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2☯, Martina Durcik2☯, Tamas Revesz1,3,

Petra Szili1,4, Gabor Draskovits1, Ferenc Bogar5, Žiga Skok2, Nace Zidar2, Janez IlašID
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Abstract

Antibiotics that inhibit multiple bacterial targets offer a promising therapeutic strategy

against resistance evolution, but developing such antibiotics is challenging. Here we dem-

onstrate that a rational design of balanced multitargeting antibiotics is feasible by using a

medicinal chemistry workflow. The resultant lead compounds, ULD1 and ULD2, belonging

to a novel chemical class, almost equipotently inhibit bacterial DNA gyrase and topoisomer-

ase IV complexes and interact with multiple evolutionary conserved amino acids in the ATP-

binding pockets of their target proteins. ULD1 and ULD2 are excellently potent against a

broad range of gram-positive bacteria. Notably, the efficacy of these compounds was tested

against a broad panel of multidrug-resistant Staphylococcus aureus clinical strains. Antibiot-

ics with clinical relevance against staphylococcal infections fail to inhibit a significant fraction

of these isolates, whereas both ULD1 and ULD2 inhibit all of them (minimum inhibitory con-

centration [MIC]�1 μg/mL). Resistance mutations against these compounds are rare, have

limited impact on compound susceptibility, and substantially reduce bacterial growth. Based

on their efficacy and lack of toxicity demonstrated in murine infection models, these com-

pounds could translate into new therapies against multidrug-resistant bacterial infections.

Introduction

The inappropriate use of antibiotics has selected for the global rise of antibiotic-resistant path-

ogens, rendering several existing antibiotics ineffective [1]. A potential strategy to overcome
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this rapid evolution of resistance is antibiotic combination therapy. The rationale for this

approach is that the evolution of resistance against 2 antibiotics with different modes of action

would require the simultaneous emergence of multiple specific mutations at all targets, which

is exceedingly rare [2]. Unfortunately, antibiotic combination–based therapies face several dif-

ficulties, including differences in the pharmacodynamics of the component antibiotics [3]. An

alternative possibility is the the design of antimicrobial compounds that equipotently inhibit

multiple bacterial targets [4,5]. There are multiple potential ways to design such compounds.

Hybrid drugs consists of 2 covalently linked antibiotic pharmacophores with different molecu-

lar targets [6]. Other antibiotics target 2 or more nonoverlapping regions of a single bacterial

protein [2] and furthermore, equipotently inhibit 2 or more bacterial proteins. Although it is a

major focus of the pharmaceutical industry [4,5,7], designing multitargeting antibiotics

remains challenging. Indeed, only a handful of such antibiotic candidates display a balanced

inhibition at multiple microbial targets [8–11].

In the current study, we have aimed to rationally develop a new chemical class of antibacte-

rial compounds against multiple, well-established molecular targets that simultaneously fulfill

the following criteria: First, the new compounds should display balanced multitargeting activ-

ity against multiple, essential bacterial targets. Second, they should establish strong intermolec-

ular interactions at multiple, functionally essential amino acid positions within the binding

sites of their target proteins [7]. Such interactions are hypothesized to render spontaneous

resistance acquisition improbable because mutations at these sites would compromise the

functionalities of the target proteins.

Bacterial DNA gyrase and topoisomerase IV protein complexes offer an exceptional oppor-

tunity to achieve this goal, because of the homology of their corresponding subunits and the

substantial overlap in their 3-dimensional protein structures [4,12,13]. Both DNA gyrase and

topoisomerase IV are heterotetramers, with 2 subunits, GyrA-GyrB and ParC-ParE, respec-

tively. They are involved in breaking and rejoining double-stranded DNA, and thus, they

determine changes in DNA topology, but the 2 complexes have complementary roles. DNA

gyrase is essential for the negative supercoiling of DNA at the expense of ATP hydrolysis,

whereas topoisomerase IV is responsible for unlinking or decatenating DNA following DNA

replication [13]. These 2 complexes are clinically validated antibacterial targets: A substantial

fraction of antibiotics currently used in clinical settings are inhibitors of bacterial DNA gyrase

or topoisomerase IV enzymes [12–15]. Unfortunately, clinically significant resistance against

fluoroquinolones and other frequently employed DNA gyrase inhibitors has already arisen in

pathogenic bacteria, partly due to the step-by-step accumulation of resistance-conferring

mutations at the genes encoding their target proteins [16,17]. This is not unexpected, for 2 rea-

sons. First, fluoroquinolones do not target the gyrase and topoisomerase complexes equipo-

tently [10,11,16,17]. Second, low level of resistance against these antibiotics can readily emerge

by mutations in efflux pumps and transcription-translation [18]. Even worse, fluoroquinolone

resistance mutations also promote the acquisition of resistance in other antibiotic candidates

currently under clinical development [8,19–20].

In the current work, we have rationally designed a novel series of antibacterial compounds,

endeavoring to achieve a balanced and simultaneous inhibitory effect on subunit B of DNA

gyrase and subunit E of topoisomerase IV. There have been prior studies in this direction, but

their clinical relevance is questionable, for at least 1 of the following 4 reasons. They generally

failed to achieve equipotent inhibition of both target proteins [19–20], antibacterial acitvity

was relatively low, or in vivo infection/toxicity assays were missing or inconclusive [21–24].

Moreover, they generally do not provide detailed resistance analysis, or the resulting lead com-

pound has remained prone to resistance [8].
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the T. Tomašič, N. Zidar, M. Durcik, J. Ilaš, A. Zega,
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To target an unmet medical need, we focused on developing antibiotic leads against gram-

positive pathogens with a primary focus on methicillin-resistant (MRSA) and vancomycin-

intermediate (VISA) Staphylococcus aureus isolates [1,25–28]. Multidrug-resistant S. aureus
infections pose an immense economic burden, corresponding to a total of $4.84 billion in

annual hospitalization costs [29,30]. Concerns regarding the appropriateness of linezolid, dela-

floxacin, and other recently marketed “last resort” antistaphylococcal antibiotics have also

emerged, not least because resistance has already been detected against these antibiotics in

clinical isolates [8, 31–34]. For these reasons, developing a novel class of molecules with a dis-

tinct mode-of-action is of utmost importance [35,36].

In this work, we designed balanced multitargeting antibiotics with limited resistance poten-

tial. We demonstrate the biochemical and antibacterial characteristics, as well as the in vivo

efficacy of 2 representative compounds, termed ULD1 and ULD2.

Rational design of dual-targeting antibiotics with multiple interacting

residues

We have recently discovered a novel class of DNA gyrase inhibitors with a pyrrolamidoben-

zothiazole scaffold, inspired by the marine natural product oroidin [37–38]. Most compounds

from the published series primarily act on the bacterial DNA gyrase complex only and possess

weak antibacterial activity. To transform these molecules into broadly effective antibiotics, we

have executed modifications at several sites on the pyrrolamidobenzothiazole-6-carboxylic

acid scaffold. Thanks to the availability of the co-crystal structure with subunit B of DNA gyr-

ase, as well as to the small size of the molecule and its straightforward chemical synthesis, we

have based our efforts on ULD0, a recently reported weak inhibitor of S. aureusDNA gyrase

[37]. The molecular modifications were aimed at designing novel inhibitors that display equi-

potent dual-targeting activity towards subunit B of DNA gyrase (GyrB) and subunit E of topo-

isomerase IV (ParE), by a simultaneous establishment of strong interactions with multiple,

functionally essential amino acids of both target proteins.

To this aim, we have focused on 3 key amino acid residues within the ATP-binding sites of

GyrB and the corresponding homologous amino acid residues of ParE (Asp81/Asp74, Arg84/

Arg77 and Pro87/Pro80). Bioinformatic analyses have revealed a very limited variation at

these amino acid positions across over 1,000 phylogenetically diverse bacterial genomes,

including representative species belonging to Actinobacteria, Firmicutes, Bacteroidetes, Pro-

teobacteria, Chlamydiae bacterial phyla. These amino acid residues were 99% to 100% con-

served in the studied genomes (Fig 1A). Moreover, using site-directed mutagenesis, a previous

study showed that these 3 amino acids are essential for the enzymatic function of GyrB in

Escherichia coli [39]. Accordingly, we have developed novel compounds that form (1) a hydro-

gen bond with the Asp81/Asp74 side-chain carboxylate group, (2) a cation-π interaction with

the Arg84/Arg77 side-chain guanidinium group, and (3) additional hydrophobic interactions

with Pro87/Pro80 of S. aureus GyrB/ParE, respectively (Fig 1B and 1C, S1 and S2 Tables).

Moreover, we have enhanced the compounds’ binding affinity by simultaneously establishing

a salt bridge with Arg144/Arg136 and additional hydrophobic interactions within the lipo-

philic floor of the binding sites on both target proteins (Fig 1B and 1C).

Chemical modifications of ULD0 have yielded 2 antibiotic leads, ULD1 and ULD2. Analy-

sis of the solved crystal structure of ULD1 and ULD2 in complex with S. aureusGyrB (Fig 1D,

PDB entry: 6TCK), as well as molecular dynamics (MD) simulations have shown that the anti-

biotic leads interact with multiple amino acid residues within the ATP-binding sites of GyrB

and ParE, including the ones mentioned here (Fig 1D, S1A and S1B Fig). In the next sections,
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Fig 1. Rational design of antibacterial compounds, ULD1 and ULD2. We rationally designed antibacterial compounds, ULD1 and ULD2, that

establish intermolecular interactions with Asp81/Asp74, Arg84/Arg77, and Pro87/Pro80 of S. aureusGyrB/ParE, respectively. A. Amino acid positions

that are indicated by an asterisk are phylogenetically more conserved than others in the ATP-binding sites of DNA gyrase subunit B (GyrB, upper

panel) and topoisomerase IV subunit E (ParE, lower panel) (Welch t-test, P< 0.0017 and P< 0.00001, respectively). The sequence logo depicts the

diversity of the aligned sequences: The relative sizes of the letters indicate their frequency in the sequences. The total height of the letters depicts the

information content of the position, in bits. B. Rational design of ULD1 and ULD2 as DNA GyrB and ParE dual-inhibitors. The green, blue, and purple

circles indicate the terminal carboxylic acid moiety, the pyrrole moiety, and the benzyloxy substituent at position 4 of the benzothiazole ring,

respectively, which were modified to obtain ULD1 and ULD2. C. The interaction pattern of ULD1 (in yellow, top) and ULD2 (in cyan, bottom) within

the ATP-binding site of S. aureusGyrB and ParE. GyrB and ParE amino acids are indicated in black and orange (with sticks), respectively. PDB codes:

GyrB (3TTZ), ParE (4URN). D. The location of spontaneous ULD1 resistance-conferring mutations within the ULD1 binding pocket of GyrB (left

panel) and ParE (right panel), respectively. Resistance-conferring mutations were identified based on targeted single-molecule real-time sequencing of

the drug targets following a standard frequency-of-resistance assay, and the identified mutations were subsequently plotted on the tertiary structure of

the target proteins. Atom-type coloring: blue for N, red for O, gray for C. GyrB, subunit B of DNA gyrase; ParE, subunit E of topoisomerase IV.

https://doi.org/10.1371/journal.pbio.3000819.g001
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we demonstrate that these 2 lead compounds are potent dual-targeting enzyme inhibitors and

display a broad-spectrum activity against multiple gram-positive human pathogens.

Improved and balanced enzyme inhibition in vitro

Inhibitory activities of ULD1 and ULD2 on S. aureusDNA gyrase and topoisomerase IV have

been tested in an in vitro gel-based supercoiling assay [40] (Table 1). Novobiocin and cipro-

floxacin, 2 inhibitors of bacterial type II topoisomerases, were used as controls. Ciprofloxacin

displayed a weak inhibitory effect on these 2 enzymes, whereas novobiocin efficiently blocked

DNA gyrase only. In sharp contrast, ULD1 and ULD2 potently inhibited both DNA gyrase

and topoisomerase IV. ULD2 inhibited both enzymes to a greater extent than ULD1, with IC50

values being 4-fold (DNA gyrase) and 5-fold (topoisomerase IV) lower than those for ULD1.

Based on these in vitro enzyme data, we conclude that ULD1 and ULD2 are potent dual-inhib-

itors of DNA gyrase and topoisomerase IV of S. aureus, active in the low nanomolar range

(Table 1).

Bioactivity of ULD1 and ULD2 against pathogenic bacteria

Next, we have determined the minimum inhibitory concentrations (MICs) of ULD1 and

ULD2 against a panel of gram-negative and gram-positive clinical pathogens (Table 2 and S3

Table). ULD1 and ULD2 were found to display potent antibacterial activity against ESKAPE

pathogens (S. aureus, Enterococcus sp., Pseudomonas aeruginosa, Klebsiella pneumoniae, Acine-
tobacter baumannii), Streptococcus sp., and Clostridium difficile. The MIC values against all

studied multidrug-resistant Staphylococcus, Enterococcus, and Streptococcus isolates were

below 2 μg/mL. Notably, ULD1 and ULD2 exerted activity against all MRSA, VRSA, and van-

comycin-resistant Enterococcus (VRE) isolates, which frequently cause difficult-to-treat skin

and soft-tissue infections (SSTIs) [41]. We hypothesize that further chemical modifications of

ULD1/ULD2 could increase the potency of this compound class to inhibit gram-negative path-

ogens as well.

We have focused on determining the antibacterial activity of ULD1 and ULD2 against a

geographically and genetically diverse set of S. aureus clinical isolates, including 56 MRSA and

28 vancomycin-intermediate and vancomycin-resistant strains, inclusive of recent clinical iso-

lates. A large fraction of these isolates were simultaneously resistant to multiple other available

antibiotics too (S1 Data). In sharp contrast to other approved antibiotics against staphylococcal

infections, both ULD1 and ULD2 were found to exert a potent activity against all tested iso-

lates (MIC� 1 μg/mL, Fig 2A). The compounds were also tested in a time-dependent cell kill-

ing assay against S. aureus ATCC 700699 (VISA). The cell killing (bactericidal) activity of

ULD1 and ULD2 was demonstrated to exceed that of fusidic acid (S2 Fig). Importantly,

regrowth was observable in S. aureus populations within 48 hours under fusidic acid stress,

Table 1. In vitro inhibition of DNA gyrase and topoisomerase IV by ULD1 and ULD2.

IC50

ULD0� ULD1 ULD2 Novobiocin Ciprofloxacin

DNA gyrase >100 μM 3.3 ± 0.4 nM 0.78 ± 0.1 nM 1.7 ± 0.1 nM 14,000 ± 2,000 nM

Topoisomerase IV 10 ± 2 μM 9.3 ± 2.2 nM 2.0 ± 0.3 nM 2,000 ± 200 nM 1,500 ± 300 nM

Results are based on standard S. aureus DNA gyrase and topoisomerase IV supercoiling gel-based assays (Materials and methods). Novobiocin and ciprofloxacin were

applied as comparator antibiotics. Measurements were performed in quadruplicates (mean and standard deviation of the mean are shown).

�ULD0 was tested using the high-throughput DNA gyrase supercoiling and topoisomerase IV relaxation assays [37].

IC50, half maximal inhibitory concentration.

https://doi.org/10.1371/journal.pbio.3000819.t001
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possibly explained by the fact that S. aureus rapidly develops resistance to fusidic acid due to

its monotargeting mechanism-of-action [4, 42].

Increased bioactivity at acidic pH of the skin

S. aureus is a common cause of severe and difficult-to-treat skin infections [41,43]. Antibiotics

targeting pathogens specific to skin infections must have an efficient bactericidal effect when

applied topically. Compared with systemic antibacterial therapy when the pharmaceutical

agent is supposed to exert its activity at physiological blood pH (i.e., 7.35–7.45), topical antimi-

crobial therapy should typically be active at lower (acidic) pH values characteristic of the skin

surface (i.e., 4.0–5.5) [44,45]. Thus, for topical antistaphylococcal agents, maintaining bioactiv-

ity under acidic pH conditions is an important feature [46,47]. To assess the effects of pH on

our ULD agents’ bioactivity, we have repeated our previous MIC measurements at a lower pH.

A shift from pH 7.3 to 5.5 has resulted in a decrease of MIC values as high as 160-fold (ULD1)

and 40-fold (ULD2) in S. aureus ATCC 700699 (S4 Table). Under the same conditions, the

potency of vancomycin has been found to be unaffected. We speculate that this increased bio-

activity of ULD1 and ULD2 under acidic pH conditions may reflect an increased intracellular

accumulation of these compounds within bacterial cells at acidic pH, similarly to delafloxacin

[48]. As increased bioactivity at lower-than-neutral pH is beneficial for the treatment of staph-

ylococcal infections [47,48], our newly developed ULD agents could offer especially powerful

Table 2. Antimicrobial activities of ULD1 and ULD2 against selected pathogenic bacteria.

Species and strain Acquired resistance ULD1 ULD2

MIC (μg/mL)

S. aureus ATCC 700699 (Mu50,

NRS1)

MRSA (SCCmec type II), VISA, Clindamycin-R, Daptomycin-NS, Erythromycin-R, Gentamycin-R,

Imipenem-R, Levofloxacin-R, Oxacillin-R

0.0625 �0.03125

S. aureus ECL 2963646 MRSA, VRSA, Clindamycin-R, Erythromycin-R, Gentamycin-R, Levofloxacin-R 0.125 �0.03125

Staphylococcus epidermidis
ATCC 51625

MRSE, Oxacillin-R 0.0625 �0.03125

Enterococcus faecalis ATCC

51575

VRE (VanB+), Clindamycin-R, Erythromycin-R, Gentamycin-R, Linezolid-IR, Mupirocin-R, Streptomycin-

R

0.0625 �0.03125

Enterococcus faecium BAA-2320 VRE (VanA+), Ampicillin-R, Ciprofloxacin-R, Clindamycin-R, Erythromycin-R, Levofloxacin-R,

Imipenem-R, Teicoplanin-R

0.25 �0.03125

Neisseria gonorrhoeae CCUG

57598

Cefoxitin-R, Ciprofloxacin-R, Linezolid-R, Tetracycline-R, Penicillin-R �0.03125 �0.03125

Haemophilus influenzae ATCC

49247

Ampicillin-R, Vancomycin-R, Tetracycline-R �0.03125 0.125

Clostridium difficile BAA-1875 toxigenic, ribotype 078, Ertapenem-IR, Imipenem-R �0.03125 �0.03125

Listeria monocytogenes ATCC

19111

0.125 0.125

Acinetobacter baumannii ATCC

19606

2 0.5

Klebsiella pneumoniae ATCC

10031

1 4

Pseudomonas aeruginosa ATCC

27853

8 2

MIC measurements were performed in 3 replicates according to CLSI guidelines.

-R, resistant; -IR, intermediate resistant; -NS, nonsensitive; CLSI, Clinical and Laboratory Standards Institute; MIC, minimum inhibitory concentration; MRSA,

methicillin-resistant S. aureus; MRSE, methicillin-resistant S. epidermidis; VISA, vancomycin-intermediate S. aureus; VRE, vancomycin-resistant Enterococcus; VRSA,

vancomycin-resistant S. aureus.

https://doi.org/10.1371/journal.pbio.3000819.t002
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Fig 2. Antibacterial activities and spontaneous frequency-of-resistance of ULD1 and ULD2. A. Antibacterial activities of ULD1 and ULD2 against a

panel of 95 S. aureus clinical isolates. Strains included 55 MRSA and 28 vancomycin-intermediate or -resistant isolates with diverse geographic origins

(see S1 Data Table 1 for the strains’ description). All strains (100%) were inhibited at 1 μg/mL concentration of ULD1 and ULD2. MICs were

determined via broth microdilution according to CLSI guidelines. The underlying data for this figure can be found in S2 Data. B. Spontaneous

frequency-of-resistance of ULD1, ULD2, and novobiocin in S. aureusMRSA ATCC 43300 (left panel) S. aureus VISA ATCC 700699 (right panel). Data

are based on 10 independent biological replicates. Error bars indicate the 95% confidence interval. Asterisk (�) marks cases where the frequency-of-

resistance was below 1×10−12. The underlying data for this figure can be found in S2 Data. CLSI, Clinical and Laboratory Standards Institute; MIC,

minimum inhibitory concentration; MRSA, methicillin-resistant S. aureus; VISA, vancomycin-intermediate S. aureus.

https://doi.org/10.1371/journal.pbio.3000819.g002
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alternatives for the eradication of S. aureus in acidic environments, including the human skin

surface and macrophages.

Limited resistance against ULD1 and ULD2

Antibiotics with a single molecular target are usually prone to resistance acquisition induced

by spontaneous mutations. Multitargeting antibiotics are considered to be less vulnerable to

resistance, as the simultaneous acquisition of multiple, specific mutations is exceedingly rare

[4, 49, 50]. To explore the potential resistance mechanisms, we have determined the spontane-

ous frequency-of-resistance against ULD1, ULD2, and novobiocin in S. aureus. Novobiocin

has served as a reference compound. Novobiocin’s main target is the DNA gyrase subunit B,

but second-step resistance mutations occasionally occur in topoisomerase IV [51]. This antibi-

otic is effective against certain gram-positive infections, including those caused by S. aureus
[12, 52].

Using a standard protocol for spontaneous frequency-of-resistance analysis [49, 53], we

have exposed 1010 to 1012 bacterial cells derived from stationary-phase cultures of S. aureus
ATCC 700699 (VISA) and S. aureus ATCC 43300 (MRSA) to increasing concentrations of

ULD1, ULD2, and novobiocin, respectively. We have assessed the frequency-of-resistance and

the mutant prevention concentration (MPC) for all 3 compounds. MPC is the drug concentra-

tion threshold above which the selective proliferation of resistant mutants does not occur (i.e.,

the concentration required to avoid the emergence of all first-step resistant mutants) [49]. In

agreement with prior laboratory studies and clinical observations, the frequency-of-resistance

against novobiocin was relatively high (Fig 2B), and an up-to 120-fold increment in the MIC

of novobiocin in the isolated S. aureusmutants have been detected (S3 Fig) [51,54]. By sharp

contrast, no resistant variants of S. aureus have been detected when the bacterial cells were

exposed to ULD1 at concentrations 8-fold the wild-type MIC (Fig 2B). Moreover, resistant

mutants isolated upon exposure to ULD1 at lower compound concentrations provided only

minor changes in ULD1 susceptibility (S3 Fig).

To investigate the molecular basis of mild ULD1 resistance, we have collected 400 indepen-

dently isolated, ULD1 resistant clones from the frequency-of-resistance assay plates and have

sequenced their gyrB and parE genomic regions using Pacific Biosciences single-molecule real-

time (SMRT) amplicon sequencing. Sequence analyses have revealed that all ULD1-resistant

isolates had missense mutations that mapped to gyrB. Four different positions in the ULD1-

binding pocket of GyrB (R144, G85, I175, T173) have mutated repeatedly (S5 Table). All the

mutated amino acid residues in S. aureus are located in the binding pocket of GyrB and form

secondary interactions with ULD1 (S2 Table and S1B Fig).

As ULD2 has a high affinity towards both of its target proteins and exerts an excellent dual-

target enzyme inhibition (Table 1), we hypothesized that the frequency-of-resistance against

ULD2 could be exceptionally low. Notably, no ULD2 resistant mutants have emerged when

4×1012 S. aureus ATCC 700699 (VISA) cells were exposed to ULD2 at a concentration of only

4 times the wild-type MIC (Fig 2B). We estimate that the MPC is as low as 0.16 μg/mL for

ULD1 and 0.08 μg/mL for ULD2 in S. aureus ATCC 700699 (VISA).

Resistance induced by mutations at both target proteins

The frequency-of-resistance assays have indicated that spontaneous resistance evolution to

ULD1 and ULD2 is rare and is responsible for only a modest decrease in compound suscepti-

bility of S. aureus. However, a prior study suggests that combination of multiple, specific muta-

tions at all drug targets, in the long run, can eventually render even multitargeting antibiotics

ineffective [8]. To test this possibility, we have repeated the frequency-of-resistance assays with
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2 ULD1-resistant S. aureus VISA laboratory isolates, both of which carried a single mutation at

GyrB, the primary target of ULD1/ULD2. These mutations—GyrB R144I and I175T—were

relatively frequent in the isolated single-step resistant mutants, and they conferred a decreased

susceptibility to ULD1 (S6 Table and S3 Fig). Populations of these single-mutant strains have

been exposed to increasing concentrations of ULD1 and ULD2, separately. Spontaneous resis-

tant mutants have appeared at a frequency of 10−8–10−11 (S4A and S4B Fig). All isolated sec-

ond-step resistant mutants have displayed a relatively low resistance level, i.e., they could be

inhibited by 1 μg/mL of ULD2 (S6 Table). Sequence analyses have revealed that all detected

second-step mutations are localized at ParE, the other target of ULD1/ULD2, at positions that

are homologous to the binding sites in GyrB (S6 Table). In sum, the observed mutations,

together with results of in vitro enzyme inhibition assays, provide strong evidence in support

of a dual-targeting mechanism-of-action for ULD1 and ULD2.

Evolution of resistance under long-term antibiotic exposure

We have investigated whether long-term exposure to ULD1 and ULD2 could select for a high

level of resistance. To this aim, we have initiated adaptive laboratory evolution experiments

under ULD1, ULD2, and novobiocin stresses against VISA. We have employed a previously

established protocol that aims to maximize the level of drug resistance in the evolving bacterial

populations [8,55]. To accurately assess potential resistance mechanisms, 10 parallel evolving

populations have been exposed to gradually increasing concentrations of each compound. Fol-

lowing laboratory evolution, a single clone from each population has been isolated and sub-

jected to drug susceptibility tests. In agreement with prior clinical observations and laboratory

studies [12,54], a high level of novobiocin-resistance has emerged rapidly (Fig 3A). In novobio-

cin-adapted strains, an up-to-320-fold increase in novobiocin MIC (i.e., 16 μg/mL) has been

detected, compared with the wild-type strain. In contrast, only a relatively modest, 25-fold

increase in the MICs of ULD1 and ULD2 have been detected in lineages adapted to ULD1 or

ULD2, respectively (1 μg/mL for ULD1 and 0.5 μg/mL for ULD2). In order to elucidate the

molecular mechanisms underlying ULD2 resistance, 5 ULD2-adapted strains have been sub-

jected to whole-genome sequencing. We have focused on de novo mutations that have accu-

mulated in several lineages independently during the course of laboratory evolution (S7

Table). Such mutations have been found in the target proteins (GyrB, ParE), as well as in a reg-

ulator of purine biosynthesis (purR), and another enzyme involved in the uridine diphosphate

(UDP) biosynthesis pathway (PyrH). The exact roles of these mutations in shaping ULD1/

ULD2 susceptibilities remain to be discovered.

Antibiotic resistance mutations frequently impact bacterial viability, and the associated fit-

ness costs determine the spread and long-term maintenance of resistant populations in clinical

settings [55–57]. To explore the potential costs of resistance, we have investigated the growth

phenotype of laboratory evolved, ULD1/ULD2 resistance-conferring S. aureus VISA isolates.

Fitness was estimated by measuring the optical density at 600 nm (OD600) of the population

during 48 hours of growth in an antibiotic-free medium. ULD1/ULD2 resistant clones dis-

played a statistically significant deterioration of growth pattern compared with the wild-type

strain (Fig 3B and S5A Fig) and formed tiny, slow-growing colonies on agar plates (Fig 3C and

S5B Fig). These data indicate that long-term exposure to ULD1 and ULD2 yields mutants with

limited resistance and high associated fitness costs in an antibiotic-free environment.

Extensive antibiotic usage can select for mutations that provide cross-resistance to antimi-

crobial compounds that are still under development [8, 58]. As novobiocin was widely

employed and is prone to resistance evolution [12, 42], it is rational to hypothesize that novo-

biocin-resistant clinical isolates might interfere with the antibacterial effects of ULD1 and
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Fig 3. Adaptive laboratory evolution of S. aureus (VISA) ATCC 700699 to ULD1, ULD2, and novobiocin stresses. A. The figure displays increment

in MIC level relative to wild type as a function of cell generation number. Data show the mean MIC fold-change based on 10, independently evolving

populations. Gray area represents a 95% confidence interval. The underlying data for this figure can be found in S2 Data. B. and C. Relative fitness (B)

and growth phenotype (C) of ULD1-evolved and wild-type S. aureus VISA ATCC 700699. Fitness was approximated from the growth curves of isogenic

microbial populations (see Materials and methods) and depicted as relative fitness compared with that of the wild type. Measurements were performed

in 6 replicates. The underlying data for this figure can be found in S2 Data. Growth phenotypes were observed in BHI agar plates and documented after

24 hours of incubation at 37 ˚C. D. Susceptibility of novobiocin-resistant S. aureus VISA ATCC 700699 mutants to ULD1 and ULD2. MICs were

determined in MHBII medium at 37 ˚C by broth microdilution assay according to CLSI guidelines. One of the independently evolved novobiocin-

adapted strains displayed exceedingly slow growth, and therefore, it was omitted from the analysis. The underlying data for this figure can be found in

S2 Data. BHI, Brain-Heart-Infusion broth; CLSI, Clinical and Laboratory Standards Institute; MIC, minimum inhibitory concentration; MHBII,

Mueller Hinton II Broth; MRSA, methicillin-resistant S. aureus; VISA, vancomycin-intermediate S. aureus.

https://doi.org/10.1371/journal.pbio.3000819.g003
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ULD2. To investigate potential cross-resistance, the MIC of ULD1 and ULD2 have been

tested against 9 independently evolved novobiocin-resistant isolates. These strains have been

found to display no cross-resistance to ULD2, and only a modest, up to 6-fold decrease in

ULD1 susceptibility has been detected compared with the corresponding wild-type strain

(Fig 3D).

Toxicology studies of ULD1 and ULD2

To assess the potential toxicities of ULD1 and ULD2, toxicology studies have been carried out.

First, we have measured the viability of HepG2 human liver and MCF-7 human epithelial cell

lines in the presence of ULD1 and ULD2, respectively, using a standard lactate dehydrogenase

(LDH) assay. Neither ULD1 nor ULD2 was cytotoxic at concentrations up to the tested maxi-

mum, 100 μM (IC50 >100 μM, S8 Table). Next, to assess the potential genotoxicity of ULD1

and ULD2, we have tested their potential chromosomal aberration-causing effect on CHO-K1

hamster ovary cells, using a standard in vitro micronucleus assay [59]. No genetic toxicity of

any of the 2 compounds have been detected (S9 Table). Potential cardiac safety and cross-reac-

tivity to the human ether-a-go-go-related gene (hERG) potassium ion channel are also fre-

quent issues for drugs targeting DNA gyrase and topoisomerase IV [9,12]. As required by

European Medicine Agency (EMA) and the US Food and Drug Administration (FDA) [60,

61], we have tested both ULD1 and ULD2 for their inhibitory effects on the human hERG ion

channels, at a concentration of 150 μM, using electrophysiological assays. No statistically sig-

nificant inhibitory effect of either compound has been detected (S10 Table). We have also eval-

uated the hemolytic activity of ULD1 and ULD2 on human red blood cells, and again, no

biocompatibility concerns have been raised (S11 Table).

In vivo efficacy of ULD1 and ULD2

Based on the potent antibacterial activities of ULD1 and ULD2 and the lack of toxicity, we

have finally tested their in vivo efficacy in mice models of S. aureus infections. First, a murine

model of human staphylococcal SSTI has been utilized [62,63]. This preclinical model is exten-

sively used to characterize the pharmacokinetic and pharmacodynamic properties of antista-

phylococcal agents, as well as to predict their human clinical efficacy [53, 62–64]. Topical

ULD1 and ULD2 treatments (in the form of ointments) were tested against S. aureusUSA300

MRSA (BAA1556) and VISA and VRSA clinical isolates. USA300 MRSA clinical isolates are

responsible for most community epidemics in the USA and are spreading worldwide [25].

Also, these 3 strains together are resistant to at least 9 distinct classes of antibiotics, including

mupirocin, a last-resort antibiotic against SSTIs caused by multidrug-resistant S. aureus (S1

Data). Topical application of ULD1 and ULD2 has exerted a potent antibacterial activity (Fig

4A and 4B), comparable to that of mupirocin. Subsequent pharmacokinetic (PK) analyses

indicate efficient skin penetration for both drugs, reaching a concentration of up to 300-times

the MIC of ULD1 and ULD2 in wild-type S. aureus VISA (S12 Table).

Finally, we have tested ULD1 in a neutropenic model of murine thigh infection. Intrave-

nous (IV) administration of the drug resulted in potent antibacterial activity against S. aureus
VISA infection (Fig 4C). Notably, the antibacterial activity of ULD1 was comparable to that of

linezolid, a widely used clinical agent against systemic MRSA infections [42], but resistance

against this drug is emerging rapidly [20]. Taken together, these in vivo efficacy data indicate

that the molecular scaffold underlying ULDs could serve as a basis for successful future thera-

peutic efforts against both topical and systemic S. aureus infections.
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Fig 4. In vivo efficacy of ULD1 and ULD2 in 2 mouse infection models of Staphylococcus aureus. A. and B. In vivo efficacy of

ULD1 and ULD2 in a mouse model of skin infection. Figure shows the number of CFUs after twice-daily topical antibiotic treatment

(starting at 1 hour postinfection). Three different S. aureus strains were used as inoculum in 5 immunocompetent mice per each

group. Fig A and B displays results with ULD1, ULD2 (A) and positive control antibiotics fusidic acid and mupirocin (B),

respectively. Skin tissue CFUs were determined at 25 hours postinfection. CFUs from each mouse are plotted as dots; the black line

represents the average CFU in each experimental group. C. Efficacy of ULD1 in a neutropenic mouse infection of S. aureus. The

figure shows the number of CFUs in response to antibiotic treatment, using linezolid as positive control. A standard neutropenic

thigh infection model was employed with S. aureus VISA ATCC 700699 (for details, see Materials and methods). CFUs from thigh

tissue homogenates were determined at 26 hours postinfection. The CFUs from each individual are plotted as dots, black line

represents the average CFU in each experimental group. The underlying data for these figures can be found in S2 Data. CFU, colony-

forming unit; VISA, vancomycin-resistant S. aureus.

https://doi.org/10.1371/journal.pbio.3000819.g004
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Discussion

Antibiotic resistance frequently results from mutations within the target protein at amino acid

positions that form direct interactions with the pharmaceutical agent [50,65,66]. To mitigate

the spontaneous development of target-mediated resistance, we have rationally developed

novel antibacterial compounds that simultaneously fulfill 2 criteria. First, they display a bal-

anced dual-targeting activity against 2, essential bacterial targets, and second, they simulta-

neously establish interactions with multiple, evolutionary highly conserved amino acids of

these target proteins. This new class of dual-targeting antibacterial compounds inhibit bacte-

rial DNA gyrase and topoisomerase IV protein complexes and are structurally distinct from

novobiocin, gepotidacin, and fluoroquinolone antibiotics. Two lead molecules of this series,

ULD1 and ULD2, are potent inhibitors of the ATPase activities of GyrB and ParE. Impor-

tantly, we have achieved a superior and balanced enzyme inhibition of both target proteins

compared with novobiocin, an inhibitor of GyrB that has reached clinical practice but was

later withdrawn [67].

ULD1 and ULD2 exert broad-spectrum antibacterial activities against a wide range of path-

ogens, including multidrug-resistant clinical isolates. The efficacy of ULD1 and ULD2 was

tested against a broad panel of S. aureus clinical strains, including recently isolated MRSA and

VISA variants. Approved drugs with clinical relevance against staphylococcal infections fail to

inhibit a significant fraction of these isolates, whereas both ULD1 and ULD2 are found to be

potently active against all of them (MIC� 1 μg/mL, see Fig 2). ULD1 and ULD2 are nonhemo-

lytic, nongenotoxic, exert no cytotoxicity on multiple human cell lines, and have no inhibitory

activity on hERG ion-channels. Furthermore, our data indicate that the compounds could be

especially useful for the eradication of S. aureus in acidic environments, such as the human

skin. Using murine models of multidrug-resistant staphylococcal skin and thigh infections,

ULD1 was shown to display potent efficacy both via topical and systemic administration.

These promising in vivo efficacy results, combined with a lack of toxicity and good skin pene-

tration, indicate that the ULD series could be considered for the treatment of skin and skin-

structure infections (SSSIs) such as acute bacterial SSSIs (ABSSSIs) and impetigo caused by

multidrug resistant S. aureus [41,45].

ULD1 and ULD2 bypass existing and clinically widespread resistance mechanisms, includ-

ing those that hinder the efficacy of other DNA gyrase and topoisomerase IV inhibitors. Addi-

tionally, de novo resistance mutations against these compounds are rare and have a limited

impact on resistance level. The MPC (i.e., the concentration required to prevent the emergence

of single-step mutants) is exceptionally low for both compounds. Remarkably, all isolated dou-

ble mutants and laboratory evolved strains from long-term drug exposure have displayed low

resistance level only, i.e., they could be inhibited by 1 μg/mL of ULD2. Thus, even combina-

tions of specific resistance mutations provide only moderate changes in compound susceptibil-

ity. This is in sharp contrast to the results of a previous study on gepotidacin. Gepotidacin, an

antibiotic candidate, selectively inhibits both bacterial DNA gyrase and topoisomerase IV [68],

but a combination of 2 specific mutations in these target proteins provide as high as a

2,000-fold increment in resistance level (256 μg/mL) [8]. Multitarget antibiotics in theory

should remain sensitive to other resistance mechanisms mediated by efflux pumps or by enzy-

matic inactivation. However, in our case, the laboratory evolution experiments further confirm

that resistance by genomic mutations is exceedingly rare against ULD1/ULD2. Importantly,

these findings do not exclude the possibility that resistance may eventually emerge through

horizontal gene transfer from other species [56,57]. This issue should be investigated by func-

tional metagenomic assays in the future [69].
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Taken together, our data indicate ULD1 and ULD2 could serve as a basis for future thera-

peutic efforts against a range of gram-positive pathogens. Furthermore, these compounds

inhibit gram-negative pathogens in vitro, albeit at higher concentations. Appropriate struc-

tural modifications could increase the potency of this structural-class against gram-negative

pathogens as well. As these molecules are small (<500 Da), the addition of new moieties is fea-

sible in future optimization efforts. Importantly, as ULD1 is manufactured from commercially

available reagents in only 2 synthesis steps, upscaling to industrial-sized production should be

relatively straightforward.

Materials and methods

Chemical design and synthesis of ULD1/ULD2

To improve the binding affinity of ULD0 to both target enzymes, we introduced 2 modifica-

tions, leading to ULD1. 4,5-dibromopyrrole was replaced by the 3,4-dichloro-5-methylpyrrole.

In the terminal part of ULD0, the carboxylic acid group was found to be flexible, pointing

toward the solvent without any direct contact with specific amino acid residues of the target

proteins. Therefore, ULD1 was designed as a rigidified analog of ULD0 in which the aliphatic

carboxylic acid group of ULD0 was replaced by an aromatic carboxylic acid. These modifica-

tions also gave a less acidic character of ULD1, a property that is beneficial for bacterial cell

wall penetration. Next, we introduced a benzyloxy group at position 4 of the benzothiazole

core, leading to ULD2. The purpose of this modification was to strengthen cation-π interaction

with conserved Arg84/Arg77 by the introduction of this electron-donating group and to

achieve additional hydrophobic interactions with conserved Pro87/Pro80 and other residues

in the lipophilic floor of the binding site. Full details of the synthesis, purification, and charac-

terization, including 1H NMR spectrum of all reported compounds, are provided in S3 Data.

All reagents were obtained from commercial sources unless noted otherwise.

Media and antibiotics

Cation-adjusted Mueller Hinton II Broth (MHBII) was used for the growth of bacteria under

standard laboratory conditions, for antimicrobial susceptibility tests and for the selection of

resistant variants. To prepare MHBII broth, 22 g of MHBII powder (Becton Dickinson and

Co.) was dissolved in 1 L of water (3 g beef extract, 17.5 g acid hydrolysate of casein, and 1.5 g

starch). For propagation and for antimicrobial susceptibility tests of fastidious bacteria, Brain-

Heart-Infusion Broth (BHI) was used. To prepare BHI broth, 37 g of BHI powder (Carl Roth

GmbH) was dissolved in 1 L of water (7.5 g pig brain infusion, 10 g pig heart infusion, 10 g

peptone, 2 g glucose, 5 g NaCl, 2.5 g Na2HPO4). MHBII or BHI agar was prepared by the addi-

tion of 14 g Bacto agar (Molar Chemicals) to 1 L of broth. For frequency-of-resistance assays,

1% agarose-containing MHBII plates (Lonza, SeaKem LE agarose) were used to reduce drug-

adsorption in media. All culture medium was sterilized by autoclaving for 15 minutes at 121

˚C. Unless otherwise noted, antibiotics and chemicals were ordered from Sigma-Aldrich (van-

comycin, novobiocin, fusidic acid), MedChemExpress (gepotidacin), Fluka Analytical (cipro-

floxacin), and MedKoo Biosciences (delafloxacin).

Antibiotic susceptibility measurements

MICs were determined using a standard serial broth microdilution technique according to the

CLSI guidelines [70]. Briefly, bacterial strains were inoculated onto MHBII agar plates and

were grown overnight at 37 ˚C. Next, 3 individual colonies from each strain were inoculated

into 1 mL MHBII medium and propagated at 37 ˚C, 250 rpm overnight. In the cases of
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Enterococcus and Streptococcus sp., cells were plated to BHI agar plates, and BHI broth was

used to determine MICs. To perform MIC assays, 12-step serial dilutions using a 2-fold dilu-

tion-steps of the given antibiotic (each dissolved in 100% DMSO) were generated in 96-well

microtiter plates (Corning Inc). Following dilutions, each well was seeded with 5×104 bacterial

cells. All measurements were performed in 3 parallel replicates and to avoid possible edge

effects in microwell plates, side rows (A and H) were filled with sterile medium. Following

inoculations, plates were covered with lids and wrapped in polyethylene plastic bags to mini-

mize evaporation but allow for O2 transfer. Plates were incubated at 37 ˚C under continuous

shaking at 150 rpm for 18 hours. After incubation, OD600 of each well was measured using a

BioTek Synergy 2 microplate reader. MIC was defined as the antibiotic concentration that

inhibited the growth of the bacterial culture, i.e., the drug concentration at which the average

OD600 increment of the 3 technical replicates was below 1.5-fold background OD increment.

For pH-dependent MIC-determination, we relied on the same method with the modification

that pH of MHBII was adjusted to 5.5 using 1 M HCl. Expanded panel antibacterial spectrum

of ULD1, -2, and comparator antibiotics were tested at IHMA Europe Sàrl (Switzerland) and

at Eurofins Pharmacology Discovery Services (Taiwan) in broth microdilution assays, accord-

ing to the corresponding CLSI guidelines [70].

Determination of inhibitory activities on S. aureus DNA gyrase and

topoisomerase IV

Inhibitory activities of ULD1 and ULD2 on S. aureusDNA gyrase and S. aureus topoisomerase

IV were determined by gel-based supercoiling assays (Inspiralis Ltd., Norwich, UK). In all

experiments, the activity of the enzymes was determined and standardized prior to experimen-

tal analysis. In all cases, 1 unit (U) was defined as the amount of enzyme that is required to

fully supercoil 1 μg of relaxed pBR322 plasmid DNA. All compounds were diluted in 100%

(v/v) DMSO. Final assay concentration of DMSO was 5% (v/v). DNA gyrase (1 U, 6 nM final

concentration) was incubated with 0.5 μg of relaxed pBR322 DNA in a 30 μL reaction at 37 ˚C

for 30 minutes under the following conditions: 40 mM HEPES KOH (pH 7.6), 10 mM magne-

sium acetate, 10 mM DTT, 2 mM ATP, 500 mM potassium glutamate, and 0.05 mg/mL bovine

serum albumin (BSA). Each reaction was stopped by the addition of 30 μL chloroform/iso-

amyl alcohol (24:1) and 20 μL Stop Dye (40% sucrose (w/v), 100 mM Tris-HCl (pH 7.5), 10

mM EDTA, 0.5 μg/mL bromophenol blue), before being loaded on a 1.0% TAE gel and elec-

trophorized at 80 V for 2 hours. Bands were then visualized by ethidium bromide staining and

scanned (GeneGenius, Syngene, Cambridge, UK). Inhibition levels were measured by deter-

mining the relative fluorescence of the supercoiled band using GeneTools, Syngene, Cam-

bridge (UK). All measurements were performed in quadruplicates.

Time-dependent killing

Time-dependent killing experiments were performed as previously [53]. S. aureus ATCC

700699 VISA cells were inoculated to MHBII agar plates and grown overnight at 37 ˚C. Next,

3 independent stationer-phase starter cultures were grown at 37 ˚C, 250 rpm overnight, in

3 × 1 mL MHBII broth. Next, 100-fold diluted cultures were prepared from each in 20 mL

fresh MHBII medium and grown at 37 ˚C, 250 rpm until early exponential phase (OD600 =

0.3–0.4; i.e., 5 × 105 cells/mL). Bacteria were then challenged with antibiotics at 10× MIC con-

centrations of ULD1, ULD2, and comparator antibiotics novobiocin, fusidic acid, and vanco-

mycin in MHBII broth. Cells were treated with antibiotics in Erlenmeyer flasks at 37 ˚C, 150

rpm for 48 hours. At different time intervals (3, 6, 12, 24, and 48 hours) 100 μL aliquots were

removed, and 10-fold serial dilutions were prepared in MHBII medium. Next, 50 μL from
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each dilution were plated on MHBII agar plates, and plates were incubated overnight at 37 ˚C

to calculate CFU per mL.

Frequency-of-resistance assay

To determine the spontaneous frequency-of-resistance, approximately 1010 cells from sta-

tionary-phase MHBII broth cultures of S. aureus ATCC 700699 and S. aureus ATCC 43300

were plated to antibiotic-containing plates according to a standard protocol to determine fre-

quency-of-resistance [49, 53]. Prior to plating, bacteria were grown overnight in MHBII

medium at 37 ˚C, 250 rpm, collected by centrifugation, and washed once in equal volumes of

MHBII broth. From this concentrated cell suspension (250 μL), approximately 1010 cells

were then plated to each MHBII agarose plates. Using agarose instead of agar reduced drug-

adsorption and improved the performance of the assay. Petri-dishes (145 mm) were filled

with 40 mL MHBII agarose medium containing the selective drug at the desired concentra-

tion (i.e., 2×, 4×, 8×, 12×, and 16× MIC of each given antibiotic). All experiments were per-

formed in at least 3 replicates. Plates were grown at 37 ˚C for 72 hours. Total CFUs were

determined simultaneously in each experiment by plating appropriate dilutions to antibiotic-

free MHBII agar plates. Finally, resistance frequencies for each strain were calculated by

dividing the number of colonies formed after a 72-hour incubation at 37 ˚C by the initial via-

ble cell count.

Adaptive laboratory evolution

Adaptive laboratory evolution experiments followed an established protocol for automated

laboratory evolution and aimed to maximize the drug-resistance increment during a fixed

time period. At each transfer step, 107 bacterial cells were transferred to a new culture and

adaptation were performed by passaging 10 independent populations of S. aureus ATCC

700699 (VISA) strain in the presence of increasing ULD1, ULD2, and novobiocin concentra-

tions. Experiments were conducted in 96-well plates, in MHBII medium, by utilizing a check-

erboard layout to minimize and monitor cross-contamination. These 96-well deep-well plates

(0.5 mL, polypropylene, V-bottom) were covered with sandwich covers (Enzyscreen BV) to

ensure an optimal oxygen exchange rate and limit evaporation and were shaken at 150 rpm, 37

˚C. Twenty μL of each evolving culture was parallelly transferred into 4 independent wells con-

taining 350 μL fresh medium and an increasing concentration of tested drugs (i.e., 0.5×, 1×,

1.5×, and 2.5× the concentration of the previous concentration step). Following cell transfer,

each culture was allowed to grow for 48 hours. At each transfer, cell growth was monitored by

measuring the OD600 in a BioTek Synergy 2 plate reader. Only populations with (1) detectable

growth (i.e., OD600 > 0.125) and (2) the highest drug concentration were selected for further

transfer. Accordingly, only 1 of the 4 populations was retained for each independently evolving

strain. This protocol was designed to avoid population extinction and to ensure that popula-

tions with the highest level of resistance are propagated further during adaptive evolution.

Samples from each transfer were frozen at −80 ˚C after the addition of 15% DMSO as cryopro-

tectant. Adaptation of populations was terminated after 20 transfers, i.e., 40 days. Following

adaptation, cells from each final population were spread onto MHBII agar plates, and individ-

ual colonies were isolated. Next, one colony from each adapted line were subjected to capillary

sequencing of gyrB and parE to assess their genotype. Sequencing independently isolated colo-

nies from the same plates demonstrated that colonies within the same adapted population

were all isogenic.
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Capillary sequencing

Genotypes of the isolated clones from frequency-of-resistance assays as well as adaptive labora-

tory evolution experiment were checked by capillary sequencing. The drug-target regions of

gyrB and parE genes were amplified by PCR using DreamTaq PCR 2X Master Mix (Thermo-

Fisher Scientific): denaturation 95 ˚C, 3 minutes; 30 cycles: 95 ˚C, 30 seconds; 65 ˚C, 30

seconds; 72 ˚C, 1 minute; and final extension 72 ˚C, 3 minutes. The sequences of the corre-

sponding PCR oligos are available in File S1 Data, 769B2F, SAGB1R were used to amplify gyrB
from VISA strains and 769E2F, SAPE1R primers were used to amplify parE. PCR products

were treated with ExoSAP-IT PCR Product Cleanup Reagent (ThermoFisher Scientific) for 15

seconds at 37 ˚C to hydrolyze excess primers and nucleotides. Samples were then subjected to

capillary sequencing with the corresponding forward primer.

Fitness measurements

We observed the growth phenotype of bacterial variants by assessing their growth at 37 ˚C in

antibiotic-free BHI medium following established protocols [71]. To measure growth, we inoc-

ulated 5×104 cells from early stationary-phase cultures (prepared in MHBII medium) into

100 μL of BHI medium in a 96-well microtiter plate and monitored growth for approximately

48 hours. Bacterial growth was measured as the OD600 of cultures at any given time point.

OD600 measurements were carried out every 5 minutes using BioTek Synergy 2 microplate

reader while bacterial cultures were grown at 37 ˚C under continuous shaking. Each bacterial

variant and their corresponding wild types were measured in 6 replicates. Finally, growth rates

were calculated from the obtained growth curves according to a previously described proce-

dure. Fitness was approximated by calculating the area under curve (AUC) [72]. AUC has

been previously used as a proxy for fitness because it has the advantage to integrate multiple

fitness parameters, such as the slope of exponential phase (i.e., growth rate) and the final

biomass.

SMRT sequencing-based analysis of target-mediated resistance

Pooled S. aureus clones, isolated from first-step frequency-of-resistance assays, were subjected

long-read amplicon sequencing. First, bacterial colonies were picked up from 2 independent

FoR libraries. Clones were inoculated in 100 μL MHBII medium in 96-well microtiter plates

and were grown overnight at 37 ˚C. Stationer-phase cultures were mixed equally, and genomic

DNA was isolated using GeneElute Bacterial Genomic DNA Kit (Sigma-Aldrich). Drug-target

regions with flanking DNA regions were amplified by PCR using Q5 High-Fidelity 2X Master

Mix (New England BioLabs): denaturation 98 ˚C, 3 minutes; 20 cycles: 98 ˚C, 15 seconds; 62

˚C, 25 seconds; 72 ˚C, 1 minute 20 seconds; final extension 72 ˚C, 3 minutes, by using the bar-

coded amplification primers as described in S1 Data. Following PCRs, amplicons were purified

using DNA Clean & Concentrator Kit (Zymo Research), eluted in water, and their DNA con-

centration was checked by using a Qubit 4 fluorimeter. Finally, samples were subjected SMRT

sequencing on a Pacific Biosciences Sequel instrument using Sequel Polymerase v3.0, SMRT

cells v3, and Sequencing chemistry v3.0 (Norwegian Sequencing Centre, UiO, Oslo, Norway).

After sequencing, raw circular-consensus SMRT sequencing reads were demultiplexed accord-

ing to their corresponding barcodes (see S1 Data) by using Demultiplex Barcodes pipeline on

SMRT Link v5.1.0.26412 (SMRT Tools 4 v5.1.0.26366). A minimum barcode score of 26 was

used to identify high-quality barcodes. Following demultiplexing, sequencing reads were

mapped to their corresponding reference sequences (i.e., gyrB and parE) by using bowtie2

2.3.4 37 (http://bowtie-bio.sourceforge.net/bowtie2) in “very-sensitive” mode, and the nucleo-

tide composition was extracted for each nucleotide position within the target regions. Finally,
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genotype-frequencies at each nucleotide position was quantified by measuring the distribution

and ratio of nucleotide substitutions for each reference nucleotide position.

Whole-genome sequencing of laboratory evolved lines

Following adaptive laboratory evolution of S. aureus Mu50 ATCC 700699 under ULD2 stress,

6–6 random colonies (from spreading each 5 independently evolved lines on MHBII agar

plates) were isolated and subsequently subjected to whole-genome sequencing on Illumina

HiSeq 4000 sequencer. gDNA was isolated from each evolved line and the corresponding wild-

type strain by using GeneElute (Sigma-Aldrich) gDNA isolation kit according to the manufac-

turer’s instructions. To perform DNA sequencing, sequencing libraries were constructed from

the gDNAs by fragmenting samples to a mean fragment length of 300 bp. Next, sequencing

libraries were prepared by using a TruSeq DNA PCR-Free Library Prep Kit (Illumina). Finally,

sequencing libraries were sequenced on a single sequencing lane of Illumina HiSeq 4000 using

a HiSeq 3000/4000 SBS Kit (300 cycles, FC-410-1003, Illumina) to generate 2 × 150 bp paired-

end reads. To determine the variants and to annotate the mutations, we mapped sequencing

reads to their corresponding reference genome (i.e., S. aureus subsp. aureus Mu50 DNA, com-

plete genome 2,878,529 bp circular DNA BA000017.4) with the mem subcommand of bwa

0.7.12-r1039 (Burrows-Wheeler Aligner) [73]. The SNPs and INDELs were called with VarS-

can v2.3.9 [74] with the following settings: min-reads2 = 4, min-coverage = 30, min-var-

freq = 0.1, min-freq-for-hom = 0.6, min-avg-qual = 20, strand-filter = 0. Only variants with

prevalence higher than 60% were considered as genuine mutations. Following variant calling,

mutations were also manually inspected within the aligned reads. Finally, the annotation of

each mutation with genomic features was performed with the intersect subcommand of bed-

tools v2.25.0 [75].

Multiple sequence alignments of GyrB and ParE

First, we downloaded the proteome of 1,108 phylogenetically diverse, human-associated bacte-

rial strains with sequenced genomes and unique NCBI taxonomic identifier [76]. The list

entails representative species belonging to Actinobacteria, Firmicutes, Bacteroidetes, Proteo-

bacteria, Chlamydiae bacterial phyla. GyrB and ParE proteins were identified in each prote-

ome by BLAST search implemented in DIAMOND (version v0.9.25.126) [77]. Subsequent

multiple sequence alignments were carried out with MAFFT (version v7.271) [78]. Based on

the co-crystal structures of GyrB and ParE (Protein Data Bank identifiers: 4uro and 4urn,

respectively) with novobiocin, amino residues in the ATP-binding sites were identified using

the PyMOL Molecular Graphics System, Version 2.3.2. Schrödinger, LLC. To visualize the

phylogenetic conservation of each amino acid residue, sequence logos were computed with

ggseqlogos R package [79].

In silico binding mode analysis

First, the crystal structures of the ATPase domain-containing fragments of the GyrB and ParE

subunits of DNA gyrase and topoisomerase IV of S. aureus were downloaded from the PDB

Database (PDB ID: 3ttz and 4urn, respectively). In the design phase, ULD1 and ULD2 were

docked in the ATP-binding site of S. aureus GyrB and ParE using Glide XP (extra precision)

protocol as implemented in Schrödinger Software. Next, in the case of gyrase B, the highly flex-

ible loop region (between residues 105–127, S. aureus GyrB numbering) was replaced based on

the X-ray structure of the N-terminal 43-kDa fragment of the E. coliDNA gyrase subunit B

[80] (PDB ID: 4wub). As for topoisomerase IV, the same loop region was reconstructed based

on the protein sequence downloaded from UniProt (ID: P0C1S7) using the chimera model
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option of Schrödinger Software’s homology model building panel. We used the same pipeline

to determine the binding mode of ULD1 and ULD2. The ULDs were docked into the model

structures using Induced Fit Docking (IFD) protocol of Schrödinger Software without side-

chain optimization. Next, the best 5 binding poses were selected as initial poses for 10 subse-

quent 10 ns long MD simulations to identify the stable binding poses of ULDs. The method is

implemented in the Schrödinger Software using the ligand root-mean-square deviation

(RMSD) as collective variable. In our investigations, the default settings of the software were

used [81]. Furthermore, we also investigated the location of highly bound water molecules

within the binding pocket, because of its previously hypothesized role on pyrrolamidoben-

zothiazoles’s binding [41], by using the trj_occupancy.py algorithm of Schrödinger [81].

Protein purification

The gene encoding S. aureus GyrB (Uniprot: P0A0K8) was synthesized and cloned into a

pET24a(+) vector with an N-terminal 6×His tag followed by a tobacco etch virus (TEV) prote-

ase cleavage site. The recombinant plasmid was transformed into E. coli BL21(DE3)R3 con-

taining pRARE2 plasmid. A 2-L culture was grown in LB medium at 37 ˚C until an OD600 of

about 0.6 and then moved to 18 ˚C. The culture was induced with IPTG at 0.5 mM and grown

overnight. The cells were lysed by sonication and purified by immobilized metal affinity chro-

matography (IMAC). Fractions of interest were pooled and cleaved overnight with TEV prote-

ase followed by another IMAC to remove the 6×His tag and uncleaved protein material. The

cleaved GyrB was further polished on a High Load 26/60 Superdex 200 PG (GE Healthcare)

SEC column using 20 mM Tris, 0.1 M NaCl, 5% glycerol, 2 mM DTT (pH 8.0) as mobile

phase. Fractions were analyzed on a reducing SDS-PAGE gel. The final sample had an esti-

mated purity of>95% and a yield of 92 mg per liter of culture.

Co-crystallization of ULD2 with S. aureus GyrB

S. aureusDNA GyrB24 at 10 mg/mL in 20 mM Tris (pH 8.0), 0.1 M NaCl, 5% glycerol, 2 mM

DTT was co-crystallized with ULD2. S. aureusDNA GyrB24 was diluted to 1 mg/mL, and 1

mM ULD-2 was added to the protein. The protein was then concentrated to 10 mg/mL prior

to crystallization. The crystals of S. aureusGyrB24 in complex with ULD2 formed successfully

under the following conditions: 0.1 M imidazole/MES (pH 6.5), 0.06 M divalent cations (0.03

M magnesium chloride, 0.03 M calcium chloride), 37.5% (25% v/v MPD, 25% v/v PEG 1000,

25% w/v PEG 3350). Co-crystals with compound ULD2 were transferred to a cryo solution

containing additional 25% MPD and then transferred to liquid nitrogen for cryo-cooling.

X-ray data collection and structure refinement

A data set for compound ULD-2, bound to S. aureus GyrB, was collected at 100 K at station

P11, DESY, Hamburg, Germany (λ = 1.03 Å) equipped with a Pilatus 6M detector. The data

were processed using the software XDS [82] and Aimless [83] to 1.6 Å in space group C2. The

structure was solved by molecular replacement in Phaser a previously published structure

(PDB ID: 5CPH), with the compound removed as search model. The structure was refined to

convergence using Refmac5 [84], and model building was carried out in Coot [85]. Restraints

and coordinate files for the ligand were generated by the Jligand program [86]. TLS refinement

was implemented in the final stages of the refinement and the structure was refined to an R

and Rfree of 17.8% and 19.9%, respectively [87]. Statistics for the data set are shown in S13

Table.
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Haemolysis analysis

Human red blood cells (with a hemoglobin concentration of 150–160 g/L) were collected from

healthy volunteers in EDTA blood-sampling tubes. Next, 600 μl of this EDTA-treated blood

was washed in TBS buffer (10 mM TRIS, 150 mM NaCl [pH 7.2]) and centrifuged at 1,500 g

for 1 minute until the supernatant became colorless. The aliquot of the final pellet (200 μL)

was diluted to 5 mL with TBS buffer. ULD1 and ULD2 were dissolved in DMSO and diluted

in TBS buffer, resulting a 200 μg/mL stock solution containing 10% DMSO. Next, 100 μL of

red blood cell suspension was pipetted into sterile Eppendorf tubes together with 100 μL of

2-fold serial dilution of the compounds (final concentration ranged between 100 μg/mL–

0.1 μg/mL in a final volume of 200 μL). The plate was incubated for one hour at 37 ˚C followed

by centrifugation at 1,500 g for 1 minute to sediment all red blood cells. Next, all supernatants

were subjected to LDH and Haemolysis-Icterus-Lipaemia (HIL) index determination on a

Roche Modular P800 analyzer according to the manufacturer’s instructions. After completion

of this step the rest of the supernatants were transferred to sterile 96-well plates for the mea-

surement of their optical density at 560-nm wavelength (in a Multiskan FC microplate reader,

Thermo Scientific). Melittin (Bachem) at a concentration of 50 μg/mL, and TBS and 10%

DMSO/TBS were served as positive (100% hemolysis) and negative (no hemolysis) controls,

respectively. Finally, the hemolytic effect of each compound at each concentration was calcu-

lated as follows:

ðCompound OD560nm � TBS OD560nmÞ � 100=ðMelittin OD560nm � TBS OD560nmÞ:

Mammalian cytotoxicity and genotoxicity measurements

Cytotoxicity of compounds on HepG2 and MCF-7 mammalian cell lines was determined by

using a standard LDH assay. Briefly, HepG2 and MCF-7 cells were cultured in Eagle’s MEM

medium (from Gibco) supplemented with 2 mM L-glutamine (Sigma), 100 U/mL penicillin

(Sigma), and 100 μg/mL streptomycin (Sigma), and 10% FBS (Gibco) at 37 ˚C and under 5%

CO2. Next, LDH assays were performed according to manufacturer instructions (Thermo

Fisher Scientific, Massachusetts, USA). By using a CyQUANT LDH Cytotoxicity Assay Kit.

Firstly, the cells were seeded in 96-well microtiter plates at 105 cells/mL (100 μL/well) and

allowed to attach overnight. Cells were then treated with selected compounds or with sterile

ultrapure water (for the determination of spontaneous LDH activity) and incubated for 24

hours at 37 ˚C and under 5% CO2. Lysis buffer (10 μL, Thermo Fisher Scientific) was then

added to the maximal LDH activity control wells and incubated additional 45 minutes. The

cell culture supernatant (50 μL) was then transferred to a new 96-well plate and mixed with

50 μL of the reaction mixture. After 30 minutes on room temperature, reactions were stopped

with 50 μL of the Stop solution. Absorbance (490 nm and 680 nm) was measured with the

automatic microplate reader Synergy 4 Hybrid Microplate Reader (BioTek, VT, USA). All

experiments were performed in triplicates and repeated 3 times. Statistical significance

(P< 0.05) was calculated with 2-tailed Welch’s t-test between treated groups and DMSO. The

percentage of cytotoxicity was determined according to the following equation:

%Cytotoxicity ¼
Compound treated LDH activity � Spontaneous LDH activity

Maximum LDH activity � Spontaneous LDH activity

� �

� 100

Genetic toxicity analysis of compounds was performed in an in vitro micronucleus test,

according to the protocol described in Diaz and colleagues (2007) [59], at Eurofins Panlabs

(St. Charles, MO, US). Micronucleated cells and micronuclei were enumerated by the use of

PLOS BIOLOGY Rational design of balanced dual-targeting antibiotics with limited resistance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000819 October 5, 2020 20 / 31

https://doi.org/10.1371/journal.pbio.3000819


high-content fluorescent cell imaging. The assay was performed on CHO-K1 cells. Prior to

imaging, cells were treated with ULD1 or ULD2 for 4 hours at 37 ˚C. Experiments were per-

formed in 2 biological replicates. All cell lines were tested as being negative forMycoplasma
contamination.

Human hERG Potassium ion-channel inhibition assay

Inhibition of the human hERG cardiac K+ ion channel was determined by Eurofins Panlabs

(St. Charles, MO, USA) by using QPatch automated whole-cell patch-clamp electrophysiology,

as described previously [88]. ULD1 and ULD2 were tested at 150 μM concentration. During

measurements, after whole-cell patch configuration was achieved, the cells were held at −80

mV. Next, a 500-millisecond pulse to −40 mV was delivered to measure the leaking current,

which was then subtracted from the tail current’s readout. Then the cell was depolarized to

+40 mV for 500 milliseconds and then to −80 mV over a 100-millisecond ramp to elicit the

hERG tail current. This workflow was repeated once in every 8 seconds to monitor the current

amplitude. The parameters measured during each test were the maximum tail current evoked

on stepping to 40 mV and ramping back to −80 mV from the test pulse. All data were filtered

for seal quality, seal drop, and current amplitude. The peak current amplitude was calculated

before and after compound addition, and the amount of inhibition was assessed by dividing

the test compound’s current amplitude by the control’s current amplitude. During our tests,

the control was the mean hERG current amplitude collected 15 seconds at the end of each

measurement, and the test compound was the mean hERG current amplitude collected in the

presence of test compound at the given concentration.

S. aureus dermal infection model

The testing strains, S. aureusUSA300 (MRSA) BAA1556, S. aureus (VRSA) ECL2963646, and

S. aureusMu50 (VISA) ATCC 700699 were obtained from frozen stocks and thawed at room

temperature. Next, an aliquot of 0.2 mL from each stock was transferred to 20 mL BHI broth

and incubated at 37 ˚C with shaking (120 rpm) for 8 hours. Cells in 20 mL culture were pel-

leted by centrifugation, 3,500g for 15 minutes, and then resuspended in 10 mL cold PBS, then

cells were diluted in PBS to obtain the inoculum sizes of 1×105 or 1× 106 CFU/mL, based on

the testing strain’s virulence. In all cases, the actual colony counts were determined by plating

dilutions in at least 3 replicates onto MHBII agar plates followed by 24 hours’ incubation and

colony counting.

For dermal infections, groups of 5 female ICR mice weighing 24 ± 4 g, provided by Bio-

Lasco Taiwan (under a Charles River Laboratories Technology Licensee), were used. Animals

were acclimated for 3 days prior to use and were confirmed to be in good health. Prior to infec-

tion, animals were anesthetized with etomidate-lipuro emulsion (20 mg /10 mL) at 20 mg/kg

by IV injection, and then the fur on the back was removed by an electric shaver, and the epi-

dermal layer was disrupted with an abrasive paper according to the protocol developed by

Kugelberg and colleagues [63]. Mice were inoculated topically on the wound area with testing

strain suspension, 5 μL/mouse. The target inoculation densities were 1×105 or 1× 106 CFU/

mL, based on the corresponding strain’s virulence. Following infection, animals were housed

separately. Prior to treatment, ULD1 and −2 were dissolved in 100% DMSO and then further

diluted in either corn oil (90% corn oil + 10% DMSO in the final ointment) or 0.5% water-

based carboxymethyl cellulose (CMC) solution. Test articles were administered topically

(20 μL/mouse) twice daily. One no-treatment group was euthanized at 1 hour after infection

for initial bacterial counts, and the other treatment groups were dosed twice daily with the test

compounds and sacrificed either at 25 hours or at 73 hours postinfection. Animals were
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euthanized with CO2 asphyxiation and the infected skin, a 2 cm2 area, was excised. The skin

samples of the wound infection (around 2 cm2 areas) were then homogenized in 1 mL PBS

(pH 7.4) with a polytron homogenizer. A 0.1 mL aliquot of each homogenate was used for

serial 10-fold dilutions and plated onto MHBII agar plates for bacterial enumeration. Statistical

significance (P<0.05) was assessed with 1-way ANOVA followed by Dunnett’s method. A sig-

nificant (P<0.05) decrease in the bacterial counts of the treated animals compared with the

vehicle control group was considered significant antimicrobial activity.

Thigh infection model

Neutropenic mouse thigh infection experiments were performed on female CD-1 mice

(Charles River Laboratories, USA). To induce neutropenia, mice received 2 doses of cyclo-

phosphamide on days -4 and -1 with 150 mg/kg, and 100 mg/kg delivered intraperitoneally

(IP), respectively. The inoculum of the testing strain, S. aureusMu50 (VISA) ATCC 700699,

was prepared from overnight agar plate cultures. To prepare bacterial inoculums, a portion of

the plate was resuspended in sterile saline and adjusted to an OD of 0.12 at 625 nm. Next, the

resulted bacterial suspension was further diluted to reach an infecting inoculum of 6.0×105

CFU per each mouse. Mice were inoculated with 100 μL of the prepared bacterial suspension

via intramuscular injection into the right rear thigh. Plate counts of the inoculum were also

performed in each case to confirm inoculum concentration and the actual inoculum size was

6.9×105 CFU/mouse. Prior to infection, ULD1 was formulated by dissolving the compound in

5% DMSO, 5% cremophor EL, and 50 mM potassium phosphate. Test agent was then dosed

via IV administration at 2, 8, 14, and 20 hours postinfection. Beginning at 2 hours, postinfec-

tion mice were dosed with either test article or positive control antibiotic. Mice receiving test

agents were dosed intravenously at 10 mL/kg. Linezolid was delivered as a subcutaneous dose.

Four animals were dosed per group. One group of 4 mice were euthanized at initiation of ther-

apy (T = 2 hours) and CFUs determined. All remaining mice were euthanized at 26 hours

postinfection. At termination, thighs were aseptically excised, weighed, and homogenized to a

uniform consistency in 2 mL of sterile saline. The homogenate was serially diluted and plated

on bacterial growth media. The CFUs were enumerated after overnight incubation.

Pharmacokinetics measurements

Pharmacokinetics measurement of ULD1 and ULD2 in skin tissue was conducted parallelly

with the mice dermal infection study. In all cases, skin tissue samples were collected at the ter-

mination and homogenized following the same method as homogenate preparation for bacte-

rial enumeration. Before measurement, protein precipitation was performed by treating the

samples with acetonitrile. Analytics were the performed by liquid chromatography coupled

mass spectrometry (LC/MS/MS) on an AB SCIEX QTRAP mass spectrometer in electrospray,

positive ions ionization mode, and with Multiple Reaction Monitoring scan mode. Samples

were analyzed on a Phenomenex Luna 5u Phenyl-Hexyl 50 × 2.0 mm HPLC column in a

mobile phase of A: acetonitrile/formic acid = 100/0.2 (v/v), and mobile phase of B: water / for-

mic acid = 100/0.2 (v/v). The column’s temperature was set to 30 ˚C, the injection volumes

were 10 μL, and measurement time was 5 minutes in all cases. Oxybutynin (0.01 ng/μL in ace-

tonitrile) was used as an internal standard for the measurement. Finally, the concentration of

the drug in tissue samples was calculated from the peak area ratio.

Ethics statement

Animal experiments for this study were performed by Eurofins Panlabs Taiwan Ltd. The Insti-

tutional Animal Care and Use Committee (IACUC) reviewed the planned experiments

PLOS BIOLOGY Rational design of balanced dual-targeting antibiotics with limited resistance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000819 October 5, 2020 22 / 31

https://doi.org/10.1371/journal.pbio.3000819


submitted under Protocol Number IM003-01132016 and provided official approval. The com-

pany also obtained an Animal Welfare Assurance (identification number A5890-01) from the

Department of Health & Human Services.

Supporting information

S1 Table. Molecular modeling of drug–target interactions. S. aureusGyrB and ParE amino

acid residues interacting with ULD1 and ULD2 as revealed by Induced Fit Docking and subse-

quent molecular dynamics simulations (See Materials and methods). GyrB, subunit B of DNA

gyrase; ParE, subunit E of topoisomerase IV.

(XLSX)

S2 Table. Interaction pattern of ULD1 with DNA GyrB and ParE, and the position of

ULD1 resistance-conferring mutations. Table shows the position of first-step ULD1 resis-

tance-conferring mutations within the drug’s binding pocket in GyrB and ParE at amino acid

positions that are interacting with ULD1 (based on Induced Fit Docking and subsequent

molecular dynamics simulation). Mutations have not been detected at interacting amino acids

Asp81, Arg84, and Pro87 (in bold), in accordance with a prior study that has revealed that

these residues are difficult to mutate as they have essential role in enzymatic function [39].

GyrB, subunit B of DNA gyrase; ParE, subunit E of topoisomerase IV.

(XLSX)

S3 Table. MICs of ULD1 and ULD2 against ESKAPE pathogens and selected human patho-

genic bacterial isolates. MIC measurements were performed in 3 replicates according to CLSI

guidelines. -R, resistant; -NS, nonsensitive; CLSI, Clinical and Laboratory Standards Institute;

GISA, glycopeptide-intermediate S. aureus; MIC, minimum inhibitory concentration; MSSA/

VSSA, methicillin-sensitive/vancomycin-sensitive S. aureus; MRSA/VRSA, methicillin-resis-

tant/vancomycin-resistant S. aureus; MRSE, methicillin-resistant S. epidermidis; VISA, vanco-

mycin-intermediate S. aureus; VRE, vancomycin-resistant Enterococcus.
(XLSX)

S4 Table. pH-dependence of antibiotic bioactivity against S. aureus. MIC measurements

were determined by broth microdilution in 3 replicates according to CLSI guidelines. Star (�)

denotes resistance according to FDA guidelines [89]. CLSI, Clinical and Laboratory Standards

Institute; MIC, minimum inhibitory concentration.

(XLSX)

S5 Table. Estimated frequency of missense mutations at the 4 most common, single-step

mutational positions in GyrB against ULD1 in Staphylococcus aureus VISA ATCC 700699.

Results are from 2 independent frequency-of-resistance assays followed by the Pacific Biosci-

ences Single-Molecule Real-Time sequencing of gyrB and parE (see Materials and methods).

GyrB, subunit B of DNA gyrase; ParE, subunit E of topoisomerase IV; VISA, vancomycin-

intermediate S. aureus.
(XLSX)

S6 Table. Resistance level of second-step spontaneous ULD1- and ULD2-resistant mutants

in S. aureus ATCC 700699. MICs were determined in MHBII medium at 37 ˚C by broth

microdilution assay according to CLSI guidelines. CLSI, Clinical and Laboratory Standards

Institute; MHBII, Mueller Hinton II Broth; MIC, minimum inhibitory concentration.

(XLSX)
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S7 Table. Whole-genome sequencing-based mutational analysis of S. aureus VISA ATCC

700699 lines evolved under ULD2 stress. The table indicates mutations in evolved lines com-

pared with the parental genome of S. aureus ATCC 700699 (GeneBank ID: BA000017.4).

ATCC, American Type Culture Collection.

(XLSX)

S8 Table. Cytotoxicity profiles of ULD1 and ULD2 in 2 different mammalian cell lines.

Cell viabilities were measured after 1-day incubation of ULD1 and ULD2 in each cell line by

quantifying LDH levels (see Materials and methods). The highest testing concentration was

100 μM. All tests were performed besides etoposide as a cytotoxic positive control. Etoposide

IC50 = 20.1 ± 1.60 μM (HepG2 cells); IC50 = 34.9 ± 12.5 μM (MCF-7 cells). ± indicates SD

based on 3 independent replicates. LDH, lactate dehydrogenase.

(XLSX)

S9 Table. Genetic toxicity of pyrrolamidobenzothiazol compounds based on micronucleus

test. Compounds were assayed after 4 hours’ treatment with ULD1 or ULD2 on CHO-K1

cells, using a standard protocol [59]. A negative test (-) result indicates P> 0.05 by t-test and

percentage of micronucleated cells less than 2-fold higher than the background level.

(XLSX)

S10 Table. Electrophysiological assays on human hERG potassium ion-channels. SD repre-

sents standard deviation based on n = 8. A reference hERG-inhibitor, E-4031 (Sigma-Aldrich)

was included as a positive control and had a measured IC50 of 0.033 μM. Only results showing

an inhibition higher than 50% are considered to represent significant effects of the tested com-

pounds. hERG, human ether-a-go-go-related gene potassium ion channel.

(XLSX)

S11 Table. Biocompatibility of ULD1 and ULD2, based on their hemolytic activity on

human red blood cells. For details, see Materials and methods.

(XLSX)

S12 Table. Concentrations of ULD1 and ULD2 in mouse skin tissue after the topical treat-

ment of S. aureus ATCC 700699 infections. The concentrations of ULD1 and ULD2 were

determined after 3 days of twice-a-day topical administration in mice (n = 3, 20 μL ointment/

mouse, containing 2% ULD1 or ULD2, respectively).

(XLSX)

S13 Table. Data collection and refinement statistics for compound ULD2 in complex with

S. aureus GyrB (PDB entry 6TCK). PDB, Protein Data Bank.

(XLSX)

S1 Fig. Interactions between ULD1 and ULD2 in the ATP-binding site of S. aureus GyrB

and ParE. A. Diagram of interactions of ULD1 (left) and ULD2 (right) in the ATP-binding

site of S. aureus GyrB and ParE. Hydrogen bonds are presented as black dashed lines, cation-π
interactions as green dashed lines and a circle, and hydrophobic interactions by a green curve.

Molecular dynamics simulations revealed that ULD1 and ULD2 form a hydrogen bond with

Asp81/Asp74 (GyrB/ParE), cation-π interaction with Arg84/Arg77 (GyrB/ParE), and weak

hydrophobic interaction with Pro87/Pro80 (GyrB/ParE), respectively. For the detailed interac-

tion map of ULD1 and ULD2 with S. aureus GyrB and ParE, see S1 Table and S1 Fig.

Figure was generated by PoseViewWeb. B. Co-crystal structure of S. aureusDNA gyrase sub-

unit B (in gray cartoon, deposited to PDB as entry 6TCK) in complex with ULD2 (in cyan

sticks). For clarity, only amino acids that are interacting with ULD2 are numbered and
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presented as sticks. Water molecule is presented as a red sphere, and hydrogen bonds are

shown as dashed black lines. Pyrrolamide moiety of ULD2 forms a hydrogen bond between

the pyrrole NH group and Asp81 side chain and a hydrogen bond between the amide carbonyl

oxygen and a water molecule that is coordinated by Asp81 and Thr173. The pyrrole chlorine

atoms and a methyl group are engaged in several hydrophobic interactions with Ile51, Val79,

Ile102, Ile103, Thr173 and Ile175. Two additional hydrogen bonds are formed between the

carboxylate of ULD2 and Arg144 side chain. The benzothiazole scaffold’s 4-benzyloxy group

points to the lipophilic floor of the GyrB ATP-binding site, where it forms hydrophobic con-

tacts with Pro87 and Ala98. GyrB, subunit B of DNA gyrase; ParE, subunit E of topoisomerase

IV.

(TIF)

S2 Fig. Time-dependent killing of S. aureus ATCC 700699 (VISA) by ULD1, ULD2, novo-

biocin, vancomycin, and fusidic acid. Bacterial cultures were grown to an early exponential

phase and were subsequently diluted to 5×105 cells/mL and challenged with antibiotics at 10×
the wild-type MIC. The number of surviving cells were plotted as the function of time. The fig-

ure shows the average of 3 independent experiments. Error bars represent standard deviation.

The underlying data for this figure can be found in S2 Data. MIC, minimum inhibitory con-

centration; VISA, vancomycin-intermediate S. aureus.
(TIF)

S3 Fig. Resistance level of the single-step, spontaneous ULD1- and ULD2- resistant

mutants of S. aureus VISA ATCC 700699. MICs were determined in MHBII medium at

37 ˚C by broth microdilution assay according to CLSI guidelines. The underlying data for this

figure can be found in S2 Data. CLSI, Clinical and Laboratory Standards Institute; MHBII,

Mueller Hinton II Broth; MIC, minimum inhibitory concentration; VISA, vancomycin-inter-

mediate S. aureus.
(TIF)

S4 Fig. Acquisition of second-step ULD1 and ULD2 resistance-conferring mutations in A)

S. aureus VISA ATCC 700699 GyrB R144I and B) S. aureus VISA ATCC 700699 GyrB

I175T. Data are based on 3 independent biological replicates. Error bars indicate standard

error. Double asterisks (��) mark samples with a frequency-of-resistance of>1×10−6. The

underlying data for these figures can be found in S2 Data. VISA, vancomycin-intermediate S.

aureus.
(TIF)

S5 Fig. Fitness (A) and growth phenotype (B) of ULD2-evolved and wild-type S. aureus
VISA ATCC 700699. Fitness was approximated from the growth curves of isogenic microbial

populations (see Materials and methods). Measurements were performed in 6 replicates. The

underlying data for this figure can be found in S2 Data. Growth phenotypes were observed in

BHI agar plates and documented after 24 hours of incubation at 37 ˚C. BHI, Brain-Heart-Infu-

sion Broth; VISA, vancomycin-intermediate S. aureus.
(TIF)

S1 Data. Oligonucleotide list and detailed results of MIC measurements. MIC, minimum

inhibitory concentration.

(XLSX)

S2 Data. Raw data for the figures and supporting figures featured in the manuscript.

(XLSX)
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S3 Data. Details of the synthetic chemistry.

(PDF)
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zothiazole Scaffold-Based DNA Gyrase B Inhibitors. J Med Chem. 2016; 59:8941–8954. https://doi.org/

10.1021/acs.jmedchem.6b00864 PMID: 27541007

38. Tomasic T, Katsamakas S, Hodnik Z, Ilaš J, Brvar M, Solmajer T, et al. Discovery of 4, 5, 6, 7-tetrahy-

drobenzo [1, 2-d] thiazoles as novel DNA gyrase inhibitors targeting the ATP-binding site. Journal of

medicinal chemistry. 2015; 58(14):5501–5521. https://doi.org/10.1021/acs.jmedchem.5b00489 PMID:

26098163

39. Gross CH, Parsons JD, Grossman TH, Charifson PS, Bellon S, Jernee J, et al. Active-Site Residues of

Escherichia coli DNA Gyrase Required in Coupling ATP Hydrolysis to DNA Supercoiling and Amino

Acid Substitutions Leading to Novobiocin Resistance. Antimicrob Agents Chemother. 2003; 47:1037–

1046. https://doi.org/10.1128/aac.47.3.1037-1046.2003 PMID: 12604539

40. Shapiro A, Jahic H, Prasad S, Ehmann D, Thresher J, Gao N, et al. A Homogeneous, High-Throughput

Fluorescence Anisotropy-Based DNA Supercoiling Assay. J Biomol Screen. 2010; 15:1088–1098.

https://doi.org/10.1177/1087057110378624 PMID: 20930214

41. Ramakrishnan K, Salinas RC, Higuita NIA. Skin and Soft Tissue Infections. 2015; 92:15.

42. Grayson ML, Crowe SM, McCarthy JS, Mills J, Mouton JW, Norrby SR, et al. Kucers’ The Use of Antibi-

otics Sixth Edition: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs. CRC Press; 2010.

PLOS BIOLOGY Rational design of balanced dual-targeting antibiotics with limited resistance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000819 October 5, 2020 28 / 31

https://doi.org/10.1016/j.ejmech.2018.08.025
https://doi.org/10.1016/j.ejmech.2018.08.025
http://www.ncbi.nlm.nih.gov/pubmed/30125722
https://doi.org/10.1038/s41579-018-0147-4
http://www.ncbi.nlm.nih.gov/pubmed/30737488
https://doi.org/10.1038/s41579-018-0127-8
http://www.ncbi.nlm.nih.gov/pubmed/30470813
https://doi.org/10.1016/S1473-3099%2817%2930754-5
https://doi.org/10.1016/S1473-3099%2817%2930754-5
http://www.ncbi.nlm.nih.gov/pubmed/29276050
https://doi.org/10.1016/S1473-3099%2817%2930753-3
https://doi.org/10.1016/S1473-3099%2817%2930753-3
http://www.ncbi.nlm.nih.gov/pubmed/29276051
https://doi.org/10.1186/1471-2334-14-296
https://doi.org/10.1186/1471-2334-14-296
http://www.ncbi.nlm.nih.gov/pubmed/24889406
https://doi.org/10.1111/1469-0691.12798
https://doi.org/10.1111/1469-0691.12798
http://www.ncbi.nlm.nih.gov/pubmed/25273968
http://www.who.int/medicines/areas/rational_use/PPLreport_2017_09_19.pdf?ua=1
https://doi.org/10.1128/AAC.02609-16
http://www.ncbi.nlm.nih.gov/pubmed/28167542
https://doi.org/10.1128/AAC.02798-15
http://www.ncbi.nlm.nih.gov/pubmed/26976873
https://doi.org/10.1128/AAC.00772-17
http://www.ncbi.nlm.nih.gov/pubmed/28630189
https://doi.org/10.1016/S1473-3099%2818%2930605-4
http://www.ncbi.nlm.nih.gov/pubmed/30409683
https://doi.org/10.1016/S1473-3099%2818%2930513-9
http://www.ncbi.nlm.nih.gov/pubmed/30337260
https://doi.org/10.1021/acs.jmedchem.6b00864
https://doi.org/10.1021/acs.jmedchem.6b00864
http://www.ncbi.nlm.nih.gov/pubmed/27541007
https://doi.org/10.1021/acs.jmedchem.5b00489
http://www.ncbi.nlm.nih.gov/pubmed/26098163
https://doi.org/10.1128/aac.47.3.1037-1046.2003
http://www.ncbi.nlm.nih.gov/pubmed/12604539
https://doi.org/10.1177/1087057110378624
http://www.ncbi.nlm.nih.gov/pubmed/20930214
https://doi.org/10.1371/journal.pbio.3000819


43. Lio PA, Kaye ET. Topical Antibacterial Agents. Medical Clinics of North America. 2011; 95:703–721.

https://doi.org/10.1016/j.mcna.2011.03.008 PMID: 21679788

44. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5,

which is beneficial for its resident flora. International Journal of Cosmetic Science. 2006; 28:359–370.

https://doi.org/10.1111/j.1467-2494.2006.00344.x PMID: 18489300

45. Hartman-Adams H, Banvard C, Juckett G. Impetigo: Diagnosis and Treatment. AFP. 2014; 90:229–

235.

46. Candel FJ, Peñuelas M. Delafloxacin: design, development and potential place in therapy. Drug Des

Devel Ther. 2017; 11:881–891. https://doi.org/10.2147/DDDT.S106071 PMID: 28356714

47. Baudoux P, Bles N, Lemaire S, Mingeot-Leclercq MP, Tulkens PM, et al. Combined effect of pH and

concentration on the activities of Gentamycin and oxacillin against Staphylococcus aureus in pharma-

codynamic models of extracellular and intracellular infections. J Antimicrob Chemother. 2007; 59:246–

253. https://doi.org/10.1093/jac/dkl489 PMID: 17220162

48. Lemaire S, Tulkens PM, Bambeke FV. Contrasting Effects of Acidic pH on the Extracellular and Intracel-

lular Activities of the Anti-Gram-Positive Fluoroquinolones Moxifloxacin and Delafloxacin against Staph-

ylococcus aureus. Antimicrobial Agents and Chemotherapy. 2011; 55:649–658. https://doi.org/10.

1128/AAC.01201-10 PMID: 21135179

49. Bell G, MacLean C. The Search for ‘Evolution-Proof’ Antibiotics. Trends in Microbiology. 2017; 26:471–

483. https://doi.org/10.1016/j.tim.2017.11.005 PMID: 29191398

50. Oldfield E, Feng X. Resistance-resistant antibiotics. Trends in Pharmacological Sciences. 2014;

35:664–674. https://doi.org/10.1016/j.tips.2014.10.007 PMID: 25458541

51. Fujimoto-Nakamura M, Ito H, Oyamada Y, Nishino T, Yamagishi J. Accumulation of Mutations in both

gyrB and parE Genes Is Associated with High-Level Resistance to Novobiocin in Staphylococcus

aureus. Antimicrob Agents Chemother. 2005; 49:3810–3815. https://doi.org/10.1128/AAC.49.9.3810-

3815.2005 PMID: 16127057

52. Walsh TJ, Hansen SL, Tatem BA, Auger F, Standiford HC. Activity of novobiocin against methicillin-

resistant Staphylococcus aureus. J Antimicrob Chemother. 1985; 15:435–440. https://doi.org/10.1093/

jac/15.4.435 PMID: 3847438

53. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, et al. A new antibiotic kills patho-

gens without detectable resistance. Nature. 2015; 517:455–459. https://doi.org/10.1038/nature14098

PMID: 25561178

54. Vickers AA, O’Neill AJ, Chopra I. Emergence and maintenance of resistance to fluoroquinolones and

coumarins in Staphylococcus aureus: predictions from in vitro studies. J Antimicrob Chemother. 2007;

60:269–273. https://doi.org/10.1093/jac/dkm191 PMID: 17556355

55. Sommer MOA, Munck C, Toft-Kehler RV, Andersson DI. Prediction of antibiotic resistance: time for a

new preclinical paradigm? Nat Rev Micro. 2017; 15:689–696.

56. Martı́nez JL, Baquero F, Andersson DI. Beyond serial passages: new methods for predicting the emer-

gence of resistance to novel antibiotics. Current Opinion in Pharmacology. 2011; 11:439–445. https://

doi.org/10.1016/j.coph.2011.07.005 PMID: 21835695

57. Hughes D, Andersson DI. Evolutionary consequences of drug resistance: shared principles across

diverse targets and organisms. Nat Rev Genet. 2015; 16:459–471. https://doi.org/10.1038/nrg3922

PMID: 26149714
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