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Abstract
The photosynthetic performance of crop plants under a variety of environmental factors and stress conditions, at the funda-
mental level, depends largely on the organization and structural flexibility of thylakoid membranes. These highly organized 
membranes accommodate virtually all protein complexes and additional compounds carrying out the light reactions of 
photosynthesis. Most regulatory mechanisms fine-tuning the photosynthetic functions affect the organization of thylakoid 
membranes at different levels of the structural complexity. In order to monitor these reorganizations, non-invasive techniques 
are of special value. On the mesoscopic scale, small-angle neutron scattering (SANS) has been shown to deliver statisti-
cally and spatially averaged information on the periodic organization of the thylakoid membranes in vivo and/or, in isolated 
thylakoids, under physiologically relevant conditions, without fixation or staining. More importantly, SANS investigations 
have revealed rapid reversible reorganizations on the timescale of several seconds and minutes. In this paper, we give a short 
introduction into the basics of SANS technique, advantages and limitations, and briefly overview recent advances and poten-
tial applications of this technique in the physiology and biotechnology of crop plants. We also discuss future perspectives of 
neutron crystallography and different neutron scattering techniques, which are anticipated to become more accessible and 
of more use in photosynthesis research at new facilities with higher fluxes and innovative instrumentation.
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Abbreviations
BBY	� Photosystem II membrane fragments
CD	� Circular dichroism
Chl	� Chlorophyll
DCMU	� (3-(3,4-Dichlorophenyl)-1,1-dimethylurea)
EINS	� Elastic incoherent neutron scattering
HWHM	� Half-width at half maximum
INS	� Inelastic neutron scattering

LHC II	� Light-harvesting complex II
NS	� Neutron scattering
NSE	� Neutron spin echo
PBS	� Phycobilisome
psi	� Polymer and salt induced
PS I	� Photosystem I
PS II	� Photosystem II
RD	� Repeat distance
QENS	� Quasielastic neutron scattering
Q	� Scattering vector
SANS	� Small-angle neutron scattering

General introduction

Neutron scattering (NS) techniques are widely used for the 
structural and dynamical characterization of condensed mat-
ter. Neutrons—due to their electric neutrality—can penetrate 
deeply into most samples. Due to the nature of their inter-
action with the nuclei, they are especially sensitive to light 
atoms while exhibiting different scattering cross-sections for 
different isotopes of the same atom. Of particular importance 
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for biology, the large difference in scattering length between 
hydrogen and deuterium allows contrast variation experi-
ments, highlighting and hiding different constituents, e.g. 
lipids and proteins. Considering also their non-invasive 
nature, neutron scattering techniques are ideally suited for 
structural (Engelman and Moore 1972; Stuhrmann 1974; 
Svergun and Koch 2003; Chen et al. 2012) and dynamical 
(Doster et al. 1989; Zaccai 2000; Zaccai et al. 2016) studies 
of biological samples in their functional states (Fitter et al. 
2006).

The structural details obtained from neutron scattering 
techniques range from a few Ångströms, accessible with 
neutron protein crystallography (see e.g. (Lu et al. 2019)), to 
nanometer size information, obtained in neutron diffractom-
eters (see e.g. (Demé et al. 2014)), and tens of nanometers, 
using small-angle neutron scattering (SANS) (Sadler and 
Worcester 1982; Ünnep et al. 2014a). With different accessi-
ble lengthscales, different neutron scattering techniques can 
help to better understand the atomic structure of proteins, 
uncover the dynamics of complex molecular assemblies 
and reveal changes in long-range order of extended prote-
oliposomes and membrane systems. In this mini-review, our 
attention will be focused on recent advances on the use of 
neutron scattering techniques in photosynthesis research, 
mainly, but not exclusively, SANS investigations. Results 
and potential applications of less frequently used techniques, 
such as quasielastic neutron scattering (QENS) and neutron 
spin echo (NSE), will also be briefly discussed. Regarding 
the technical details and theoretical backgrounds, we refer 
the readers to a recently published book chapter (Nagy et al. 
2014a).

Small‑angle neutron scattering

By measuring elastically scattered neutrons at small angle, 
SANS has been used for long in structural biology to study 
structural features of soft matters at a mesoscopic (1–100 
nm) scale. It offers information about the shape and size 
of macromolecules and molecular assemblies in solution, 
as well as about the morphology of fibrillar and lamellar 
structures (Neylon 2008), including samples from photo-
synthetic organisms.

SANS have been successfully employed to provide size 
and shape information about micelles of hydrated chlo-
rophylls and chlorophyll mixtures (Worcester et al. 1986, 
1989) correlation between the spectroscopical and struc-
tural features of supramolecular assemblies (Tiede and Thi-
yagarajan 1996) or small aggregates of bacteriochlorophyll 
(BChl) a and c studied in benzene-d6 solutions (Wang et al. 
1997). SANS was also used to correlate the aggregation 
state of the photosynthetic reaction centre-cytochrome c2 
protein complex with the cytochrome oxidation kinetics 

(Tiede et al. 2000) or to determine plausible models for 
the minimal functional unit of the purple bacterial antenna 
complexes LH1 and LH2 (Tiede and Thiyagarajan (1996). 
SANS studies on the D2O solution of the B820 subunit of 
the LH1 antenna complex (from Rhodospirillum rubrum) 
demonstrated the benefits of contrast matching allowing the 
separation of the scattering signals from that of the protein 
complex and the attached predeuterated detergent (Wang 
et al. 2003). The main light-harvesting complex of PSII 
(LHCII) was also successfully studied with contrast varia-
tion SANS measurements (Cardoso et al. 2009) providing a 
low-resolution structure for the protein complex stabilized 
via detergent in solution which was consistent with the X-ray 
crystallographic structure of trimeric LHCII. In the thermo-
phylic green phototrophic bacterium, Chloroflexus aurantia-
cus SANS provided information about the size and shape of 
the chlorosome, the light-harvesting B808-866 complex and 
the reaction center (Tang et al. 2010, 2011; Tang and Blank-
enship 2012). SANS can also facilitate the development of 
successful crystallization protocols of photosynthetic mem-
brane proteins (Thiyagarajan and Tiede 1994). (For a more 
detailed overview on this area of molecular aggregates and 
protein complexes, see (Nagy et al. 2014a)).

Most recently, SANS allowed determination of the low-
resolution solution structure of the active state of orange 
carotenoid protein (OCP) and revealed its structural similar-
ity to a stable mutant version of the protein, rendering the 
latter a potential structural analogue for the light-activated 
OCP (Golub et al. 2019a); this enabled the authors to char-
acterize the molecular dynamics of the ground and active 
states of OCP on the picosecond timescale (Golub et al. 
2019b).

During the past decade, SANS studies focused on the 
structure and flexibility of multilamellar thylakoid mem-
brane systems under different experimental conditions and in 
a variety of photosynthetic organisms. The thylakoid mem-
brane system was first studied with neutrons by Worcester 
(Worcester 1976) and Sadler and Worcester (Sadler and 
Worcester 1982), who observed the diffraction peak signal 
arising from the periodic organization of isolated thylakoid 
membranes with repeat distances (RDs) consistent with elec-
tron microscopy (EM) data. The technical developments in 
the past decades brought considerably higher neutron fluxes 
and better resolution of the neutron beams, and higher sen-
sitivity and resolution of the detectors. These, together with 
the availability of user-friendly sample environments, with 
magnets, thermostats and sample illumination, and with a 
large number of mutant organisms impaired in their photo-
synthetic function as well as the easy-to use tools to char-
acterize the physiological state of the samples, opened new 
possibilities for the use of SANS in photosynthesis research.

Of particular interest, the magnetic orientation of thyla-
koid membranes which can be achieved on isolated plant 
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thylakoids (Sadler and Worcester 1982) and also on some 
algal cells with inherently anisotropic thylakoid arrange-
ments (Nagy et al. 2012) significantly enhances the scatter-
ing intensity. Thylakoid membranes, due to their diamag-
netic anisotropy, are aligned in an external magnetic field 
of ~ 0.5–1.5 T with their membrane normals tending to be 
parallel to the direction of the magnetic field (Knox and 
Davidovich 1978; Garab 1996). The edge-alignment of thy-
lakoid membranes favours the Bragg diffraction and narrows 
the azimuthal angle of the ’useful’ signal (Fig. 1a) which 
improve the S/N ratio. It has also been shown that the mag-
netic field exerts no effect on the peak position (Fig. 1b), rul-
ing out magnetic-field-induced artefact in RD. The improved 
S/N ratio allowed observing rapid membrane reorganizations 
with time resolution of several seconds (Fig. 1c) (Nagy et al. 

2011). Without magnetic alignment of the membranes, the 
time resolution of the experiments is evidently lower. None-
theless, time-resolved experiments are also feasible on intact 
systems such as live algal cells (Nagy et al. 2011, 2014b), 
cyanobacteria (Nagy et al. 2011; Liberton et al. 2013a, b) or 
entire leaf segments (Ünnep et al. 2014b).

At the present state of the research field, the primary 
information derived from the SANS curves of thylakoid 
membranes is mostly confined to the repeat distance (RD) 
of thylakoids (cf. Fig. 2). This information can be deduced 
from the first-order Bragg peak of the scattering curves. The 
RD values, calculated from the Q* peak positions of the 
scattering vector of the SANS profile and the RDs, obtained 
from electron microscopy (EM), are in reasonable agreement 
with each other (Ünnep et al. 2014b). Also, variations in the 
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Fig. 1   Effect magnetic field on the scattering signal from isolated thy-
lakoid membranes, and light-induced changes in the RD, measured 
on magnetically aligned membranes. Left: 2D scattering profiles of 
isolated spinach thylakoid membranes in the absence and presence 
of 1.5 T magnetic field (upper and lower panels, respectively); black 
sectors represent the area of radial averaging; colour codes are repre-
senting the differential scattering cross-section values in a logarith-
mic scale in arbitrary units; and Top Right: the corresponding radi-
ally averaged SANS profiles. Bottom Right: Typical light-induced 

RD changes—as indicated by the light (light on) and dark (light 
off) horizontal bars. RD values were calculated from RD = 2π/Q*, 
where the Q* peak position was obtained by fitting the 1D curves 
with the sum of a power function and a Gaussian (Nagy et al. 2013). 
Illustration composed from figures published in (Nagy et  al. 2011) 
and (Nagy et al. 2014a). Measurements were performed on the D22 
SANS instrument at the Institut Laue-Langevin (sample-to-detector 
distance = 8 m, collimation = 8 m, λ = 6 Å)
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peak positions, shifts due to shrinking or swelling of the 
membranes are in harmony with complementary data or are 
perfectly in line with the expectations (e.g. upon variations 
in the osmotic strength in algal cells (Nagy et al. 2012) or 
isolated plant thylakoid membranes (Posselt et al. 2012)). 
Diminishment or the absence of this peak has also been cor-
related with the decreased lamellar order. Further, by elimi-
nating the periodic structures via using isolated thylakoid 
membranes suspended in hypotonic low-salt media, led to 
the disappearance of the Bragg peak, while retaining the 
functional thylakoid membrane (Holm 2004). (Please note 
that the original assignment of the Bragg peak as stroma 
thylakoids was in error—which was corrected upon more 
systematic SANS and EM investigations on isolated thy-
lakoid membranes and plant leaves (Ünnep et al. 2014b)). 
Also, changes in the shape of the scattering profiles (e.g. 
broadening or sharpening of the bands due to e.g. variations 
in the mosaicity of the membranes) are in harmony with 
other data characterizing the sample (Ünnep et al. 2017 and 
references therein).

The experiments referenced above, in general, justify the 
use of the simple approach using the first-order Bragg peak 
and drawing conclusions on the absence or presence of peri-
odic order and on the RD values. However, there are possible 
complications due to the fact that, in general, no information 
is available on the form factor, F(Q). The form factor is the 
Fourier transform of the scattering length density distribu-
tion of the unit cell (here, the thylakoid). The lattice forma-
tion of thylakoid membranes is described by the so-called 
structure factor, S(Q), and the scattering intensity is given 
by the product of |F(Q)|2S(Q) (see e.g. (Ünnep et al. 2014a). 
Hence, strictly speaking, the variations of both the form fac-
tor and the structure factor must be taken into consideration. 
Trivial cases such as the absence of periodicity or disruption 

of membranes and changes dominated by shrinking or swell-
ing can be treated easily; in all other cases, complementary 
techniques and reasonable assumptions (such as negligible 
changes in the form factor) can help the interpretation of 
data. In many cases, we have no reason to presume signifi-
cant variations in the form factor, and thus conclusions can 
be drawn on perturbations of the periodic order of the thy-
lakoids and/or on changes in their RDs (Nagy et al. 2014b; 
Karlsson et al. 2015; Herdean et al. 2016).

The first-order Bragg peak is generally observable around 
0.02–0.03 Å−1 in isolated plant thylakoid membranes and 
leaves (Ünnep et al. 2014b), 0.03–0.04 Å−1 in diatom (Nagy 
et al. 2012) and green algae (Nagy et al. 2014b), and in 
the 0.01–0.035 Å−1 range (largely depending on the phy-
cobilisome antenna mutation of the individual organism) 
for cyanobacteria (Nagy et al. 2011; Liberton et al. 2013b; 
Ünnep et al. 2014a; Jakubauskas et al. 2019). It is well 
known that there are additional peaks at higher Q values 
in all thylakoid-containing samples, cyanobacteria, algal 
cells and higher plants as well as in isolated plant thylakoid 
membranes. In some cases, the additional peaks could be 
assigned to 2nd and higher-order Bragg peaks (Ünnep et al. 
2014b; Bar Eyal et al. 2017). However, in most publications, 
the authors focus on the first-order Bragg peak, and avoid 
discussing the origin of the additional signals—evidently 
because of the high complexity of the membranes and of 
possible other sources of scattering from ordered molecu-
lar arrays, e.g. cell walls, starch and other cell organelles. 
In general, efforts must be made to rule out contributions 
from such structures other than thylakoid membranes; this 
has been done by using leaf segments containing no mature 
chloroplasts (Ünnep et  al. 2014b). Also, starch can be 
degraded by dark adaptation of leaves. In some works, asso-
ciation of different diffraction peaks with RDs of different 

Fig. 2   Schematic representa-
tion of the granum-stroma 
thylakoid membrane assembly 
of higher plants, showing the 
main structural parameters. For 
clarity, the arrangement of the 
main protein complexes in the 
thylakoid membranes is not 
displayed in the figure (see, e.g. 
(Dekker and Boekema 2005) or 
(Nagy et al. 2014b)). The form 
factor of grana is determined 
by the scattering length density 
distribution of the two bilayer 
membranes and the embedded 
protein compounds (mainly 
LHCII and PSII), together with 
their protrusions in the luminal 
and the interthylakoidal aqueous 
phases
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sub-populations of the cyanobacterial thylakoid membranes 
was also proposed (Liberton et al. 2013b)—though this is 
not supported by a more recent analysis (Jakubauskas et al. 
2019).

A comprehensive interpretation of data has recently 
been presented, which is based on an estimated scatter-
ing length density distribution of a unit cell of thylakoid 
membranes (allowing the determination of the form factor). 
In this model, the thylakoids are represented as a bilayer 
containing intrinsic proteins, and inner (luminal) and outer 
aqueous phases, also containing proteins and protruding 
polypeptide sections. The presented advanced mathemati-
cal model, which uses different stacked layers with variable 
layer number and membrane rigidity (as the structure factor), 
demonstrated that the periodic order of the thylakoid mem-
branes in different cyanobacterial cells could be simulated 
with reasonable precision (Jakubauskas et al. 2019). Deeper 
understanding of the scattering signal from the multilamellar 
cyanobacterial thylakoid membrane system could be further 
improved if the basic structural unit of the system could be 
independently studied. This would allow to measure directly 
the unit cell form factor of the thylakoids. This kind of 
cyanobacterial preparation, to our knowledge is presently not 
available, and certainly has not been studied by SANS. Also, 
some of the derived information (e.g. the large variation in 
membrane thickness) will require further verification, and 
independent experimental confirmation. Nevertheless, the 
approach outlined by Jakubauskas and coworkers will help 
the research community to expand the information deduced 
from SANS experiments on photosynthetic membranes. 
Application of the presented model for higher organisms 
and adopting this approach for treating scattering data upon 
physicochemical stress responses will most certainly lead 
to a fruitful synthesis of different approaches in the field.

The full mathematical model of the scattering profile from 
a stacked double bilayer membrane system of thylakoids 
(Jakubauskas et al. 2019), applied for cyanobacteria, can, in 
principle, be extended to algal cells and leaves and isolated 
thylakoids of vascular plants. While these membrane sys-
tems are more complex, they display much clearer scattering 
profiles, than most cyanobacteria; with much better defined 
diffraction peaks and with less problem of reproducibility 
that was experienced by Jakubauskas et al. (2019). Also the 
unit cell (cf. Fig. 2) form factor of the isolated granum thyla-
koid membranes can be and has been studied. Indeed, BBY 
(Berthold et al. 1981) PSII membrane fragments give rise 
to a scattering signal that almost perfectly reproduces the 
second characteristic peak of isolated thylakoid membranes, 
a peak generally observed between 0.05 and 0.07 Å−1 in 
isolated plant thylakoid membranes and leaves (Nagy 2011; 
Ünnep et al. 2014b). This has been successfully modelled 
with a stacked pair of membranes (Nagy 2011). Employing 
the model of Jakubauskas et al. (2019) and extending it to 

the entire scattering profile would be of great importance. In 
such a systematic approach, however, the lateral heterogene-
ity of plant thylakoid membranes complicates the picture: 
the protein composition of granum and stroma thylakoid 
membranes as well as their luminal contents differ signifi-
cantly from each other—thus, two form factors should be 
defined. In addition, the interthylakoidal (stacking) distances 
are also substantially larger for the stroma thylakoids than 
for the grana. With rare exceptions, however, Bragg peaks 
around 0.015–0.017 Å−1 (corresponding to stroma thyla-
koids with an RD in the range of ~ 420–360 Å) cannot be 
observed—probably due to the relatively poor periodicity 
of these thylakoids.

As emphasized by Jakubauskas and coworkers in accord-
ance with similar considerations published earlier, instru-
ment resolution may also exert some influence on the shape 
(Nagy et al. 2013) and position (Jakubauskas et al. 2019) 
of the peak. Thus, the interpretation of the experimental 
results is always to be performed under well-controlled 
conditions of the measuring device. In most experiments, 
in which scattering profiles are compared between wild-
type and mutant samples and/or changes in the scattering 
are induced by external factors, such as light, temperature, 
ionic and osmotic strengths, the effects of instrumental fac-
tors can usually be ignored.

Neutron scattering (diffraction) studies on reconstituted 
thylakoid lipid systems, also advanced our understanding 
on the self-assembly of thylakoid membranes. Experiments 
using different combinations of the four lipid constituents of 
thylakoid membranes deposited on silicon wafers and meas-
ured at varying relative humidity conditions highlighted the 
importance of bilayer and non-bilayer lipids and lipid phases 
(Demé et al. 2014). These experiments demonstrated that 
both the relative amounts of the non-bilayer lipid species and 
the relative humidity of the sample determined the formation 
and stabilization of the lamellar structure.

Structural dynamics of photosynthetic 
samples

Different neutron scattering spectroscopy techniques can 
be used to probe the dynamics of different samples on a 
broad range of time- and lengthscales from the fs to ~ 100 
ns and from below Å to dozens of nanometers, respec-
tively (Sokolov and Sakai 2012). The majority of earlier 
structural dynamics studies were based on elastic inco-
herent (EINS) or quasielastic neutron scattering (QENS) 
measurements (e.g. (Pieper et al. 2007; Pieper and Renger 
2009)) or on inelastic neutron scattering (e.g. (Pieper et al. 
2004, 2012)). These studies were reviewed in Nagy et al. 
(2014a). Recently, the studies presented in Pieper et al. 
(2004) were extended to characterize LHC II vibrations at 
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physiological temperatures, which contributed to the better 
understanding of ultrafast excitation energy transfer pro-
cesses in this antenna complex (Golub et al. 2015). Further 
QENS studies of native and mutant (lacking the Chl a 612 
pigment molecule) LHCII, coupled with absorption and 
fluorescence measurements, indicated correlation between 
the presence of conformational dynamics and the position 
of the excited electronic states in the antenna complex 
(Vrandecic et al. 2015). The effect of the oligomeric state 
of the LHCII on the dynamics of this protein was also 
investigated up to physiologically relevant temperatures 
(Golub et al. 2018).

In the past few years, neutron spectroscopy techniques 
were employed to study the internal dynamics of intact pho-
tosynthetic organisms. Russo and coworkers with the help of 
EINS and QENS were able to demonstrate that in the green 
alga Chlamydomonas reinhardtii mutations in the plastoqui-
none—(PQ)-binding niche of the D1 protein of Photosystem 
II (PSII)—resulting in impaired electron transport—influ-
ence the dynamics of the thylakoid membranes. Specific 
amino acids in the PQ-binding niche appeared to be essential 
for preserving a more rigid environment, required for effi-
cient electron transport from QA to QB (Russo et al. 2019).

Neutron spin echo (NSE) experiments also provided a 
unique insight into the dynamics of thylakoid membranes 
in live cyanobacteria. Stingaciu and coworkers carried out 
the first in vivo measurements using NSE on Synechocys-
tis sp. PCC 6803 cells, and observed significant changes 
in the structural-dynamics parameters, attributed to undu-
lation or shape fluctuations of the thylakoid membranes 
(Stingaciu et al. 2016). In particular, illumination appeared 
to rigidify the thylakoid membranes compared to those in 
dark-adapted cells, a clear connection between membrane 
mobility and photosynthetic activity. It was also shown 
that the membranes after illumination largely retained 
their flexibility in the presence of PSII inhibitor DCMU, 
pointing to the role of transmembrane electrochemical 
potential gradient for protons (ΔμH+) in determining the 
mechanical properties of thylakoid membranes. (DCMU, 
(3-(3,4-dichlorophenyl)-1,1-dimethylurea).)

NSE measurements also revealed that binding of DCMU 
per se in dark-adapted cells also affected significantly the 
membrane flexibility (Stingaciu et al. 2019). This unex-
pected observation is difficult to explain in terms of the 
known inhibitory effects of DCMU. However, similar 
anomaly has been observed in the diatom alga Phaeodacty-
lum tricornutum, in which DCMU did not block the light-
induced swelling of thylakoid membranes but prevented 
the recovery of the membrane reorganizations upon dark-
readaptation (Nagy 2011). Clarification of these observa-
tions requires further studies. Replacing the PQ by DCMU at 
the QB site might exert an effect on the structurally flexible 
region of the protein moiety of PSII; this step might change 

the electrostatics of the membranes on the stromal side, thus 
affecting the stacking interactions.

In general, NSE data demonstrated the “active function 
[of thylakoid membranes] during energy conversion, rather 
than a rigid support frame for other photosynthetic compo-
nents” (Stingaciu et al. 2019). Ünnep et al., based on SANS 
measurements, also concluded that the thylakoid membrane 
systems appear to “actively participate in the energy con-
version steps and in different regulatory functions” (Ünnep 
et al. 2017). NS techniques are most suitable to reveal details 
of this active role of thylakoids, which is evidently based on 
their remarkable inherent plasticity.

Neutron protein crystallography

Atomic resolution structural information—most commonly 
obtained via X-ray crystallography—is indispensable for 
understanding the function of biological macromolecules 
and protein complexes. However, precise position of hydro-
gen atoms—an often critical information e.g. understanding 
enzyme operations—is rarely provided by this technique. 
In contrast, neutron crystallography can locate key hydro-
gen atoms (or protons) in the protein structure previously 
determined by complementary techniques. Unfortunately, 
to this date, the number of protein structures determined 
via neutron crystallography is very limited, mostly due to 
flux limitations at existing neutron sources and due to the 
small number of neutron crystallography beamlines and the 
limited beam-time availability. Collecting neutron crystal-
lography data from membrane proteins is especially chal-
lenging, due to the large crystal size required for the experi-
ments—challenging to be grown from membrane proteins, 
which poses extra limitation on the study of proteins relevant 
in the light reactions of photosynthesis—almost exclusively 
taking place in the thylakoid membranes.

Nevertheless, recent advancements in neutron macromo-
lecular instrumentation—see e.g. (Meilleur et al. 2018)—
and in available crystal size and quality pave the way for the 
first results. Neutron analysis of crystals of the Fenna–Mat-
thews–Olson complex from a green sulphur bacteria will 
help to understand how different bacteriochlorophylls in the 
complex are imparted with their own particular site energy 
by their chemical environment (Lu et al. 2019). Neutron dif-
fraction experiments on more complex systems such as PSII 
crystals are also demonstrating the advancement of the field 
(Hussein et al. 2018). Marvin Seibert (Uppsala University, 
Sweden) and collaborators are presently employing neutron 
crystallography to better understand the catalytic process 
of carbon fixation, via performing neutron crystallography 
experiments to determine the protein structure of a RuBisCO 
sample obtained from spinach leaves, specifically H-posi-
tions in the enzyme’s active site (Fig. 3).
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Apparently, the state-of-the-art technology is at the 
brink of addressing substantial questions in photosynthe-
sis research, thus the next-generation instruments proposed 
(Coates and Robertson 2017) or under construction (see 
NMX—Macromolecular diffractometer in (Andersen et al. 
2020; Markó et al. 2020)) will allow to perform experiments 
on significantly smaller crystals, and are expected to answer 
a wide range of scientific questions in the field.

Concluding remarks

In this mini-review, our major aim was to show how neu-
tron scattering techniques have advanced our knowledge 
about the structure, flexibility and dynamics of thylakoid 
membranes and other photosynthetic preparations. These 
techniques provide unique information on in  vitro and 
in vivo systems and—when combined with complementary 
techniques of structural biology and functional measure-
ments—will most certainly help testing the physiological 
performance of crop plants, and by this means, help design-
ing and constructing or breeding plants with improved stress 
tolerance and/or productivity.
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