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‡MTA-BME Lendület Research Group on Cyber-Physical Systems
Email: elekes@mit.bme.hu, davis@tamu.edu, szarnyas@mit.bme.hu

Abstract—The GraphBLAS standard defines a set of funda-
mental building blocks for formulating graph algorithms in the
language of linear algebra. Since its first release in 2017, the
expressivity of the GraphBLAS API and the performance of its
implementations (such as SuiteSparse:GraphBLAS) have been
studied on a number of textbook graph algorithms such as BFS,
single-source shortest path, and connected components. However,
less attention was devoted to other aspects of graph processing
such as handling typed and attributed graphs (also known as
property graphs), and making use of complex graph query
techniques (handling paths, aggregation, and filtering). To study
these problems in more detail, we have used GraphBLAS to solve
the case study of the 2014 SIGMOD Programming Contest, which
defines complex graph processing tasks that require a diverse set
of operations. Our solution makes heavy use of multi-source BFS
algorithms expressed as sparse matrix-matrix multiplications
along with other GraphBLAS techniques such as masking and
submatrix extraction. While the queries can be formulated in
GraphBLAS concisely, our performance evaluation shows mixed
results. For some queries and data sets, the performance is
competitive with the hand-optimized top solutions submitted to
the contest, however, in some cases, it is currently outperformed
by orders of magnitude.

I. INTRODUCTION

Motivation. Since the release of GraphBLAS [20] in 2017, its
applicability for graph analytical kernels has been studied in
depth [17], [28], [9], [19], [30], including all six algorithms
defined in the GAP Benchmark Suite [3]. While these efforts
focused on algorithms defined on untyped graphs with no
attributes (except edge weights for the shortest path algorithm),
graphs with types and attributes received less attention. Such
graphs, known as attributed graphs [24] or property graphs [1]
have gained popularity in recent years [23] by providing an
intuitive data model for modelling complex interconnected
systems such as social networks, telecommunications, and
financial transactions. The property graph data model allows
users to query their data using a rich set of operators including
graph pattern matching, cycle detection, using relational oper-
ators such as aggregation and filtering, running computations
along paths, etc. Consequently, there is an increasing demand
for graph databases capable of storing and processing such
data sets [5]. Still, as of today, there is no single system
available that ensures good performance on a diverse set of
graph operations. The reason behind this is threefold: (1) the
difficulty to overcome the “curse of connectedness”, i.e. the
inherently complex nature of graph data [25], (2) the lack

of a unified algebra for diverse graph queries, (3) the lack
of sophisticated optimization methods [24] which consider
the graph structure, its properties and their correlations [22].
We believe that the GraphBLAS API and its implementations
have already made significant progress in tackling the first two
problems and can be extended to tackle the last one.
Challenge. Integrating GraphBLAS into a property graph
query engine necessitates overcoming a number of challenges
including loading the graph, handling types and properties,
performing computations on induced subgraphs, evaluating
cyclic queries, computing aggregation and filtering operations,
etc. To demonstrate some of these problems, we use the 2014
SIGMOD Programming Contest as a case study [8].1 The tasks
of this contest are defined on a property graph and consist of
complex graph queries involving a mix of graph algorithms
(such as connected components), complex graph patterns (i.e.
basic graph patterns extended with relational-like features such
as filtering), and navigation [1].
Contribution. This paper presents a solution for the tasks of
the 2014 SIGMOD Programming Contest. We formulated and
implemented GraphBLAS algorithms for multiple BFS variants,
including bidirectional and multi-source BFS.
Related systems. We are aware of two systems that use
GraphBLAS to evaluate graph queries. RedisGraph [7] is a
graph database that uses SuiteSparse:GraphBLAS to evaluate
Cypher queries [13]. MAGiQ [14] is an RDF processing engine
which maps SPARQL queries to linear algebra. Currently,
neither of these systems supports workloads with queries as
complex as the ones given in the programming contest.
Related contests. The 2018 Transformation Tool Contest’s
“Social Media” case required participants to solve two queries
on a social network defined over a similar graph schema to
the one in the SIGMOD 2014 contest. This contest focused
on incremental evaluation and the complexity of the queries
was limited. We gave a GraphBLAS solution for this in [12].
Structure. This paper is structured as follows. Sec. II describes
the graph schema and the queries of the programming contest.
Sec. III outlines the GraphBLAS standard and its relevant
constructs. Sec. IV shows our GraphBLAS-based building
blocks, Sec. V presents our query implementations, and Sec. VI
discusses the experimental results. Finally, Sec. VII concludes.

1https://www.cs.albany.edu/∼sigmod14contest/

https://www.cs.albany.edu/~sigmod14contest/


II. GRAPH SCHEMA AND QUERIES

Graph schema. The social network instances used in the
contest are represented as a property graph [1] over the schema
shown in Fig. 1a. The edges in the graph are directed with the
exception of the knows edges which are treated as undirected.
Data sets. Data sets are produced by the LDBC Datagen [22].
This generates realistic power-law degree distribution for the
Person-knows-Person subgraph and introduces correlations and
anti-correlations (e.g. people in neighbouring countries are more
likely to become friends than people in distant countries).
Queries. The contest defines the following queries:
Q1. Shortest Distance over Frequent Communication Paths

(Fig. 1b): Given two integer Person IDs p1 and p2, and
another integer x, find the minimum number of hops
between p1 and p2 in the graph induced by Persons who
both have made more than x Comments in reply to the
other one’s Comments, and know each other.

Q2. Interests with Large Communities (Fig. 1c): Given an
integer k and a birthday d, find the top-k Tags. A Tag is
characterized with its range, i.e. the size of the largest
connected component in the graph induced by Persons
who are interested in that Tag, were born on d or later,
and know each other.

Q3. Socialization Suggestion (Fig. 1d): Given an integer k, an
integer maximum hop count h, and a Place name p, find
the top-k similar pairs of Persons based on the number of
common interest Tags. For each of the k pairs mentioned
above, the two Persons must be located in p or study
or work at Organisations in p. Furthermore, these two
Persons must be no more than h hops away from each
other in the original knows graph.

Q4. Most Central People (Fig. 1e): Given an integer k and a
Tag name t, find the top-k Persons based on the closeness
centrality value (CCV ) in the graph induced by Persons
who are members of Forums that have Tag t and know
each other. For each Person, CCV (p) = (C(p)−1)

2

(n−1)⋅s(p)
, where

C(p) is the size of the connected component of vertex p,
s(p) is the sum of geodesic distances to all other reachable
Persons from p, and n is the number of vertices in the
induced graph. If the divisor is 0, the centrality is 0.

III. THE GRAPHBLAS

Goal. The goal of GraphBLAS is to create a layer of abstraction
between the graph algorithms and the graph analytics frame-
work, separating the concerns of the algorithm developers from
those of the framework developers and hardware designers. To
achieve this, it builds on the theoretical framework of matrix
operations on arbitrary semirings [16], which allows defining
graph algorithms in the language of linear algebra. To ensure
portability, the GraphBLAS standard defines a C API that can
be implemented on a variety of hardware including GPUs.
Data structures. A graph with n vertices can be stored as a
square adjacency matrix A ∈ Nn×n, where rows and columns
both represent vertices of the graph and element A(i, j)
contains the number of edges from vertex i to vertex j. If

(a) Schema of the social network graphs. Only the relevant vertex,
edge, and property types are shown.

(b) Q1($p1, $p2, $x) → shortest path length.

(c) Q2($k, $d) → $k tag names.

(d) Q3($k, $h, $place) → $k pairs of Person IDs p1 ∣ p2 where p1 < p2.

(e) Q4($k, $t) → $k Person IDs.

Fig. 1: Graph schema and queries.



GrB method name notation

mxm matrix-matrix multiplication C⟨M⟩ =A⊕.⊗B
vxm vector-matrix multiplication w⟨m⟩ = u⊕.⊗A
mxv matrix-vector multiplication w⟨m⟩ =A⊕.⊗ u

eWiseAdd
element-wise, C⟨M⟩ =A⊕B
set union of patterns w⟨m⟩ = u⊕ v

eWiseMult
element-wise, C⟨M⟩ =A⊗B
set intersection of patterns w⟨m⟩ = u⊗ v

extract

extract submatrix C⟨M⟩ =A(I ,J)

extract column vector w⟨m⟩ =A(∶, j)
extract row vector w⟨m⟩ =A(i, ∶)
extract subvector w⟨m⟩ = u(I )

extractElement extract scalar element s =A(i, j)
s = u(i)

apply apply unary operator C⟨M⟩ = f(A)

w⟨m⟩ = f(u)

select (GxB) apply select operator C⟨M⟩ = f(A, k)
w⟨m⟩ = f(u, k)

reduce
reduce to column vector w⟨m⟩ = [⊕j A(∶ , j)]
reduce to scalar s = [⊕ijA(i, j)]

transpose transpose C⟨M⟩ =A⊺

build
matrix from tuples C ↦{I, J,X}

vector from tuples w ↦{I,X}

extractTuples extract index/value arrays {I, J,X} ↦A
{I,X} ↦u

TABLE I: GraphBLAS operations used in this paper (based on
[10]). Notation: Matrices and vectors are typeset in bold, start-
ing with uppercase (A) and lowercase (u) letters, respectively.
Scalars including indices are lowercase italic (s , i , j ) while
arrays are uppercase italic (X , I , J ). ⊕ and ⊗ are addition and
multiplication operators of an arbitrary semiring (defaulting to
conventional arithmetic + and × operators). Masks ⟨M⟩ and
⟨m⟩ are used to selectively write to the result matrix/vector.
The complement of a mask ⟨M⟩ can be selected with ⟨¬M⟩.

the graph is undirected, the matrix is symmetric. For graphs
with edge types, edges of each type can be represented as a
bipartite graph. For example, instances of the hasInterest
edge type between Person and Tag vertices can be stored in
a Boolean matrix with a row for each Person and a column
for each Tag, HasInterest ∈ B∣persons∣×∣tags∣. Edge types that
have the same source and target type are captured as square
matrices, e.g. Knows ∈ B∣persons∣×∣persons∣.
Navigation. The fundamental step in GraphBLAS is the
multiplication of an adjacency matrix with another matrix
or vector over a selected semiring. For example, the operation
HasMember LOR.LAND IsLocatedIn computed over the

“logical or.logical and“ semiring returns a matrix representing
the Places where a Forum’s members are located in. Meanwhile,
when computed over the conventional arithmetic “plus.times”
semiring, HasMember⊕.⊗ IsLocatedIn also returns the
number of such Persons. A traversal from a certain set of
vertices can be expressed by using a boolean vector f (often
referred to as the frontier, wavefront, or queue) and setting true
values for the elements corresponding to source vertices. For
example, for Forums f ∈ B∣forums∣, f LOR.LAND HasMember
returns the Persons who belong to any of the forums in f . The

BFS navigation step can also be captured using other semirings
such as LOR.FIRST, where FIRST(x, y) = x; LOR.SECOND,
where SECOND(x, y) = y; and ANY.PAIR, where ANY(x, y)
returns either x or y, and PAIR(x, y) = 1 [11].
Notation. Table I contains the list of GraphBLAS operations
used in this paper. Additionally, we use D = diag(I, n) to
construct a diagonal matrix with D(i, i) = 1 for i ∈ I . For a
more detailed overview of GraphBLAS, see [16] and [17].

IV. BUILDING BLOCKS IN GRAPHBLAS

A. Dense Vertex Relabelling

The vertices in the generated input graphs have sparse IDs,
i.e. identifiers which can take any UINT64 value. To map a
set of n sparse IDs to dense IDs which take up consecutive
values in the [0, n−1] range, we need to perform dense vertex
relabelling [27], also known as vertex permutation [4] and
mapping from sparse to dense keys [21]. A straightforward
way to implement this mapping from an array of sparse IDs
sparseids is to create a sparse vector as follows:

mapping ↦{sparseids, [0,1, . . . , n − 1]}

Given a sparse ID s, the GraphBLAS extract element operation
d = mapping(s) returns the corresponding dense ID d.
Meanwhile, mapping from a dense ID d to a sparse ID can be
performed trivially with an array lookup sparseids[d].
Implementation. Sparse vectors in SuiteSparse:GraphBLAS
are stored with their indices in increasing order, therefore this
step requires a sorting operation. Then, lookups are executed
using a binary search among the vector’s indices (of non-zero
values). In the rest of the paper, we assume that identifiers
have already been relabelled to dense.

Algorithm 1 Bidirectional BFS algorithm.
1: procedure BIDIRECTIONALBFS(A, v1, v2)
2: Input: A ∈ Bn×n; v1, v2 ∈ N
3: Data: frontier1, frontier2,next1,next2, seen1, seen2 ∈ Bn

4: Output: length ∈ N ▷ length of unweighted shortest path
5: if v1 = v2 then return 0
6: frontier1, seen1 ↦{[v1], [true]}
7: frontier2, seen2 ↦{[v2], [true]}
8: for level = 1 to ⌈n/2⌉ do
9: next1⟨¬seen1⟩ =A LOR.LAND frontier1

10: if next1 is empty then return no path found
11: if next1 LAND next2 is not empty then return 2 × level − 1

12: next2⟨¬seen2⟩ =A LOR.LAND frontier2
13: if next2 is empty then return no path found
14: if next1 LAND next2 is not empty then return 2 × level
15: seen1 = seen1 LOR next1
16: seen2 = seen2 LOR next2
17: frontier1 = next1
18: frontier2 = next2

B. Bidirectional Search

Both queries 1 and 3 require bidirectional search: the former
searches for the shortest path between two Persons (where each
pair of Persons along the path edge satisfies a constraint on
the number of interactions), while the latter looks for pairs of
Persons who are at most h hops away. Bidirectional search



step 1 step 2 step 3
f1 f2 f1 f2 f1 f2

0 ⬤
1 ⬤
2 ⬤
3 ⬤
4 ⬤
5 ⬤
6 ⬤

next⟨¬seen⟩ = A  LOR.LAND  frontier
A
0 1 2 3 4 5 6 n1 n2 n1 n2 n1

0 ⬤
1 ⬤ ⬤ ⬤
2 ⬤ ⬤ ⬤
3 ⬤ ⬤ ⬤
4 ⬤
5 ⬤ ⬤ ⬤ ⬤ ⬤
6 ⬤ ⬤ ⬤ ⬤

seen = seen LOR next
step 0
s1 s2 s1 s2 s1 s2 s1

0 ⬤ ⬤ ⬤ ⬤
1 ⬤ ⬤ ⬤
2 ⬤
3 ⬤ ⬤
4 ⬤ ⬤ ⬤
5 ⬤ ⬤
6 ⬤ ⬤

(a) Bidirectional BFS from vertices 0 and 4.

Frontier[1] = Seen[0] Frontier[2]
0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 ⬤ ⬤ ⬤
1 ⬤ ⬤ ⬤ ⬤
2 ⬤ ⬤ ⬤ ⬤
3 ⬤ ⬤ ⬤
4 ⬤ ⬤ ⬤
5 ⬤ ⬤
6 ⬤ ⬤

Next⟨¬Seen⟩ = A LOR.LAND Frontier
A Next[1] Next[2]
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
1 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
2 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
3 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
4 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
5 ⬤ ⬤
6 ⬤ ⬤

Seen = Seen LOR Next
Seen[0] Seen[1] Seen[2]
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
1 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
2 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
3 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
4 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
5 ⬤ ⬤ ⬤ ⬤ ⬤
6 ⬤ ⬤ ⬤ ⬤ ⬤

(b) Boolean MSBFS.

Frontier[1] = Seen[0] Frontier[2]
0 1 0 1

0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0

2 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0

3 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

Next = (A BOR.SECOND Frontier) BAND (BNOT Seen)
Next[1] Next[2]
0 1 pc s 0 1 pc s

0 0 1 0 1 0 0 0 0 2 2 0 0 1 0 1 0 0 0 2 6
1 1 0 1 0 1 0 0 0 3 3 0 0 0 1 0 0 0 0 1 5
2 0 1 0 1 1 0 0 0 3 3 1 0 0 0 0 0 0 0 1 5
3 1 0 1 0 0 0 0 0 2 2 0 1 0 0 1 0 0 0 2 6
4 0 1 1 0 0 0 0 0 2 2 1 0 0 1 0 0 0 0 2 6
5 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1

Seen = Seen BOR Next
Seen[1] Seen[2]
0 1 0 1

0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0

1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0

2 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0

3 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0

4 0 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0

5 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0

6 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0

(c) Bitwise MSBFS.

Fig. 2: Example BFS executions: bidirectional BFS and MSBFS algorithms. MSBFS algorithms start from all vertices. Notation:
∎ blocked by mask ¬Seen (boolean) or by the 0 bit in BNOT Seen (bitwise), ∎ new non-zero value/bit added, ∎ 0-padding.

Algorithm 2 Boolean all-source MSBFS algorithm.
1: procedure BOOLEANMSBFS(A)
2: Input: A ∈ Bn×n

3: Data:
4: Frontier,Seen ∈ Bn×n

▷ initialized to all vertices
5: Next ∈ Bn×n

▷ initially empty
6: for k = 0 to n − 1 do ▷ initialize diagonal matrix
7: I[k] = k, X[k] = true

8: Frontier,Seen ↦{I, I,X}

9: for level = 1 to n − 1 do
10: Next⟨¬Seen⟩ =A LOR.LAND Frontier
11: if Next is empty then break
12: Frontier =Next
13: Seen = Seen LOR Next

in GraphBLAS can be implemented as two alternating BFS
traversals as shown in Alg. 1 and illustrated in Fig. 2a. To
perform a search performed between vertices v1 and v2, we
initialize two frontier vectors, each containing one non-zero
value at position v1 and v2, respectively. In each iteration l,
we advance the first frontier and check whether its intersection
with the current (not yet advanced) state of the second frontier
contains any elements. If so, we found a path of length 2× l−1.
If not, we advance the second frontier and intersect it with the
first frontier. If the intersection has any elements, we found a
path of length 2× l. If the new frontier is empty in either case,
no path can be found between vertices v1 and v2.

C. Multi-Source Breadth-First Search

Boolean MSBFS. Highly-optimized multi-source BFS algo-
rithms have been used by multiple teams in the programming
contest [26], [15] to efficiently evaluate queries 3 and 4. In

Algorithm 3 Bitwise all-source MSBFS algorithm. Notation:
popcount is a unary operator that counts the number of bits in
an UINT64 value. Lines 18–21 compute the CCV (cf. Alg. 7).

1: procedure BITWISEMSBFS(A)
2: Input: A ∈ Bn×n

3: Data:
4: I, J,X ∈ UINT64n

5: Frontier,Next,Seen ∈ UINT64n×⌈n/64⌉
6: sp ∈ Nn,cpmo ∈ [0,1]n ▷ s(p),C(p) − 1

7: Output: ccv ∈ [0,1]n ▷ closeness centrality values
8: for k = 0 to n − 1 do ▷ initialize bit diagonal matrix
9: I[k] = k, J[k] = k/64, X[k] = 1 << (64 − (k mod 64))

10: Frontier,Seen ↦{I, J,X}

11: for level = 1 to n − 1 do
12: Next =A BOR.SECOND Frontier
13: Next⟨Next⟩ BAND= BNOT(Seen)
14: Next = GxB NONZERO(Next) ▷ prune explicit zeros
15: if Next is empty then break
16: Frontier =Next
17: Seen = Seen BOR Next

18: nextCount = [⊕jpopcount(Next)(∶, j)]
19: sp ⊕= nextCount × level
20: cpmo = [⊕jpopcount(Seen)(∶, j)] − 1 ▷ C(p) − 1

21: return (cpmo⊗ cpmo) ⊘ ((n − 1) ⊗ sp) ▷
(C(p)−1)2
(n−1)⋅s(p)

the GraphBLAS community, it is established that matrix-
matrix multiplication is a natural and efficient way to express
MSBFS [29]. Using this idea, a GraphBLAS-based MSBFS
algorithm is shown in Alg. 2 and illustrated in Fig. 2b.
Bitwise MSBFS. A key optimization among top-ranking teams
was using bit arrays and bitwise manipulations to improve
the performance of MSBFS. With the recent introduction of
bitwise operators (e.g. GrB_BAND) in GraphBLAS v1.3 [6], it is



possible to use this optimization for MSBFS, shown in Alg. 3.

V. QUERIES

Query 1. Our implementation for Q1 (Alg. 4) first determines
the induced subgraph. If the threshold x for the number of
interactions is −1, we use the Knows matrix, otherwise, we
produce a matrix by traversing the hasCreator and replyOf
edges, then filter for values larger than x. The length of the
shortest path between the selected Persons is determined by
running a bidirectional BFS (Alg. 1) on the induced subgraph.
Query 2. In Alg. 5, we first create a mask that corresponds to
Persons born on d or later. We then iterate through each Tag
(implemented as an outer OpenMP parallel for loop in our code),
and determine Persons who are interested in said Tag and are
kept by the mask. We extract the knows subgraph and compute
connected components using the FastSV algorithm [30], then
determine the size of the largest component. Finally, we return
the top-k tags based on their component size.
Query 3. In Alg. 6, we first compute the “local” Persons
for the given place. The query requires us to determine pairs
of Persons whose distance in the knows graph is at most h
hops. However, instead of evaluating the h-neighbourhood
for each Person (which can get excessively large due to the
exponential growth of the frontier), we look for “meeting
vertices” (meetings) that are reachable from both Persons in
at most ⌊h/2⌋ steps. Therefore, we initiate an MSBFS from
all Persons (Lines 5–9) and run it for ⌊h/2⌋ iterations. In the
resulting Seen matrix, row i represents the vertices reachable
from Person i. A column j with more than one non-zero value
captures a “meeting vertex”. For example, non-zero values in
elements Seen(x, j) and Seen(y, j) imply that j is a meeting
vertex between Persons x and y. We enumerate the pairs
of Persons for each meeting vertex (concurrently) and store
them in matrix CommonInt which represents the common
interests of Persons. Finally, we return top-k maximum values.

Since MSBFS steps move all frontiers simultaneously, special
care needs to be taken for odd h values to ensure that the
meeting vertex is at most ⌊h/2⌋ steps from one local Person
and ⌊h/2⌋ + 1 steps from another one (yielding a total value
of h). Therefore, once we performed the first ⌊h/2⌋ steps, we
do an extra MSBFS step to advance the frontier and set the
found elements to value 0.5 (Lines 10–12). Then, we filter for
columns with a value larger than 1 (Line 13), thus omitting
meeting vertices that only have two 0.5 values. Finally, we
check the corresponding columns in Seen and only keep pairs
of Persons whose summed values are larger than 1 (Line 16).
Query 4. Our solution for Q4 (Alg. 7) first navigates from
the given Tag t to its Forums then to member Persons of such
Forums. Then, it selects the corresponding rows/columns of
the Knows matrix and computes the CCV values using a
bitwise MSBFS algorithm (Alg. 3).

VI. EVALUATION

A. Benchmark Setup

Goal. We designed an experiment to compare the performance
and scalability of our implementation against the top solutions.

Algorithm 4 Implementation of Q1 using Alg. 1.

1: Input: p1, p2 ∈ N ▷ target persons
2: x ∈ {−1,0,1,2, . . .} ▷ threshold
3: Output: l ∈ Z+ ▷ length of the shortest path between p1 and p2
4: if x = −1 then
5: A =Knows
6: else
7: PA2Comment =HasCreator⊺ ⊕.⊗ReplyOf
8: PA2PB⟨Knows⟩ = PA2Comment⊕.⊗HasCreator
9: A = GreaterThan(PA2PB, x)

10: A =A LAND A⊺
▷ ensure that x interactions happened both ways

11: return BIDIRECTIONALBFS(A, p1, p2)

Algorithm 5 Implementation of Q2. For CONNECTEDCOM-
PONENTS, we use the FastSV algorithm [30].

1: Input
2: k ∈ N, d ∈ Date ▷ number of top-k tags, lower bound for birthdays
3: birthDay ∈ Date∣persons∣

4: Output: [t1, . . . , tk] ∈ Nk
▷ top-k tags

5: birthDayMask = GreaterThanOrEq(birthDay, d)
6: for t = 0 to ∣tags ∣ − 1 do
7: interestedPerson⟨birthDayMask⟩ =HasInterest (∶, t)
8: {Pt, } = interestedPerson
9: Knows t =Knows (Pt, Pt)

10: component ids = CONNECTEDCOMPONENTS(Knows t)
11: scores[t] = (maxi∈component ids counti(component ids), t)

12: return top-k tags t based on their score from scores

Algorithm 6 Implementation of Q3 using Alg. 2. The call
GETPERSONSFORPLACE returns Persons for a given Place.

1: Input: place ∈ N, k ∈ N ▷ place, number of top tags to return
2: Data: Frontier,Next ∈ Bn×n,Seen ∈ Qn×n

3: Output: {(p1,1, p2,1), . . . , (p1,k, p2,k)} ⊂ Nk
×Nk

▷ top-k pairs
4: localPersons = GETPERSONSFORPLACE(place) ▷ details omitted
5: Frontier,Seen = diag(localPersons, n)
6: for level = 1 to ⌊h/2⌋ do
7: Next⟨¬Seen⟩ = Frontier LOR.LAND Knows
8: Seen = Seen LOR Next
9: Frontier = Next

10: if h is an odd number then
11: Next⟨¬Seen⟩ = Frontier LOR.LAND Knows
12: Seen⟨Next⟩ = 0.5 ▷ mark the last frontier
13: meetings = GreaterThan ([⊕iSeen(i, ∶)],1) ▷ pruning
14: for all j where meetings(j) is non-zero do
15: {I,X} ↦Seen(∶, j)
16: for all pairs of person indices p1, p2 ∈ I where p1 < p2 do
17: if X[p1] +X[p2] > 1 then
18: CommonInt(p1, p2) = 0 ▷ common interest count
19: CommonInt⟨CommonInt⟩ =HasInterest⊕.⊗HasInterest⊺
20: return top-k (p1, p2) pairs where p1 < p2 in CommonInt

Algorithm 7 Implementation of Q4 using Alg. 3.

1: Input: k ∈ N, t ∈ N ▷ number of top persons to return, tag id
2: Output: l ∈ [0,1] ▷ closeness centrality value
3: {I, } = (HasTag(∶, t) LOR.LAND HasMember)
4: A = diag(I, n) LOR.LAND Knows LOR.LAND diag(I, n)
5: return BITWISEMSBFS(A)



data set (#persons) 1k 10k 100k 1M
total vertices 611 434 6 389 475 63 391 437 631 648 214
total edges 1 910 684 19 769 080 195 547 183 1 948 640 608

TABLE II: Number of entities in the input graphs.

Solutions. We implemented our solution in C++ using version
v3.3.3 of SuiteSparse:GraphBLAS and the latest LAGraph
library [19].2 We compared our implementation against two
solutions of the programming contest created by teams “AWFY”
(ranked 1st) and “blxlrsmb” (ranked 4th), updated for GCC 9.3

Data sets. We were unable to obtain the data sets used in the
contest, therefore we generated similar ones using the LDBC
SNB Datagen’s [22] 2014 version.4 The data set statistics are
shown in Table II. We also implemented a parameter generator
that produces query input parameters using uniform sampling.
Environment. We performed the experiments on a cloud virtual
machine with 32 (logical) Intel Xeon Skylake CPU cores
clocked at 2GHz, 120GB RAM, and SSD storage, running
Ubuntu 20.04. We used the GCC 9.3.0 compiler. We ran each
benchmark with 80 different parameters.

B. Analysis

Performance. We visualized the distribution of the execution
times obtained during the experiments: load times are shown in
Fig. 3a and computation times in Fig. 3b. For load times, other
solutions consistently outperform our solution. AWFY provides
particularly fast loads (which can be attributed to its usage of
advanced CSV loading techniques presented in [21]). However,
for computation times, our solution is competitive for Q2 (often
outperforming other solutions). It provides good performance
for Q3 and Q4, staying within an order of magnitude compared
to the other highly-optimized solutions. Our solution exhibits
a bimodal distribution for Q1, which can be attributed to the
configuration parameter x: for x > −1, computing the induced
subgraph is expensive. The execution times of our solution
for Q1 are noticeably longer than the competition’s due to
precomputing the entire induced graph (instead of computing
the relevant edges on-the-fly during traversal).
Conciseness. We characterized the conciseness of each solution
using lines of C++ code: AWFY consisted of 9,800 lines,
blxlrsmb used 6,500 lines, while our code used 3,500 lines.
Threats to validity. We remark that the solutions used in the
experiments are 6+ years old and might be improved by further
optimizations that were unavailable at the time of the contest.
We have updated the solutions to GCC 9 but did not apply any
further optimizations nor did we contact their original authors.

VII. CONCLUSION AND FUTURE WORK

We presented a concise GraphBLAS solution for the 2014
SIGMOD Programming Contest’s queries. Even though our
code has no direct calls to low-level CPU instructions (unlike
the top contest solutions), its computation performance for
queries 2, 3, and 4 on large graphs is within 1–2 orders of

2https://github.com/ldbc/sigmod2014-pc-graphblas
3https://github.com/ftsrg/sigmod2014-pc-top-solutions
4https://github.com/ldbc/ldbc snb datagen/releases/tag/early2014
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(a) Load times of the solutions.
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(b) Computation times of the solutions.

Fig. 3: Execution times of queries.

magnitude to the top solutions. A limitation of our current
solution is an expensive load step, which often takes longer the
computation itself. For this reason, our solution works best in
cases when multiple queries are performed on the same graph.

As future work, we plan to apply direction-optimization [2],
also known as push/pull [28] to the bidirectional and MSBFS
algorithms, and improve the load performance by using a
concurrent hashmap such as Folklore [18].

https://github.com/ldbc/sigmod2014-pc-graphblas
https://github.com/ftsrg/sigmod2014-pc-top-solutions
https://github.com/ldbc/ldbc_snb_datagen/releases/tag/early2014
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