTS AND DISCUSSION 

3.1. Bacterial strains 

Using mazut as an origin matrix, thirteen pure bacterial strains were isolated (one 

of them was pathogenic, thus, it was omitted from further experiments). The most 

important physiological and biochemical characteristics of all strains were deter-

mined. Data are summarized in Table 1. 

Preliminary experiments revealed that eleven strains out of thirteen were able to 

utilize hexadecane as sole carbon and energy source (data not shown). After se-

quencing the 16S rDNA gene of the best hexadecane-utilizing strains PAE1 and 

PAE8, both of them were identified as members of the genus Rhodococcus, so in 
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further experimental works, the name Rhodococcus sp. PAE1 and Rhodococcus sp. 

PAE8 were used. Rhodococci play an important role in environmental and industri-

al biotechnology [23–27]. 

Table 1 

Physiological and biochemical characteristics of the newly isolated bacterial strains 

Characteristics PAE1 PAE3 PAE4 PAE5 PAE6 PAE7 PAE8 PAE9 PAE10 PAE11 PAE12 PAE13 

Gram staining + + + + + + + + + + + + 

Cell length 

(µm) 

2.48 

±0.3 

2.09 

±0.33 

1.94 

±0.26 

1.95 

±0.27 

0.77 

±0.12 

1.91 

±0.13 

1.87 

±0.24 

2.09 

±0.19 

2.08 

±0.22 

1.96 

±0.20 

1.97 

±0.24 

1.90 

±0.16 

Indole pro-

duction 
– – – – – – – – – – – – 

Hemolytic 

activity 
– – – – – – – – – – – – 

Catalase  

activity 
+ + + + + + + + + + + + 

Casease activity – – – – – – – – – – – – 

Lipase activity + + + + + + + + + + + + 

Urease activity – – – – – – – – – – – – 

Beta- galactosi-

dase activity 
– – – – – – – – – – – – 

Nitrate/nitrite 
reduction 

w w w w – w w w w w w w 

Startch 

hydrolysis 
– – – – – – – – – – – – 

Methyl red-test – – – – – – – – – – – – 

Oxidation/ 
fermentation 

(OF) test 

w w w w + w w w w w w w 

Tween 80 

hydrolysis 
+ + + + – + + – – – + + 

 

 

3.2. Biodegradation tests in aqueous systems 

Respiration activity of Rhodococcus sp. PAE1 was investigated in liquid mineral 

medium, artificially contaminated with 1% (m v-1) of various hydrophobic pollu-

tants. Three hydrophobic compounds were used as sole carbon and energy source: 

hexadecane represented the n-alkanes, cooking oil was used as a common contami-

nant in municipal sewages, and mazut represented the original isolation matrix of 

the new strain. According to the obtained results (Figure 1), microbial activity de-

creased with the increasing structural complexity of the available substrates. 

At the end of the incubation, the remaining amount of hydrophobic organic 

substrates was evaluated and bioconversion values were calculated for each carbon 

sources (Figure 2). Coinciding with CO2 measurements, bioconversion also 

decreased when a structurally more complex carbon source was available. Our 

results suggest that this newly isolated strain can be a targeted tool for the 

biodegradation of petroleum products in polluted waters. 
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Figure 1 

Cumulative CO2 production of Rhodococcus sp. PAE1 in liquid mineral  

medium artificially contaminated with 1% (m v–1) of various hydrophobic  

compounds. Different letters in the same incubation time represent a significant 

difference at P ≤ 5 (n = 3). 

 

 
Figure 2 

Bioconversion of 1% (m v-1) n-hexadecane, cooking oil and mazut  

by Rhodococcus sp. PAE1 in liquid mineral medium. Different letters represent  

a significant difference at P ≤ 5 (n = 3). 
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Since Rhodococcus sp. PAE1 and Rhodococcus sp. PAE8 exhibited the highest 

respiration activities in preliminary experiments (data not shown) and Rhodococcus 

sp. PAE1 proved to be able to utilize structurally diverse hydrophobic compounds 

(Figure 2), both strains were tested for lubricant oil biodegradation in liquid miner-

al medium. 1% (m v-1) fresh LO was used as sole carbon and energy source. Aero-

bic biodegradation of hydrocarbons by hydrocarbonoclastic bacteria consumes ox-

ygen alongside with the release of carbon-dioxide [28]. Thus, increasing relative 

CO2 content was considered as an indirect measure of the microbial degradation of 

LO in the closed vials (Figure 3). 

 

 
Figure 3 

Relative CO2 content in the headspaces of the closed vials containing liquid  

mineral medium artificially contaminated with 1% (m v-1) fresh lubricant oil.  

Different letters in the same incubation time represent a significant difference  

at P ≤ 5 (n = 3). 

 

Based on our results, Rhodococcus sp. PAE1 and Rhodococcus sp. PAE8 were able 

to utilize fresh LO as their sole carbon and energy source at a similar rate, thus, 

both strains can be potentially applied not only for water decontamination but even 

for modelling the bioremediation of a local ULO-polluted area. 

 

3.3. Small-scale ex situ soil bioremediation tests 

Respiration activity of ULO-polluted soil microcosms was followed with gas 

chromatography. According to the CO2 production (Figure 4), even NTC samples 

were active in respiration, indicating the presence of metabolically active microbi-

ome in ULO-polluted soil. Respiration activity and thus microbial activity could be 
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increased by the supplementation of inorganic nutrients in BS samples. The most 

active respiration was observed in the soil samples inoculated with Rhodococcus 

sp. PAE1 (BAS_PAE1) and Rhodococcus sp. PAE8 (BAS_PAE8). Nevertheless, 

evolution of CO2 in a hydrocarbon-polluted soil cannot be considered as sole evi-

dence of hydrocarbon biodegradation due to the plentiful availability of organic 

matters and the compositional complexity of the soil matrix. 

 

 
Figure 4 

Cumulative CO2 production in ULO-polluted soil microcosms  

(NTC: non-treated control soil, BS: biostimulation, BAS_PAE1:  

biostimulation+bioaugmentation using Rhodococcus sp. PAE1, BAS_PAE8:  

biostimulation+bioaugmentation using Rhodococcus sp. PAE8).  

Different letters in the same incubation time represent a significant difference  

at P ≤ 5 (n = 3). 

 

At the end of the experiment, remaining ULOs were extracted and TPH concentra-

tions were evaluated in order to calculate TPH bioconversions in soil microcosms 

(Figure 5). A considerable level of TPH bioconversion was observed in the bi-

ostimulated samples (BS), indicating the natural occurrence of ULO-degrading 

microorganisms even in heavily contaminated environments. Moreover, introduc-

tion of the newly isolated Rhodococcus sp. PAE1 and Rhodococcus sp. PEA8 sig-

nificantly enhanced the TPH bioconversion to 38% and 40%, respectively. 
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Figure 5 

TPH bioconversion in ULO-polluted soil microcosms after 40 days of incubation 

(BS: biostimulation, BAS_PAE1: biostimulation+bioaugmentation using  

Rhodococcus sp. PAE1, BAS_PAE8: biostimulation+bioaugmentation using  

Rhodococcus sp. PAE8). Different letters represent a significant difference  

at P ≤ 5 (n ≥ 15). 

 

 

4. CONCLUSION 

Since bacterial communities occur in aqueous and even in oil phases, we hypothe-

sized that oily wastes or by-products can provide undiscovered microbial degrad-

ers. Based on this assumption, 13 bacterial strains were isolated from mazut. The 

best performing hydrocarbon-utilizing isolates were identified as members of the 

genus Rhodococcus and assigned as Rhodococcus sp. PAE1 and Rhodococcus sp. 

PAE8. Despite the structural differences and complexities, Rhodococcus sp. PAE1 

was able to utilize n-hexadecane, cooking oil and even mazut in liquid minimal 

medium. Further testing of Rhodococcus sp. PAE1 and Rhodococcus sp. PAE8 in 

aqueous systems showed that both strains were capable of LO biodegradation, and 

potentially applicable for ULO-polluted soil decontamination. Thus, ULO-polluted 

soil microcosms were constructed and then submitted to various biological treat-

ments in order to model and evaluate options for the bioremediation of a long-term 

ULO-polluted site. Bioaugmentation with Rhodococcus sp. PAE1 or PAE8 signifi-

cantly decreased the pollutant concentration compared to biostimulation. Although 

optimal conditions for the biodegradation are barely revealed and still need further 
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development, our results represent a targeted tool for the bioconversion of petrole-

um contaminants in aqueous and terrestrial environments. Additionally, this work 

highlights the fact that oily wastes and by-products can be potential sources of yet-

to-be isolated hydrocarbonoclastic bacteria. 
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