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Gaszton Vizsnyiczai,2 L�or�and Kelemen,2 Zolt�an Tomori,1 and Gregor B�an�o4,5,a)

AFFILIATIONS
1Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Ko�sice,
Slovak Republic

2Institute of Biophysics, Biological Research Centre, Temesv�ari krt. 62, Szeged, Hungary
3Department of Chemistry, Biochemistry and Biophysics, Institute of Biophysics, University of Veterinary Medicine and Pharmacy,
Komensk�eho 73, 04181 Ko�sice, Slovak Republic

4Department of Biophysics, Faculty of Science, P. J. �Saf�arik University, Jesenn�a 5, 041 54 Ko�sice, Slovak Republic
5Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. �Saf�arik University, Jesenn�a 5, 041 54 Ko�sice,
Slovak Republic

a)Author to whom correspondence should be addressed: gregor.bano@upjs.sk

ABSTRACT

In this work, we demonstrate that the mechanical dynamics of polymer nanowires prepared by two-photon polymerization direct laser writ-
ing lithography is strongly influenced by their viscoelastic characteristics. Bending recovery measurements were carried out on cantilevered
nanowires deflected by optical tweezers in a liquid environment. The assumption of purely elastic cantilever response (as defined by Young’s
modulus of the polymer material) fails to explain the observed overdamped oscillatory motion. A mechanical model is proposed to account
for the nanowire viscoelastic behavior. The experimental data indicate that the origin of the nanowire viscous component is twofold. Both
the partially cross-linked polymer structure and the solvent penetrating the polymer network contribute to frictional forces inside the nano-
wire. The present results provide guidance for the future design of nanosized polymer devices operated in a dynamic regime.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0014662

Owing to the high flexibility and the nanoscale spatial resolution
of two-photon polymerization direct laser writing (TPP-DLW) lithog-
raphy,1–6 the application field of nano- and microstructures fabricated
by this technique is growing fast. Recent developments cover the areas
of photonic devices,7–9 nano-micro-mechanics,10–12 and biomedical
applications.13–15 To exploit the full potential of TPP-DLW lithogra-
phy, the mechanical properties of the prepared structures must be well
characterized, which were the subject of several previous works.16

Special attention was paid to the scaling of photopolymer elastic mod-
uli (Young’s modulus and/or the shear modulus) when moving from
the bulk material to micro- and nanoscale dimensions. Depending on
the experimental conditions, which include the type of the used photo-
resist, the structure dimensions, the polymerization parameters (laser
power, writing speed, and post-curing settings), and the surrounding
environment (solution or air), the elastic modulus difference between
the bulk and microscopic objects ranged from a factor of few times,17

up to three orders of magnitude.18 Moreover, opposing scaling of the

elastic moduli (increase or decrease) was reported toward smaller
object features at different experimental conditions.19–22

The higher elastic moduli observed in nanoscale objects, com-
pared to bulk material, were explained by the enhanced alignment of
the polymer network.19,20 By contrast, the chemical and physical phe-
nomena identified behind the opposite effect (i.e., lowered material
stiffness of nanoscale structures) are the limited degree of polymer
cross-linking and the enhanced solvent permeation into the polymer
network. Indeed, Raman and CARS (coherent anti-Stokes Raman
scattering) spectroscopy revealed a significant portion of uncured resin
in the structures prepared by TPP-DLW at laser powers near the poly-
merization threshold [Fig. 1(a)].21–24 The degree of conversion
increased toward higher laser powers and/or lower writing speeds. In
this way, the structure stiffness could be enhanced, usually at the
expense of the fabrication spatial resolution.20–22,24,25 Near the poly-
mer surface, the remnant monomers, oligomers, and incompletely
polymerized chains are removed from the material by the developer,
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which is mostly important in the case of nanosized objects with a large
surface-to-volume ratio. The structure-loosened polymer state makes the
nanostructures permeable to solvent molecules [Fig. 1(b)], thus affecting
the stiffness, shrinkage, and swelling characteristics of the material.26,27

The question arises whether or not the viscous character of the uncured
resin and the penetrated solvent affects the mechanical properties of the
nanostructures prepared by TPP-DLW. Optical tweezers,18,21,28 nanoin-
dentation equipment,24,25 atomic force microscopes,17,19,29 and, more
recently, micro-electro-mechanical systems (MEMS)-based tensile test-
ers20 and nanorobotic systems22 were utilized to follow the photopoly-
mer response to the applied mechanical stress. With a few exceptions, all
the results used for elastic modulus evaluation were obtained at quasi-
steady conditions. In this work, the bending characteristics of photopoly-
mer nanowires are studied in a dynamic regime. Based on the recovery
motion of cantilevered nanowires (bent with optical tweezers), the visco-
elastic material characteristics are explored and the related aspects of
photopolymer nanomechanics are uncovered.

18lm long polymer nanowires, anchored to vertical supports at a
height of 8lm and equipped with 5lm diameter trapping spheres
[Figs. 2(a) and 2(b)], were used for bending dynamics measurements.
The cantilevered nanowires were fabricated using TPP of Ormocomp,
the commercially available biocompatible inorganic–organic hybrid
polymer.15,30–32 The 785nm, 100MHz repetition rate, and 100 fs pulse
length polymerization laser was focused into the photoresist by a 40�
oil immersion objective (NA 1.3). The nanowire was drawn as a single
line with a scan speed of 50lm/s. The laser power was set to a near-
threshold value of 3.5 mW in the sample. In order to stabilize the nano-
wire position for the development, washing, and drying processes, an
identical cantilever was polymerized to the opposite side of the sphere
[Fig. 1(c)]. The auxiliary cantilever was cut and removed from the struc-
ture before the measurements. The structures were washed in OrmoDev
developer three times for 15min. While immersed in the third devel-
oper, the coverslip was irradiated with a microscope mercury lamp
(HBO50) to promote post-polymerization. Finally, the structures were
washed in water and air-dried. The width and the height of the dried
nanowires were ca. 150nm and 400nm, respectively.

The cantilevers immersed in aqueous solutions were deflected
horizontally by optical forces exerted on the sphere [Fig. 2(a)], keeping
the deflection angle below 170 mrad. After switching the trapping laser
off, the cantilevers moved back to the initial equilibrium in an over-
damped oscillatory regime. The analysis of the recovery motion was
used to determine the cantilever’s viscoelastic characteristics, without
the need for the knowledge of the exerted optical force. The sphere

position was followed by video tracking, using a CMOS camera oper-
ated at 500 fps. The deflection/recovery procedure was repeated twelve
times, and the average distance traveled by the sphere along the recovery
trajectory was evaluated. The viscosity of the surrounding medium was
tuned by using aqueous glucose solutions of different concentrations.33

The normalized time courses of the sphere displacement are
shown in Fig. 3(a). The recovery is driven by the nanowire elastic
forces, acting toward the equilibrium, and the counter-acting dissipa-
tive forces. As expected, the sphere motion slows down when the
medium viscosity is increased at higher glucose concentrations. It is
important to note that the time dependence of the recovery curves
exhibits a bi-exponential decay. This observation contradicts the
assumption of purely elastic nanowires. The discrepancy is resolved by
taking the viscoelastic nanowire characteristics into account. The
mechanical model proposed in this work for the sphere connected to
the nanowire is shown in Fig. 2(d). The model consists of spring and
dashpot elements. The left arm (assigned as A) represents the visco-
elastic properties of the nanowire. The proposed scheme resembles the
standard linear solid model of viscoelastic materials. In our case, how-
ever, the two spring constants, j1 and j2, and the viscoelastic damping
coefficient d are effective parameters assigned to the cantilevered
nanowire as a whole. The B arm stands for the viscous forces of the
surrounding medium, with c denoting the hydrodynamic resistance.
Neglecting the cantilever thickness compared to its length and the
sphere diameter, the model system of Fig. 2(d) is described by the
sphere equation of motion,

m
d2x
dt2
¼ FA þ FB; (1)

where x is the position of the sphere on the deflection trajectory andm
is the sphere mass. FA and FB are the viscoelastic and viscous forces
exerted by the cantilever and the solution, respectively. In the case of

FIG. 1. Schematic view of the polymer network inside the nanowires prepared by
TPP-DLW. (a) The partially cross-linked polymer network during the polymerization
process. (b) Solution molecules penetrate the nanowire structure when placed in a
liquid environment.

FIG. 2. (a) The bending recovery experiment. (b) Bright-field picture of the cantilev-
ered nanowire in water. (c) SEM picture of the dried cantilever. The right side of the
structure was cut and removed before the experiments. (d) The mechanical model
for the sphere motion along the recovery trajectory. The A and B arms represent
the nanowire and the hydrodynamic damping by the surrounding medium,
respectively.
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micrometer-sized objects, the inertial forces can be neglected,34,35 and
Eq. (1) is solved analytically. The calculation details are given in the
supplementary material. In good agreement with the experimental
observations, the theoretical time dependence of the nanowire deflec-
tion during the overdamped oscillation has a bi-exponential form,

x tð Þ ¼ A1e
� t

s1 þ A2e
� t

s2 : (2)

The decay times s1 and s2, and the amplitudes A1 and A2 are deter-
mined by fitting the experimental recovery curves with Eq. (2). The
relations between the four fitting parameters (s1, s2, A1, and A2), the
cantilever characteristics (j1, j2, and d), and the hydrodynamic resis-
tance (c) have a relatively complex form. The data analysis simplifies
significantly when the weighted average time swat is calculated,

swat ¼
A1s1 þ A2s2
A1 þ A2

: (3)

As shown in the supplementary material, the weighted average time
can be divided into two terms, si and se, which separate the internal
and external friction in the system,

swat ¼ si þ se; (4a)

si ¼
1
j2
� 1

j1 þ j2

� �
d; (4b)

se ¼
1
j1
þ 1

j2

� �
c: (4c)

The value of si is proportional to the internal damping coefficient d
and carries information about the nanowire viscous component. By
contrast, se is a linear function of the hydrodynamic resistance c and
characterizes the behavior of a hypothetical, purely elastic nanowire.
To gain relevant information about the nanowire viscoelasticity, the
values of si and se must be determined separately. Here, we take
advantage of the fact that both si and se can be calculated directly,
using the four fitting parameters

si ¼
A1A2 s2 � s1ð Þ2

A1 þ A2ð Þ A1s2 þ A2s1ð Þ ; (5)

se ¼
A1 þ A2ð Þs1s2
A1s2 þ A2s1

: (6)

For spherical particles, the hydrodynamic resistance c depends on the
bead radius a and the solution viscosity g, c¼ 6pga. In the case of the
studied cantilever systems, corrections are to be made for the finite dis-
tance of the sphere from the chamber wall [the resistance is estimated
to increase by �20% (Ref. 36)] and also for the viscous drag exerted
on the cantilever beam. Taking all these corrections into account, the
hydrodynamic resistance remains proportional to the medium viscos-
ity. The proportionality factor between c and g is, however, difficult to
express analytically.

The normalized time courses of the sphere displacement [Fig.
3(a)] were fitted with bi-exponential decays. The fitting parameters
(s1, s2, A1, and A2) were used to evaluate the weighted average time
swat and its two terms, si and se. The results are plotted in Fig. 3(b) as
a function of the surrounding solution viscosity. In agreement with the
proposed model, se is a linear function of the viscosity and the extrap-
olation of the se values toward zero viscosity passes through the (0, 0)
point. This result shows that the effective cantilever stiffness [defined
as 1/jeff¼ 1/j1 þ1/j2, see Eq. (4c)] is a constant. The nanowire stiff-
ness and, in general, the elastic material response are determined by
the cross-linked polymer network. Obviously, the solution viscosity
has a negligible effect on this network. It is reasonable to assume that
the two elastic terms, j1 and j2 separately, are also constants. Taking
Eq. (4b) into account, it follows that the si values, plotted in Fig. 3(b)
with solid red circles, reflect the changes in the nanowire damping
coefficient d. Based on the experimental data, we conclude that there
are two effects contributing to the nanowire internal damping. The
first contribution is independent of the solution viscosity (indicated by
the dashed line in Fig. 3) and, most probably, corresponds to the
uncured part of the photopolymer. The second contribution, which is
proportional to the solution viscosity, is assigned to the solution mole-
cules penetrating the loosened polymer structure. It is concluded that
both the limited degree of polymer cross-linking and the solvent per-
meation into the polymer network affect the viscoelastic material char-
acteristics of photopolymerized nanowires. The relative importance of
the two contributions may, however, be different for each particular
case, depending on the fabrication conditions.

The mechanical properties of nano-micro-oscillators fabricated
by TPP-DLW have been investigated for almost twenty years now.
The present work extends the nanowire mechanics toward the
dynamic regime. The viscoelastic nanowire behavior, identified and
described here, must be taken into account when designing

FIG. 3. (a) The displacement recovery curves measured in glucose solutions of 0,
100, 150, 200, 250, 300, and 350mg/ml concentration. The solid lines represent bi-
exponential fits. All the curves were normalized to unity. (b) The weighted average
time swat (open blue circles) and its two terms, se (solid black squares) and si (solid
red circles) plotted as a function of the solution viscosity.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 117, 013701 (2020); doi: 10.1063/5.0014662 117, 013701-3

Published under license by AIP Publishing

https://doi.org/10.1063/5.0014662#suppl
https://doi.org/10.1063/5.0014662#suppl
https://scitation.org/journal/apl


nanomechanical components used in dynamic stress conditions. A
deeper understanding of the material properties opens new possibili-
ties for future applications of nanostructures prepared by TPP-DLW.
Microrheological measurements can be mentioned as an example. The
present cantilevered nanowires can be used as microscopic viscometers
in a straightforward way.

See the supplementary material for the computational details of
the mechanical model.
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