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Abstract

Exploring the possible consequences of spatial reciprocity on the evolution of cooperation is an intensively
studied research avenue. Related works assumed a certain interaction graph of competing players and studied
how particular topologies may influence the dynamical behavior. In this paper we apply a numerically more
demanding off-lattice population approach which could be potentially relevant especially in microbiological
environments. As expected, results are conceptually similar to those which were obtained for lattice-type
interaction graphs, but some spectacular differences can also be revealed. On one hand, in off-lattice
populations spatial reciprocity may work more efficiently than for a lattice-based system. On the other
hand, competing strategies may separate from each other in the continuous space concept, which gives a
chance for cooperators to survive even at relatively high temptation values. Furthermore, the lack of strict
neighborhood results in soft borders between competing patches which jeopardizes the long term stability
of homogeneous domains. We survey the major social dilemma games based on pair interactions of players
and reveal all analogies and differences compared to on-lattice simulations.

1. INTRODUCTION

In a multi-agent system the assumption when ev-
ery member interacts with all others randomly can
be handled analytically, hence it could always be
a starting point to study the evolution of coopera-
tion among self-interest players [1, 2, 3, 4, 5]. The
absence of stable connections, however, is a highly
simplified working hypothesis because in almost ev-
ery real-life examples individuals have fixed, or at
least temporarily stable neighbors [6, 7]. This ob-
servation can be modeled by assuming an interac-
tion graph where players have limited and stable
partners, which fact determines their potential fit-
ness and the dynamical process in the applied topol-
ogy [8, 9, 10]. As expected, this modification may
change the system behavior significantly which was
confirmed by thousands of research papers in the
last two decades [11, 12, 13, 14, 15, 16, 17, 18, 19].

Notably, the graph approach does not always re-
flect faithfully the interactions of individuals. For
instance, in a microbial environment an off-lattice
approach seems to be more appropriate modeling
technique, where individuals still interact with a
limited number of partners, but their actual dis-
tance, which may change continuously, determines

the interaction strength [20, 21, 22]. In the last
years several experimental works have been pub-
lished where an off-lattice model seems to be a more
realistic assumption [23, 24, 25].

We must stress, however, that off-lattice simula-
tions are more demanding technically and requires
significantly larger numerical efforts comparing to
on-lattice or in more general graph-based simula-
tions. Therefore it is not surprising that previous
works were restricted to the latter case exclusively
[26, 27, 28, 29, 30, 31, 32, 33]. In our present work
we focus on off-lattice simulations and explore their
specific characters. Importantly, we use the origi-
nal social dilemma games to identify the similarities
and potential differences between on- and off-lattice
environments and only change the dynamical rules
which can be applied for off-lattice simulations di-
rectly. We will show that the behavior of systems
in off-lattice environment is conceptually similar to
those observed for models of lattice-type interac-
tion graphs. There are, however, some differences
which warn us to treat the conclusions of lattice-
based models with a special care when we want to
adopt them directly to microbiological or related
systems.

In the following we specify the model and the mi-
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croscopic rules in more detail. After we present its
consequences for prisoner’s dilemma game, which is
extended to the related social dilemmas including
snow-drift and stag-hunt games. Finally we con-
clude with the summary of the results and a dis-
cussion of their implications in the last section.

2. MODELING DILEMMAS IN OFF-
LATTICE ENVIRONMENT

As we emphasized, we consider the traditional
social dilemma games where players interact with
their partners and collect payoff elements from ev-
ery specific pair interaction [34]. A player’s state
can be described as a cooperator or defector. When
two cooperator players meet then both of them ob-
tain a payoff value 1, while the meeting of defectors
yields zero payoff value for each participant. The
interaction of a cooperator and a defector players
provides a value T (temptation) for the latter and
S value (sucker’s payoff) for the former strategy. In
this way, the actual values of T − S pair determine
the character of the social dilemma. By keeping the
traditional parametrization we use T > 1 control
parameter and S = 0 fixed to describe the (weak)
prisoner’s dilemma game. Furthermore, a parame-
ter 0 ≤ r ≤ 1 when T = 1 + r and S = 1 − r serves
as a control parameter to span the snow-drift game
region of the T−S parameter plane. Last, the stag-
hunt game region is covered by the same 0 ≤ r ≤ 1
control parameter when S = −r and T = r [35].

In an off-lattice environment N players are dis-
tributed randomly on a square-shaped box of linear
size L = 1. As usual for spatial populations, peri-
odic boundary conditions are applied. For every k
player the horizontal xk and vertical yk coordinates
are continuous variables. A player k and a player
m interact if they are within the interaction range,
namely their distance is less than li. Note that to
calculate the proper distance we consider the men-
tioned periodic boundary conditions.

To introduce an evolutionary dynamics we as-
sume that a player’s strategy may change according
to the broadly applied pairwise comparison imita-
tion dynamics [36]. More precisely, a player k will
change its strategy to the opposite strategy repre-
sented by a neighboring player m with a probability
w that depends on the difference of the Πk and Πm

payoff values collected by the mentioned players:

w =
1

1 + exp[(Πk − Πm)/K]
.

In this Fermi-function-type formula parameter K
represents a noise level, where the zero limit makes
the change deterministic for positive difference and
forbidden in the reversed case, while large K limit
provides a random strategy change independently
of the actual payoff values of players.

It is important to stress that in an off-lattice sim-
ulation we cannot follow precisely the usual way
of strategy adoption applied in graph-based sim-
ulations. In particular, we cannot simply replace
the strategy of the target player with the new one
and leave its position unchanged because this would
make the evolutionary outcome highly sensitive on
the initial spatial distribution of players. Instead,
we remove the player who wants to change its strat-
egy and add a newborn player with the new strat-
egy somewhere randomly within an lb distance of
the model player. This modification is similar to
the so-called death-birth dynamics, but still keeps
the essence of pairwise comparison and makes pos-
sible the match with graph-based simulations [37].

In the default case lb is chosen to be equal to li,
but we also discuss smaller and larger ranges when
adding a newborn player to replace the old one.
As we will show the former option has no, while
the latter change does have relevant consequence
on the results. In general, it is important to em-
phasize that the evolutionary outcome could be sig-
nificantly different even if we use the same param-
eter values of the model. For instance the system
may be trapped into a homogeneous full defector
state, but we may also observe a coexistence phase
by using another seed value of our random number
generator. Therefore to obtain a reliable observa-
tion about the system behavior it is vital to average
the results of individual runs. At every parameter
values we distributed the competing strategies and
the positions of N players randomly and monitored
how the fractions of strategies change in time. After
we repeated every simulation 1000 times to obtain
the requested accuracy of averaged value.

3. RESULTS

First we summarize our observations obtained for
prisoner’s dilemma game and after we briefly out-
line the results of other dilemma games. But be-
fore jumping deep into the prisoner’s dilemma case
we first present the results obtained for different
lengths of the interaction range. This helps us to
get impressions and evaluate properly the charac-
teristic length scale of the li parameter. Figure 1

2



0

0.2

0.4

0.6

0.8

1

0.98 1 1.02 1.04 1.06

N=5000

K=0.1

ρ
C

T

li= lb=0.05

li= lb=0.50

li= lb=0.80

Figure 1: Cooperation level in dependence of temptation T
for prisoner’s dilemma. The applied characteristic length
values are indicated for each curves. If li = lb ≥ 0.8 then
we practically get back the behavior of a well-mixed system.
Curves are just to guide to the eye.

shows the cooperation level in dependence tempta-
tion value for different characteristic length scales.
Here we used the default model where the inter-
action (li) and reproduction (lb) ranges are equal,
while the consequences of unequal scales will be dis-
cussed later. Our first observation is the critical
temptation level where cooperators dies out is very
similar to those values we observed for simulations
on lattice-type interaction graphs [38]. There is,
however, a conceptual difference from the systems
simulated on lattices. As our present plot shows,
cooperators become fully dominant as we approach
T = 1 temptation value, which is missing in a
lattice-type environment. For example on square
lattice cooperators control only the two thirds of the
whole population even at T = 1 because the strict
degree number rule of nodes allows defectors to co-
exist with cooperators [39]. But in our off-lattice
environment there is no such artificial constraint
and the advantage of spatial reciprocity enjoyed by
cooperator strategy manifests entirely. Our plot
also warns us that by choosing too large character-
istic length scale the system behavior becomes prac-
tically identical to the one observed for well-mixed
population. In particular, if li = lb ≥ 0.8 then off-
lattice simulations reproduce the mixed, unstruc-
tured results. But if we keep the mentioned values
low then off-lattice simulations reveal the behavior
of structured populations.

Our second plot shown in Fig. 2 summarizes how
the total number of inhabitants modify the system
behavior. When the population is rare then the co-
operation level is significantly higher compared to
the cases when we increase the average number of
players. For example the critical threshold value of
temptation is about T = 1.03 for N = 7500, while
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Figure 2: Cooperation level as a function of temptation value
for different density of players. The total number of inhab-
itants are marked in the legend. Rare population provides
better chance for cooperation strategy.

the same temptation value provides a cooperator
dominance for the N = 2500 case. We should em-
phasize that the improvement of cooperation level
is conceptually different from the one observed on
lattice simulations where there was an optimal in-
termediate concentration of players which ensured
the highest cooperation level [40, 41, 42]. While the
lastly mentioned phenomenon was strongly related
to the percolation threshold of the specific lattice
structure, it has a different explanation in off-lattice
environment.

But before discussing its origin, let us compare
the time evolutions of cooperation level for an off-
lattice and a square-lattice environment. Impor-
tantly, all other parameters, including the tempta-
tion value, the noise level, the number of players
are identical to both cases. Figure 3 demonstrates
clearly that there is a strong fluctuation in off-
lattice environment compared to lattice-based sim-
ulations and the system travels between the full co-
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Figure 3: Time evolution of cooperation level obtained
for off-lattice and on square lattice simulations where all
other parameters, including temptation value, noise, and to-
tal number of inhabitants are equal. In particular, T =
1.015,K = 0.1, N = 5000. It is salient that the fluctuations
for off-lattice population are significantly larger than in case
of on-lattice population.
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Figure 4: Spatial distribution of players in a coexistence
phase. In both panels defectors are marked by red while
cooperators are denoted by blue color. In a rare population,
shown in panel (a), strategies can be separated easily result-
ing in a frozen final state. This phenomenon makes possible
for cooperators to survive even at a relatively high tempta-
tion value, as shown in Fig. 2. When the average density
of population is high, illustrated in panel (b), then compet-
ing strategies maintain a dynamical equilibrium. The latter
state is common in on-lattice populations. Parameters are
N = 2500, b = 1.03 for panel (a), and N = 7500, b = 1.01 for
panel (b). In both cases li = lb = 0.05 were applied.

operator and full defector states permanently. The
described phenomenon can be monitored in the at-
tached video where the color of population changes
almost periodically [43]. This animation also helps
us to understand the origin of this heavy oscilla-
tion. Importantly, the borders separating homoge-
neous domains are not as sharp as for graph-based
simulations. This soft intermediate zone allows de-
fectors to crack the phalanx of cooperators which
would be robust and steady in a lattice population.
As a result, homogeneous blue patches of cooper-
ators diminish eventually giving room for red de-
fector players. A homogeneous red patch, however,
becomes vulnerable, too, because in the absence of
cooperators defectors cannot exploit their neighbors
and they are unable to collect competitive payoff.

The above mentioned separating zone becomes
empty for small N values which has a crucial conse-
quence especially for higher temptation value. Here
a homogeneous island may become isolated from
the rest of the population, hence resulting in a co-
existence of competing strategies. In this frozen
state cooperators can survive even if the relatively
high temptation value would dictate a full defector
state on a lattice.

The two types of coexistence are illustrated in
Fig. 4. In panel (a) we have plotted the above men-
tioned frozen state which can be observed for small
N and high T values. Technically the competing
strategy “coexist”, albeit they have no proper inter-

0

0.2

0.4

0.6

0.8

1

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12

li= lb=0.05

K=0.1

P
c
o
e
x
.

T

N = 2500

N = 5000

N = 7500

Figure 5: The chance of coexistence between competing
strategies in dependence of the temptation value for different
numbers of inhabitants.

actions. Panel (b) illustrates a snapshot for a more
crowded population at a smaller temptation value
where the coexistence of strategies is a dynamical
process similar to those we described regarding the
animation.

The above described differences between the pat-
tern formation in rare and crowded population can
be made more quantitative if we plot the proba-
bility of coexisting state for populations containing
different numbers of inhabitants. This is shown in
Fig. 5, where we can see that crowded population
makes the coexistence harder. Either cooperators,
or defectors prevail depending on the temptation
value. Less busy population, however, can easily re-
sult in isolated patches, hence providing an escape
route for cooperators at harsh temptation values.

Next we briefly summarize the possible impact
of noise parameter in off-lattice environment. This
question could be specially interesting, because ear-
lier observations revealed that some character of the
interaction topology could be a decisive factor how
the critical threshold value depends on the noise
parameter [44]. More precisely, if there are over-
lapping triangles in the interaction graphs then the
critical threshold value where cooperators die out is
a decaying function of noise parameter. In the lack
of it the mentioned function is non-monotonous and
has an optimum at an intermediate noise strength.
This optimal level can be the result of a selection
process [45].

In on off-lattice simulation, in the absence of a
characteristic interaction topology, we observed a
different situation which represents a new type of
behavior. As Fig. 6 demonstrates, in off-lattice
environment a higher noise level ensures a better
chance for cooperators to survive. This effect is
again related to the above described isolation pro-
cess. At higher noise level the prompt invasion
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Figure 6: Noise dependence of cooperation level for pris-
oner’s dilemma game at fixed N and l values. By increasing
the uncertainty of imitation the cooperation becomes more
likely even at higher temptation values.

of defectors at larger temptation is not straight-
forward, which makes a chance for cooperators to
survive the first attack. Later they have a higher
chance to be isolated, hence to maintain a modest
cooperation level.

In the following we utilize the liberty of our model
and allow the defined length scales to be differ-
ent. Our key observations are summarized in Fig. 7.
First, we should note that the comparison is a bit
misleading because it suggests that lb < li destroys
significantly the cooperation level. But the proper
reason of this behavior is the pretty high value of
li = 0.25, which brings the system towards the
well-mixed condition. Normally, when li is below
0.1 then the application if smaller lb value does not
change the cooperation level significantly.

However, this is not valid when lb exceeds the
current li value. A typical curve is shown in Fig. 7,
which suggests that the increase of lb has two-fold
consequences. When the temptation is moderate
and the cooperator strategy would be dominant
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Figure 7: Cooperation level in dependence of temptation
value for smaller and larger range of birth process as indi-
cated in the legend. The chance of remote birth of newcomer
weakens the cooperation for moderate T , but increase it for
higher T values. This phenomenon is robust for other lb
values, too.
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Figure 8: The probability of coexisting state in dependence
of temptation value for normal and enlarged birth range. For
moderate T values enhanced birth distance reduces, while
for higher temptation values it boosts the chance of a two-
strategy final state.

then an enhanced lb helps defectors to jump into the
bulk of a cooperator island, which becomes more
vulnerable in this way. Consequently, the cooper-
ation level decays comparing to the li = lb case.
In contrast, for higher temptation the impact has
the opposite sign. Here the system would evolve
toward a full defector state in the default case. But
a higher lb might help cooperators to “escape” from
defectors. When such a remote patch becomes ho-
mogeneous then it can survive. In other words, in-
creasing lb has a similar impact on the system evo-
lution to the behavior we observed for smaller N in
the default li = lb case.

The above described argument can be supported
nicely if we measure the probability of coexistence
state in dependence of temptation. The comparison
can be seen in Fig. 8 where we can observe similar
behavior we presented in Fig. 5. Accordingly, the
message is clear: for moderate temptation the en-
hanced reproduction range prevents forming homo-
geneous (cooperative) state, while for larger temp-
tation values it helps to maintain coexistence state,
hence to increase the average cooperation level.

Summing up our observations, the off-lattice en-
vironment provides mostly similar evolutionary tra-
jectories to those previously reported for lattice-
based simulations, but the consequence of spatial
reciprocity could be stronger and the coexistence
of competing strategies is more dynamical in the
former case.

These conclusions remain intact when we leave
the prisoner’s dilemma game and consider snow-
drift and stag-hunt games. An illustration can be
seen in Fig. 9 where we plotted the cooperation
levels in dependence of the control parameter r
which makes possible to cross the related quadrant
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Figure 9: Cooperation level for snowdrift game and for stag-
hunt game where the applied control parameter crosses the
related quadrants of T − S diagonally. Similarly to the
lattice-based environments the transition from full C to full
D state is gradual in the first case and sharp in the second
case.

of T − S parameter plane diagonally. The green
square symbols show a gradual decay of cooperation
level for snow-drift game which agrees with previ-
ous observations in lattice populations [46, 47, 48].
In sharp contrast to this in the stag hunt game the
orange circle symbols sign a sharp transition from
the full cooperator to the full defector state as we
change the control parameter. But this feature is
again in good agreement with the reported behavior
of on-lattice populations [14, 49, 50, 51].

4. DISCUSSION

The application of graphs to describe interactions
of multi-agent systems becomes an extremely vi-
brant and successful theory in the last two decades.
Not really surprisingly, evolutionary game theory
has also enjoyed the benefit of this approach and
utilized its concepts and simulation techniques to
model more realistic dilemma situations [11, 16].
Let us stress very clearly that to understand collec-
tive behaviors based on graph-based modeling of-
fers not just a simpler technique, but it is proved
to be appropriate concept in several real-life sys-
tems. But there are cases where off-lattice sim-
ulations seem to be more appropriate, hence we
can not avoid the numerical difficulties of the latter
models. We just quote here some microbiological
systems, but other situations, like collective move-
ment or floating may also require off-lattice model-
ing [52, 53, 54, 55].

Our present work illustrates nicely that off-lattice
systems where interaction are described by social
dilemmas behave conceptually similar to those we
observed on lattice-based populations. Therefore

the latter, which are numerically more feasible,
could be a reliable tool to explore the collective
behavior of spatial populations. There are some
minor differences, however, which warn us that not
all predictions of lattice-based models are robust
enough to apply in general. For example, in a sys-
tem where the crowding is not really limited the so-
called spatial reciprocity may work more strongly.
We note that the role of aggregation was also re-
ported in another work where the comparison of
on- and off-lattice populations were also studied in
a different system [56]. But staying at our social
dilemma systems, the isolation of subgroups could
also be a phenomenon which has relevant conse-
quence on the system behavior.

One may claim that we only studied dilemmas
which are based on pair-interactions of players and
a system with multi-point interactions may behave
differently in off-lattice environment. Indeed, a
graph-based population ruled by public goods game
may behave slightly differently from populations
driven by prisoner’s dilemma [57]. But on the other
hand, even multi-point interactions were identified
as a key factor to diminish the differences of graph
topologies [58, 59, 60]. We therefore believe that
conclusions obtained off-lattice simulations remain
valid for games based on multi-point interactions,
but future works can confirm it in more detail.
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