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Abstract Age-related phenotypic changes of
cerebromicrovascular endothelial cells lead to dysregula-
tion of cerebral blood flow and blood-brain barrier dis-
ruption, promoting the pathogenesis of vascular cognitive
impairment (VCI). In recent years, endothelial cell senes-
cence has emerged as a potential mechanism contributing
to microvascular pathologies opening the avenue to the

therapeutic exploitation of senolytic drugs in preclinical
studies. However, difficulties with the detection of senes-
cent endothelial cells in wild type mouse models of aging
hinder the assessment of the efficiency of senolytic treat-
ments. To detect senescent endothelial cells in the aging
mouse brain, we analyzed 4233 cells in fractions enriched
for cerebromicrovascular endothelial cells and other cells
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associated with the neurovascular unit obtained from
young (3-month-old) and aged (28-month-old) C57BL/
6 mice. We define 13 transcriptomic cell types by deep,
single-cell RNA sequencing. We match transcriptomic
signatures of cellular senescence to endothelial cells iden-
tified on the basis of their gene expression profile. Our
study demonstrates that with advanced aging, there is an
increased ratio of senescent endothelial cells (~ 10%) in
the mouse cerebral microcirculation. We propose that our
single-cell RNA sequencing–based method can be
adapted to study the effect of aging on senescence in
various brain cell types as well as to evaluate the efficien-
cy of various senolytic regimens in multiple tissues.

Keywords Aging . Senescence . Geroscience . Blood-
brain barrier . Vascular cognitive impairment

Introduction

The human brain is supplied by 600 km of capillaries
consisting of 5 × 109 cerebromicrovascular endothelial
cells (Ungvari et al. 2018a; Tarantini et al. 2017a). Healthy
function of cerebromicrovascular endothelial cells is crit-
ical for adequate oxygen and nutrient delivery to neurons;
clearance of toxic metabolites; prevention of amyloid
plaque formation; maintenance of the blood-brain barrier;
transendothelial transport of substances, hormones, and
metabolites; controlling the structural remodeling of the
cerebral microcirculation (including angiogenesis, vessel
regression, adaptation to hypertension (Ungvari et al.
2018a; Csiszar et al. 2017; Tarantini et al. 2016; Tucsek
et al. 2014a; Warrington et al. 2013; Ungvari et al. 2013a;
Ungvari et al. 2017a; Tarantini et al. 2017b; Toth et al.
2015)); deposition of the extracellular matrix and synthe-
sis of the glycocalyx; regulation of adhesion and extrav-
asation of inflammatory circulating cells that participate in
central nervous system immune surveillance
(Stanimirovic and Friedman 2012); regulation of homing
of stem cells; maintenance of the perivascular cellular
microenvironment; and regulation of the neurogenic
niches. There is strong evidence that aging-induced dys-
regulation of microvascular endothelial function and phe-
notype critically contributes to the pathogenesis of both
vascular cognitive impairment (VCI) and Alzheimer’s
disease (AD) (Tarantini et al. 2017a; Csiszar et al. 2017;
Csipo et al. 2018; Csipo et al. 2019a; Csipo et al. 2019b;
Csiszar et al. 2019; Farias Quipildor et al. 2019; Fulop
et al. 2019a; Fulop et al. 2018; Kiss et al. 2019a; Kiss et al.

2019b; Lipecz et al. 2019; Tarantini et al. 2017c; Tarantini
et al. 2017d; Tarantini et al. 2019a; Montagne et al. 2017;
Sweeney et al. 2018a; Castillo-Carranza et al. 2017; Lin
et al. 2013). With age, the phenotype and function of
cerebromicrovascular endothelial cells are altered, which
fundamentally affects all of the aforementioned physio-
logical processes. Aging decreases capillary density
(known as “microvascular rarefaction”) (Csiszar et al.
2017; Tarantini et al. 2016; Tucsek et al. 2014a; Ungvari
et al. 2013a; Banki et al. 2015; Toth et al. 2017) and
impairs cerebromicrovascular endothelial vasodilation
and endothelium-mediated neurovascular coupling re-
sponses (Petzold and Murthy 2011; Stobart et al. 2013;
Wells et al. 2015; Chen et al. 2014), which contribute to a
decline in cerebral blood flow and promote cognitive
decline. In addition, microvascular endothelial aging also
disrupts the blood-brain barrier, which promotes neuroin-
flammation, exacerbating cognitive decline (Tucsek et al.
2014a; Montagne et al. 2017; Toth et al. 2017; Fulop et al.
2019b; Tarantini et al. 2018; Toth et al. 2013; Toth et al.
2014; Tucsek et al. 2014b; Van Skike et al. 2018; Mackic
et al. 1998; Montagne et al. 2015; Sweeney et al. 2018b;
Zlokovic 2008). In AD, multifaceted microvascular pa-
thologies (including perivascular amyloid deposition and
plaque formation, microvascular inflammation,
microhemorrhages, blood-brain barrier disruption, ghost
vessel formation) contribute to the genesis and progres-
sion of the disease (Tucsek et al. 2014a; Ungvari et al.
2017a; Tarantini et al. 2017c; Sweeney et al. 2018a;
Sweeney et al. 2018b; Zlokovic 2008; Brown and Thore
2011; Sen and Hongpaisan 2018; Hase et al. 2020; van
Veluw et al. 2019; Freeze et al. 2019; Nielsen et al. 2017;
Clark et al. 2017; Cifuentes et al. 2017; Nelson et al. 2017;
Bell and Zlokovic 2009; Kisler et al. 2017; Nelson et al.
1862; Sagare et al. 2013).

Oxidative stress and macromolecular damage in aged
cells induce a complex stress response termed cellular
senescence, which has been shown to cause or exacerbate
aging and several age-related pathologies (Baker et al.
2016; Campisi 2013; Justice et al. 2018; Khosla et al.
2018; Kirkland and Tchkonia 2017; Tchkonia and
Kirkland 2018; Tchkonia et al. 2013; LeBrasseur et al.
2015; Tchkonia et al. 2010; Campisi 2016; Chinta et al.
2018; Chinta et al. 2014). Importantly, recent evidence
suggests that endothelial cells are particularly sensitive to
reactive oxygen species (ROS) (Nagyoszi et al. 2015;
Wilhelm et al. 2017) and other DNA-damaging stressors
(Shi et al. 2007; Silva et al. 2017; Voghel et al. 2007) and
that cultured cerebromicrovascular endothelial cells
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readily acquire senescent phenotypes in response to DNA
damage (Ungvari et al. 2013b; Ungvari et al. 2018b).
Recent studies suggest that the endothelial senescence
contributes to the genesis of cerebromicrovascular aging
phenotypes, including microvascular rarefaction, pro-
inflammatory alterations, vasomotor dysfunction, and
blood-brain barrier disruption. Upon induction of cellular
senescence in culture, endothelial cells undergo cell cycle
arrest and acquire a senescence-associated secretory phe-
notype (SASP), characterized by increased secretion of
pro-inflammatory mediators (Ungvari et al. 2013b). En-
dothelial senescence has also been recently implicated in

the pathogenesis of cognitive impairment associated with
DNA damage-mediated accelerated microvascular aging
(e.g., radiation therapy–induced cognitive impairment
(Ungvari et al. 2013b; Ungvari et al. 2017b)). There is
growing evidence that senescent cells and their SASPs
contribute to the pathogenesis of many other age-related
diseases as well (Campisi 2013; Justice et al. 2018;
Tchkonia and Kirkland 2018; Tchkonia et al. 2013;
Campisi 2016; Chinta et al. 2014; Childs et al. 2016;
Farr et al. 2017; Baker et al. 2011; Xu et al. 2018;
Ogrodnik et al. 2018; Cohen and Torres 2019;
Minamino et al. 2002). Indeed, depletion of cells

Table 1 Cell clusters resolved by Louvain clustering

Cell type Cluster Top 20 marker genes Young cell # Aged cell #

Endothelial cell 1 Cldn5, Ly6c1, Itm2a, Ly6a, Slco1a4, Bsg, Flt1, Pglyrp1, Egfl7, Slc2a1, Id1, Pltp,
Id3, Abcg2, Tsc22d1, Ifitm3, Igfbp7, Ramp2, Slc6a6, Crip2

417 599

Microglia 0 Hexb, P2ry12, Selplg, Lgmn, C1qa, Ctss, C1qb, C1qc, Ctsd, Csf1r, Cst3, Trem2,
Laptm5, Cx3cr1, Tmem119, Gpr34, Fcer1g, Ctsz, Fcrls, Olfml3

622 485

Microglia 2 Junb, Ier5, Jun, Nfkbia, Jund, Ubc, Cd83, Egr1, Csf1r, Zfp36, Ier2, C1qc, Atf3,
Ppp1r15a, Hexb, Ctss, Nfkbiz, C1qb, Rhob, Tmem119

351 196

Microglia 6 Lyz2, Cd52, Cd74, Ms4a7, Apoe, Lilrb4a, Cybb, B2m, Rps28, Rps15a, Cst7,
Rpl32, H2-Ab1, Rpl39, Ifi27l2a, Rps13, Wfdc17, Rps27, Lgals3, Rpl37a

49 172

Pericyte 9 Vtn, Atp13a5, Higd1b, Ndufa4l2, Kcnj8, Pdgfrb, Rgs5, Slc6a20a, Art3, P2ry14,
Ptn, Cox4i2, Cald1, Slc19a1, Ifitm1, Atp1a2, Abcc9, Rgs4, Tbx3os1, Nbl1

71 32

Smooth muscle cell 8 Acta2, Tagln, Myl9, Myl6, Crip1, Tpm2, Dstn, Myh11, Tpm1, Mustn1, Mylk, Pln,
Vim, Flna, Cald1, Sncg, Des, Lmod1, Cnn1, Igfbp7

41 83

Astrocyte 4 Gm3764, Gpr37l1, Bcan, Ntm, Ntsr2, Plpp3, Slc1a3, Atp1a2, F3, Clu, Slc7a10,
Slc1a2, Atp1b2, Gja1, Cspg5, Cldn10, Htra1, Gria2, Fgfr3, Pla2g7

166 106

Oligodendrocyte 3 Plp1, Cldn11, Cnp, Cryab, Aplp1, Stmn4, Ptgds, Car2, Mbp, Fth1, Mog, Mag,
Gatm, Mal, Ermn, Qdpr, Sept4, Mobp, Opalin, Tubb4a

142 160

Neuron 5 Snhg11,Meg3, Camk2n1, Camk2a, Celf2, Ndrg4,Map 2, Camk2b, Celf4, Atp1b1,
Rtn1, Cpe, Pcp4, Pcsk1n, Snap25, Adgrb1, mt-Co1, Shank1, Ttc3, Aldoc

127 98

Fig. 1 Identification of cerebromicrovascular endothelial cells
based on differentially expressed marker genes. Two-
dimensional UMAP plots based on differentially expressedmarker
genes for n = 4233 cells, colored by cluster. Cluster identity was

assigned based on previously reported differentially expressed
genes listed in Table 1. Note that similar clusters were identified
in samples derived from aged (panel a) and young (panel b) mouse
brains
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expressing the senescence marker cyclin-dependent ki-
nase inhibitor p16INK4A in genetically modified mice
prolongs median lifespan and improves overall health
(Baker et al. 2016; Farr et al. 2017; Baker et al. 2011;
Jeon et al. 2017; Abdul-Aziz et al. 2019; Kim et al. 2019;
Patil et al. 2019; Xu et al. 2015; Roos et al. 2016; Baar
et al. 2017), supporting a key role for cellular senescence
in the process of aging. Strong evidence demonstrates
that senolytic therapies exert significant endothelial pro-
tective effects in the aged brain and peripheral vasculature
(Roos et al. 2016). Despite these advances, studies focus-
ing on the mechanisms and consequences of endothelial
senescence have been impeded by the lack of reliable
methods to assess endothelial senescence burden in
mouse models of VCI and AD. Evaluation of
senescence-associated beta-galactosidase (SA-β-gal) is
not enough to consistently detect senescent endothelial
cells within the brain tissue. Antibodies to detect other

senescence markers are notoriously non-specific. It is
often very challenging to detect multiple senescence bio-
markers within the same cells. Thus, there is a pressing
need for novel methods for identification, quanti-
fication, and characterization of senescent
cerebromicrovascular endothelial cells.

The present study was designed to develop a single-cell
transcriptomics-based method to identify senescent
cerebromicrovascular endothelial cells in the mouse brain.
Over the past few years, powerful new methods have
emerged for the investigation of single-cell transcriptomes.
These technologies enable capture of mRNAs from single
cells obtained from dissociated tissues, synthesis and am-
plification of cDNA, and generation of single-cell libraries
for sequencing. We used a gel bead-in-emulsion–based
droplet sequencing method, which is ideal for studying a
large amount of brain cells in an unbiased manner.
To detect senescent endothelial cells in the aging

Fig. 2 Marker panel of canonical endothelial cell markers. Rela-
tive expression values for each cell in each cluster identified in the
two-dimensional UMAP plots are shown. The canonical endothe-
lial cell markers Cldn5, Slco1a4, Slc2a1, and Flt1 exhibit consis-
tent labeling of cerebromicrovascular endothelial cells, while some
other canonical endothelial cell markers (e.g., Nos3, Ocln) exhibit
poor labeling of these cells using this methodology. NOTES:
(Cldn5: claudin5, Wva1: Von Willebrand Factor A Domain

Containing 1, Slco1a4: solute carrier organic anion transporter
family member 1A4, Slc2a1: solute Carrier Family 2 Member 1,
Cdh5: cadherin 5, Flt1: Vascular endothelial growth factor receptor
1, Nos3: endothelial nitric oxide synthase 3, Ocln: occludin,
Abcg2: ATP-binding cassette super-family G member 2, Pecam1:
Platelet endothelial cell adhesion molecule, Tek: Angiopoietin-1
receptor, Tjp1: Tight junction protein ZO-1
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mouse brain, we analyzed cells in fractions enriched
for cerebromicrovascular endothelial cells obtained
from young (3-month-old) and aged (28-month-old)
C57BL/6 mice. We identified cerebromicrovascular en-
dothelial cells on the basis of their gene expression
profile and matched transcriptomic signatures of cellular
senescence to these cells.

Methods

Animals

Young (3-month-old, n= 2) and aged (28-month-old, n =
4) male C57BL/6 mice were purchased from the aging
colony maintained by the National Institute on Aging at
Charles River Laboratories (Wilmington, MA). The bio-
logical age of 28-month-old mice corresponds to that of ~
75-year-old humans. Mice were housed under specific
pathogen-free barrier conditions in the Rodent Barrier
Facility at University of OklahomaHealth Sciences Center
under a controlled photoperiod (12-h light; 12-h dark) with
unlimited access to water and were fed a standard AIN-
93G diet (ad libitum). All procedures were approved by

the Institutional Animal Use and Care Committees of the
University of Oklahoma Health Sciences Center. All ani-
mal experiments complied with the ARRIVE guidelines
and were carried out in accordance with the National
Institutes of Health guide for the care and use of Labora-
tory animals (NIH Publications No. 8023, revised 1978).

Tissue processing, cell isolation

Brain tissue was harvested from two young and four aged
mice (killed with CO2) that had been exsanguinated by
transcardial PBS perfusion (Tarantini et al. 2019b). The
brains were quickly removed and rinsed in ice-cold PBS
and minced into ≈ -mm3 pieces. The tissue samples were
washed twice in ice-cold 1X PBS by low-speed centrifu-
gation (50 g, 3 min). The diced tissue was digested in a
prewarmed buffer solution containing collagenase (800-U/
g tissue), hyaluronidase (2.5-U/g tissue), and elastase (3-U/
g tissue) in 1-mL PBS/100-mg tissue for 45 min at 37 °C
in a rotating humid incubator. The digested tissue was
passed through a 100-μm cell strainer. The single-cell
lysate was centrifuged for 2 min at 70 g. After removing
the supernatant, the pellet was washed twice in cold PBS
supplemented with 2.5% fetal calf serum (FCS), and the

Fig. 3 Marker panel of canonical astrocyte markers. Relative
expression values for each cell in each cluster identified in the
two-dimensional UMAP plots are shown. Note that the canonical
astrocyte markers Slc1a3 (sodium-dependent glutamate/aspartate
transporter 1; GLAST1) and Slc1a2 (excitatory amino acid trans-
porter 2; EAAT2) show strong labeling of astrocytes, whereas

Aqp4 and Gfap exhibit poor labeling of these cells using this
methodology. NOTES: Slc1a3: Excitatory amino acid transporter
1, Aqp4: Aquaporin 4, s100b: S100 Calcium Binding Protein B,
Aldh1l1:aldehyde dehydrogenase 1 family member L1, Gfap:
Glial fibrillary acidic protein
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suspension was centrifuged at 300g for 5 min at 4 °C. To
obtain a fraction enriched for intact cerebromicrovascular
endothelial cells and other cells associated with the
neurovascular unit but depleted of neurons, the cell sus-
pension was centrifuged using an OptiPrep gradient solu-
tion (Axi-Shield, PoC, Norway). Briefly, the cell pellet
was resuspended in Hanks’ balanced salt solution
(HBSS) andmixedwith 40% iodixanol thoroughly (fi-
nal concentration 17% (v/v) iodixanol solution; ρ =
1.096 g/mL). Two milliliters of HBSS was layered on
top and centrifuged at 400g for 15 min at 20 °C. Using
thismethod,endothelialcellsandmicrogliacells,which
areof similar sizeanddensity, aswell asasmallermixed
populationof smoothmusclecells,pericytes,oligoden-
drocytes, and astrocytes, band at the interface between
HBSS and the 17% iodixanol layer. Cells in this layer

were gently collected and suspended in ice-cold PBS
containing 0.4%BSA. The advantage of thismethod is
that it yields intact, high quality cells that are ideal for
transcriptomic studies.

Single-cell RNA sequencing

All the samples were simultaneously isolated and proc-
essed through all steps to generate stable cDNA libraries.
After dissociation, cells were diluted in ice-cold PBS
containing 0.4% BSA at a density of 1897 ± 410 cells/
μL (viable cells 95.9 ± 0.7%). Cells were loaded into a
Chromium Single Cell 3′ Chip (10x Genomics, Pleasan-
ton, California) and processed following the manufac-
turer’s instructions. Library construction was performed
using the Chromium Single Cell 3′ Library & Gel Bead

Fig. 4 Marker panel of canonical smooth muscle cell markers.
Relative expression values for each cell in each cluster identified in
the twodimensional UMAP plots are shown. NOTES: Acta2: Actin
Alpha 2, SmoothMuscle, Tagln: Transgelin, Tpm2:β-Tropomyosin,

myl9:Myosin regulatory light polypeptide 9, myh11: smoothmuscle
myosin heavy chain 11, Des: desmin, cnn1: Calponin 1, dstn:
Destrin, mustn1: Musculoskeletal, Embryonic Nuclear Protein 1
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Kit v2 (Catalog# 120267, lot# 152660; 10x Genomics,
Pleasanton, California). Libraries were pooled based on
their molar concentrations. Pooled library was sequenced
on one high-output lane of the NovaSeq 6000 instrument
(Illumina, San Diego, California). To de-multiplex sam-
ples, process barcodes, align and filter reads, and generate
feature barcode matrices, we used 10x Genomics Cell
Ranger (v3.0.2) pipeline (10x Genomics, Pleasanton, Cal-
ifornia) according to the manufacturer’s instructions.
Reads were mapped to the 10x Genomics reference of
mm10 mouse transcriptome (v.1.2.0).

Analysis of single-cell datasets

The downstream analyses of Cell Ranger output were
performed with the help of Seurat (v3.1) workflow

implemented as an R package (R v3.6.0) (Stuart et al.
2019; Butler et al. 2018). Data obtained in each
young and each aged samples were pooled. Our ini-
tial dataset contained 9091 cells, and the median
number of genes per cell was 518. In the first step,
low-quality cells were removed. Cells with extremely
high or low number of unique genes and cells with
extremely high percentage of reads that map to the
mitochondrial genome were excluded from the fur-
ther analysis (Ilicic et al. 2016; Luecken and Theis
2019). After this quality control step, the final dataset
consisted of data from 4233 cells (2157 aged and
2076 young cells). We normalized the feature expres-
sion measurements using the NormalizeData func-
tion for each cell by the total expression, using the
scale factor 10,000. The results were log-transformed

Fig. 5 Marker panel of canonical pericyte markers. Relative
expression values for each cell in each cluster identified in the
two-dimensional UMAP plots are shown. NOTES: pdgfrb: Plate-
let Derived Growth Factor Receptor Beta, kcnj8: Potassium In-
wardly Rectifying Channel Subfamily J Member 8, cspg4:

Chondroitin Sulfate Proteoglycan 4, mcam: Melanoma Cell Ad-
hesion Molecule, anpep: Alanyl Aminopeptidase,rgs5: Regulator
of G-protein signaling 5, abcc9: ATP Binding Cassette Subfamily
C Member 9, zic1: Zic Family Member 1, cd248: Endosialin
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within the same step. Before the dimension reduc-
tion, the data was scaled by the ScaleData function.

The feature selection was performed with the help of
the FindVariableGenes function. We identified 2000
genes which exhibit the highest cell-to-cell variation in
the dataset (Brennecke et al. 2013). These variable fea-
tures were used to run principal component analysis
(PCA) on the data by the RunPCA function. The first
15 component of PCA was considered to cluster the
cells. The cells were clustered with by the FindClusters
function. We used the unbiased Louvain clustering
algorithm with the resolution parameter 0.3
(arXiv:0803.0476 (physics.soc-ph) accessed at
https://arxiv.org/abs/0803.0476) (Blondel et al. 2008).

Cluster-specific markers were identified by calcu-
lating differential gene expression between cells in
the cluster versus all the other cells using the MAST
(model-based analysis of single-cell transcriptomics)
method (Finak et al. 2015). The MAST method was
designed to handle the special challenged associated
with singe-cell datasets, including the dropout
events. The MAST method was implemented in the
MAST (v1.12.0) R/Bioconductor package and called
by Seurat (v3.1) workflow.

Visualization of our filtered, normalized, and scaled
data was performed by uniformmanifold approximation
and projection algorithm (UMAP) implemented in the R
package uwot (v0.1.4) and called by Seurat (v3.1)

Fig. 6 Marker panel of canonical oligodendrocyte markers. Relative
expression values for each cell in each cluster identified in the
twodimensional UMAP plots are shown. NOTES: cnp: 2',3'-Cyclic
Nucleotide 3' Phosphodiesterase, mag: Myelin Associated

Glycoprotein, mbp: Myelin basic protein, mog: Myelin oligodendro-
cyte glycoprotein,olig1: Oligodendrocyte Transcription Factor 1,
olig2: Oligodendrocyte Transcription Factor 2, sox10: Transcription
factor SOX-10)
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workflow (arXiv:1802.03426 (stat.ML) accessed at
https://arxiv.org/abs/1802.03426).

We realize that choice of data clustering method is
dependent on the type of data. UMAP was chosen

Fig. 7 Marker panel of canonical microglia markers. Relative
expression values for each cell in each cluster identified in the
twodimensional UMAP plots are shown. NOTES: (Cldn5:
claudin5, Wva1: Von Willebrand Factor A Domain Containing
1, Slco1a4: solute carrier organic anion transporter family member
1A4, Slc2a1: solute Carrier Family 2Member 1, Cdh5: cadherin 5,
Flt1: Vascular endothelial growth factor receptor 1, Nos3: endo-
thelial nitric oxide synthase 3, Ocln: occludin, Abcg2: ATP-bind-
ing cassette super-family G member 2, Pecam1: Platelet endothe-
lial cell adhesion molecule, Tek: Angiopoietin-1 receptor, Tjp1:
Tight junction protein ZO-1, Slc1a3: Excitatory amino acid trans-
porter 1, Aqp4: Aquaporin 4, s100b: S100 Calcium Binding
Protein B, Aldh1l1:aldehyde dehydrogenase 1 family member
L1, Gfap: Glial fibrillary acidic protein, Acta2: Actin Alpha 2,
Smooth Muscle, Tagln: Transgelin, Tpm2:β-Tropomyosin, myl9:

Myosin regulatory light polypeptide 9, myh11: smooth muscle
myosin heavy chain 11, Des: desmin, cnn1: Calponin 1, dstn:
Destrin, mustn1: Musculoskeletal, Embryonic Nuclear Protein 1,
pdgfrb: Platelet Derived Growth Factor Receptor Beta, kcnj8:
Potassium Inwardly Rectifying Channel Subfamily J Member 8,
cspg4: Chondroitin Sulfate Proteoglycan 4,mcam:MelanomaCell
Adhesion Molecule, anpep: Alanyl Aminopeptidase,rgs5: Regu-
lator of G-protein signaling 5, abcc9: ATP Binding Cassette Sub-
family C Member 9, zic1: Zic Family Member 1, cd248:
Endosialin, cnp: 2',3'-Cyclic Nucleotide 3' Phosphodiesterase,
mag: Myelin Associated Glycoprotein, mbp: Myelin basic protein,
mog: Myelin oligodendrocyte glycoprotein,olig1: Oligodendro-
cyte Transcription Factor 1, olig2: Oligodendrocyte Transcription
Factor 2, sox10: Transcription factor SOX-10)

Table 2 Senescence marker genes. SASP, senescence-associated secretory phenotype

Gene category Number of genes Genes

Senescence core genes 10 Cdkn2a, Bmi1, Trp53, Hmga1, Chek1, Chek2, Prodh, Tnfrsf10b, Cdkn1a, Dao

Senescence effector genes 9 Ppp1ca, Ahcy, Brf1, Map 2 k3, Map 2 k6, Smurf2, Tgfb1i1, Srsf1, Angptl2

SASP genes 44 Ccl2, Ccl24, Ccl3, Ccl5, Ctnnb1, Cxcl1, Cxcl10, Cxcl12, Cxcl2, Cxcl16, Hgf,
Hmgb1, Icam1, Igfbp2, Igfbp3, Igfbp4, Igfbp5, Igfbp6, Igfbp7, Il15, Il18, Il1a,
Il1b, Il2, Il6, Mif, Mmp12, Mmp13, Mmp14, Pgf, Plat, Timp2, Serpine1, Ccl3,
Ccl4, Ang, Csf2, Kitl, Serpine2, Tnfrsf1a, Hgf, Nrg1, Ereg, Areg
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instead of the more popular t-SNE (t-distributed
stochastic neighborhood embedding) because it provid-
ed a better separation of the known cell types, as it was
reported by Becht et al. (Becht et al. 2018) UMAP
reduces high-dimensional data into two dimensions,
which can be visualized in a scatter plot. All the plots
were created by the built-in functions of Seurat (v3.1)
workflow and the ggplot (v3.2.1) R/tidyverse package.

Assessment of the expression of senescence-related
genes

Our goal was to identify senescent endothelial cells on
the basis of their gene expression profile. To achieve that
goal, senescence-related gene expression was character-
ized at the individual cell level by calculating a modified
enrichment score (Subramanian et al. 2005) for each
cell. In brief, for each cell, the expressed genes were
ranked from the highest to the lowest abundance based
on their scaled, normalized expression. A list of
senescence-related core genes, effector genes, and genes
encoding secreted proteins that constitute the SASP was
compiled on the basis of the literature (Table 1) (Carnero
2013; Nagano et al. 2016). The target gene list for the
enrichment score calculation contained each category of
genes. The target gene list was assessed by iterating
through the ranked gene list in each cell and adding a
constant to the variable (called the running enrichment

score, RES) whenever the next gene on the ranked list is
present among the target genes. If it is not present, the
constant is subtracted from the RES. The largest devia-
tion of the RES variable from 0 is considered the en-
richment score of the given cell. If none of the target
genes is expressed in the cell, then the enrichment score
is set to 0. Positive numbers indicate accumulation of
target genes among the upregulated genes.

Results

Identification of cell types

We report 4233 single-cell transcriptomes (2157 aged
and 2076 young cells) with cluster-assigned identity,
validated by quality control measures. Unbiased Lou-
vain clustering of cells resolved 13 robust, transcription-
ally distinct clusters of cells (resolution parameter 0.3;
Fig. 1). Cell clusters were identified by the significant,
cluster-specific markers calculated by the MAST meth-
od (Table 1). Using this method, we identified 1016
cells as endothelial cells and 1875 cells as microglia.
Other cell types identified included smooth muscle
cells, pericytes, astrocytes, oligodendrocytes, and a
small number of neurons (Fig. 1). Cellular compo-
sition was similar in samples obtained from young
and aged mice (Fig. 1).

Fig. 8 Expression of senescence marker genes in different cell
types in the young and aged mouse brain. Bubble plots show
relative expression of senescence markers, including senescence
core genes (panel A), senescence-associated effector genes (panel
B), and genes that encode SASP factors (panel C), across clusters

in young and aged mouse brains. Bubble size is proportional to
percentage of cells expressing a gene, and color intensity is pro-
portional to average-scaled gene expression within a cluster. Red
fonts indicate cells constituting the neurovascular unit
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Fig. 9 Expression of senescence marker genes in different cell
types in the young and aged mouse brain. Panel A Density-
smoothed distribution for senescence gene enrichment scores
(see “Methods”) in endothelial cells (left), microglia (middle),
and neuronal cells (right) in young and aged brains. Note that in
aged brains compared with young brains, there is a more populous
subgroup (arrows) of endothelial cells and microglia (but not
neuronal cells) with high senescence gene enrichment scores (high

versus low expression defined relative to a score of 42; line).
Panels B–C Cells with high expression of senescence markers
(senescence score > 42) overlaid on UMAP plots for young (panel
B) and aged brains (panel C). Panel D–E Pie charts showing
percentage of endothelial cells (panel D) and microglia (panel E)
with high expression of senescence markers in young and aged
brains
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Expression of canonical cell type markers

Our single-cell RNA sequencing (scRNA-seq) dataset
provided a unique opportunity to investigate the expres-
sion of previously reported canonical cell type markers.
Figures 2 to 7 depict cells expressing canonical endothelial
cell (Fig. 2), smooth muscle cell (Fig. 3), pericyte (Fig. 4),
astrocyte (Fig. 5), oligodendrocyte (Fig. 6), and microglia
(Fig. 7) markers overlaid on UMAP plots of all cells.

Expression of senescence marker genes

A list of senescence marker genes (Table 2) was com-
piled on the basis of the available literature (Hernandez-
Segura et al. 2017; Hernandez-Segura et al. 2018).
Senescence marker genes include senescence core
genes, senescence-associated effector genes, and genes
that encode SASP factors. Mean expression across the
panel of senescence markers was markedly different
among the clusters (Fig. 8). This confirms that cell
origin is a major determinant of heterogeneity of cellular
senescence.

Quantitative analysis of senescent cells

To identify senescent subgroups of endothelial cells and
other cell types, we first examined the expression of
Cdkn2a and other commonly used senescence markers
(Table 2). Because single-cell sequencing is inherently
prone to dropout, or incomplete detection of genes
expressed at low levels, we calculated a modified en-
richment score for the whole senescencemarker gene set
for each cell as described in the “Methods.” A major
advantage of this method is that it considers both the
expression amplitude of senescence-related genes and
the number of senescence-related genes expressed in
each cell. Figure 9A depicts density-smoothed distribu-
tion for senescence gene enrichment scores in endothe-
lial cells, microglia, and neuronal cells derived from
young and aged brains. We found that in aged brains,
compared with young brains, there is a more populous
subgroup of endothelial cells and microglia (but not
neuronal cells), with high senescence gene enrichment
scores. High versus low senescence gene enrichment
scores were defined relative to a score of 42, on the
basis of the shape of the distribution curves. We found
that both endothelial cells and microglia with high ex-
pression of senescence markers are more prevalent in
aged brains than in young samples (Fig. 9B–E).

Discussion

In this study, we applied single-cell RNA-seq technolo-
gy to examine age-related endothelial senescence in the
mouse brain. In doing so, we have identified a popula-
tion of cerebromicrovascular endothelial cells with a
unique transcriptional signature characteristic to cellular
senescence. Our studies indicate that ~ 10% of
cerebromicrovascular endothelial cells undergo cellular
senescence in the mouse brain at a biological age that
equals that of ~ 75-year-old humans. Importantly, simi-
lar prevalence of senescence endothelial cells was found
in the aged mouse brain by independent methods (e.g.,
assessing senescent cells in aged p16-3MR senescence
reporter mice; Csiszar and coworkers 2019, unpublished
observation). The impact of senescence (Salminen et al.
2011) on the cerebromicrovascular endothelial pheno-
type and function is likely multifaceted, including dys-
regulation of cerebral blood flow and impairment of the
blood-brain barrier and microcirculatory network
architecture.

To our knowledge, our data provide the first transcrip-
tional characterization of senescent cerebromicrovascular
endothelial cells present in the aged mouse brain. As has
been previously shown, we found overall low expression
of senescence marker genes. While this study is not suffi-
cient to distinguish unequivocally between cells in the
presenescent-senescent continuum, it provides a useful
method to compare senescent burden between groups.
Notably, our method can also be adapted to evaluate
efficiency of senolytic regimens (Childs et al. 2016; Xu
et al. 2018; Jeon et al. 2017; Roos et al. 2016;
Yabluchanksiy et al. 2020).

Because presenescent and senescent endothelial cells
exhibit only relatively minor differences in expression
of gene transcripts, studies using other cell-labeling
techniques (e.g., cells from genetic senescence reporter
mice expressing fluorescent protein tags (Jeon et al.
2017; Kim et al. 2019; Patil et al. 2019; Yabluchanksiy
et al. 2020)) will likely be required to further optimize
the senescence marker gene list used to calculate the
enrichment score.

We propose that our single-cell RNA sequencing-
based method can also be adapted to study the effect
of aging on senescence in various brain cell types. As
our data confirm that expression of senescent marker
genes is highly cell type specific, we propose that a cell
type–specific senescent marker gene set should be used
to analyze each cluster separately. Due to their
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pathophysiological relevance, single-cell RNA
sequencing-based assessment of microglia senescence,
astrocyte senescence (Tarantini et al. 2017a; Chinta et al.
2018; Cohen and Torres 2019; Salminen et al. 2011;
Bhat et al. 2012; Bitto et al. 2010; Bussian et al. 2018;
Gorg et al. 2018; Turnquist et al. 2019; Yamazaki et al.
2016), and pericyte senescence is of special interest.
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