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Abstract⎯ A new index for climate change assessment has been introduced. It is a ratio 
between the number of cases from a future period and the cases of a control experiment 
(reference period) falling within a predefined interval of the reference period. By "case" 
we mean the value of a meteorological element that meets certain conditions. 
Additionally, its conservation is a necessary condition for reducing the risk of losing a 
reliable signal of the modeled variability of future climate when applying bias correction 
methods (BCM’s). The spatial distribution of this index is presented by using two 
regional climate models, ALADIN and RegCM4, over an area including the Balkan and 
Apennine Peninsulas. The assessment is performed for the average monthly temperature 

and precipitation. Both models have similar indices in broad areas. In winter, spring, and 
summer this refers to temperature and in spring and summer to rainfall. 
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1. Introduction 

For assessment of climate change by numerical model experiments, we usually 
consider differences (tendencies) between the future and a reference (control) 
period. Thus, to a certain extent, the systematic error of the simulations is 
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compensated. This difference can be added to actual observations to obtain 
future values. In some papers this method is mentioned as “delta change” 
approach (Teutschbein et al., 2011). Later, this method will be described. 
Although, the models are deterministic, their results are often postprocessed by 
statistical methods as random processes. There are two main reasons for 
applying the statistical approaches. The first one is statistical downscaling when 
the climate model grid resolution is quite coarse. This is usually the case with 
global climate models. “Downscaling” is a method of obtaining high-resolution 
climate or climate change information from relatively coarse-resolution global 
climate models (GCMs). The dynamical downscaling is achieved through 
regional climate models (RCM), such as RegCM and ALADIN. Statistical 
downscaling methods cover regression-type models including both linear and 
non-linear relationships established between the output of the model and a more 
dense set of local observations (Mearns et al., 1999; Huth, 1999). In addition to 
achieving a finer resolution, some of these methods also eliminate systematic 
errors (biases). This gives the idea to change the results of dynamical 
downscaling to match observations. Numerous methods for such modification 
are known as “bias correction methods” (BCMs). This procedure is necessary in 
many cases, when we use climate model results as input data for other impact 
models such as hydrological, agricultural (Navarro-Racines et al., 2015; Haerter 
et al., 2015), and air quality models. In this case, it is necessary to use the daily 
values from the output of dynamic models. Consequently, the output of dynamic 
models must be adjusted to match the statistical structure of daily observations. 
An example of this is the so-called “drizzle” problem (Dai, 2006). By this 
terminology the trend of the climate models to precipitate too frequently at 
reduced intensity is denoted. Such an input for hydrological models makes them 
unusable. The term “bias correction” includes much more transformation than 
the simple removing of bias between model results and observations. The 
transformation of the model results from the so-called control or reference 
experiment (run) is used to match them to the observing data or other data 
considered as reference, for example to re-analyses. It is assumed that if the 
output of the model differs from observations in the same reference period, there 
will be a false signal in the future simulations. The applied techniques can be 
summarized by defining a “transfer function” between observed and reference 
(control) values, so that the obtained probability density function (pdf) (or 
cumulative density function cdf)  corresponds to the measured data for the 
reference period or to the data considered as reference. Then, this "transfer 
function" is applied to the results obtained for the future period. Gaussian kernel 
(Sippel et al., 2016) and gamma distribution (Piani et al., 2010) as cumulative 
density function can be used. The distribution of Weibull is often applied to the 
wind. Various methods are used, such as “multiple linear regression”, “analogue 
methods”, “local intensity scaling”, and “quantile mapping”. After all, the result 
could be described as transformation of the probability density function or 
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cumulative distribution function. The multiple linear regression method has a 
linear transfer function, but others may or may not have that property. If we 
denote pdf as S, the linearity means that after applying the linear transfer 
function F(a,b), the new pdf (or S’) should obey on the relation S’ = a*S +b, 
where a and b are constants. The simplest case is when a = 0. In this case S 
moves at distance b from its original position. Most of these methods are 
included in the software developed in Cattaneo et al. (2015). In Deque (2007) 
another method is described which is similar to quantile mapping. 

There are no observations in the future, so we have to rely on the 
assumption of correct extrapolation of these methods in the changing climate. 
As noted in Ehret et al. (2012): "however, in the context of CCIS (Climate 
Change Impact Studies), the definition of bias is not as strict: it varies with the 
scope of the studies and is often used in a general sense for addressing any 
deviation of interest (e.g., with respect to mean, variance, covariance, length of 
dry spells, etc.) of the model from the corresponding "true" value ". A critical 
analysis and review of the most commonly used methods can be found in 
Maraun (2016). 

Here, we propose a way to avoid the risk of losing a reliable climate change 
signal when using some BCM’s. Some may lead to the loss of an otherwise 
properly predicted change. As it is mentioned in Grillakis et al. (2017): 
“However, it is well known that quantile mapping may significantly modify the 
long-term statistics due to the time dependency of the temperature bias”. In 
many BCM’s, the different meteorological fields are treated independently. That 
may lead to some discrepancies. For example, hydrological impact models 
require assessment of evaporation and evapotranspiration. This means 
consistency between changes in temperature, wind, and solar radiation. The 
separate correction loses the relationships between them. As noted in Hagemann 
et al. (2011): "Some more uncertainties have occurred over several dry regions 
and seasons, especially for precipitation. Here, any projected changes in 
discharge and their subsequent impact on water resources have to be carefully 
considered, with and without using bias corrected GCM data” In Dosio (2016) a 
possible distortion of the climate change signal is noted: ”The mean climate 
change is conserved by bias adjustment only if the bias is constant, which is not 
the case for the RCMs’ results over large part of Europe”. Here the effect of bias 
correction on a number of climate indices from the Expert Team on Climate 
Change Detection and Indices (ETCCDI) have been investigated. In Pierce et 
al., (2015) it is mentioned: “The quantile mapping and cumulative distribution 
function transform can significantly alter the global climate model’s mean 
climate change signal, with differences of up to 2 °C and 30% points for 
monthly mean temperature and precipitation, respectively”. Different 
approaches to BCM’s attempt to avoid potential drawbacks. Preservation of the 
originally modeled long-term signal in the mean, the standard deviation and 
higher and lower percentiles of temperature is investigated in Grillakis et al. 
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(2017). A method for reducing errors in the models’ simulation of variance as a 
function of frequency is proposed in Pierce et al. (2015). In Switanek et al. 
(2017), instead of quantile mapping, a scaled distribution mapping technique is 
developed. The question to be answered is “to what extent a certain bias 
correction method can be applied, and in which area it can be applied”. 

2. Definition and properties of the proposed C-index for climate change 
evaluation 

The values of any meteorological element obtained through a reference (30-
year-long) period simulation, have various statistical distributions for each grid 
point of the model. The future period simulation (again 30 years) leads to a new 
distribution for each grid points. Let XR be the number of cases from the 
reference period that belong to an interval of a set of values (δ1, δ2). Let XF be 
the number of cases from the future period that fall within the same interval 
from the reference period. The ratio 
 
  С = XF / XR   (1) 
 
is another possible measure of climate change at each grid point. This ratio will be 
called “C-index”. When C < 1, the number of cases from the future period are less 
than those from the reference period for the defined interval, and when C ≥ 1 the 
number of cases from the future period are maintained or increased with  regard 
to the reference period cases for the same interval. For example, the number of 
cases above a certain value during the reference period are compared to the 
cases of the future period. This measure has a “relativistic” meaning, i.e., how 
the future weather would look like for the observer from the reference (control) 
simulation period. 

According to this definition, the necessary condition for any bias correction 
method, which should not cause distortion of pdf or cdf is that the value of  C 
(whatever it is) should not change. In other words, if B is the “transfer function” 
mentioned above, then 

 
 В(XF) / В(XR) = XF / XR =C (2) 
 

is the necessary condition that is valid only for the defined interval of C-index. 
This is a partial answer to the question raised above. 

The conservation of C depends on the bias correction method (BCM). We 
will show that the linear transformation (“linear transfer function”) does not 
change this ratio. If the transfer function is non-linear, this feature is not 
guaranteed, but there may be an interval in which the C-index remains 
unchanged. Another possibility is to approximate the non-linear function by a 
piecewise linear function. 
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Let the values of an element (temperature, precipitation, etc.) from the 
future period fall within a certain interval before the transformation: 

 
 X1R  < XF  < X2R ,   (3) 
 
where X1R and X2R  determine the interval of interest from the reference 

period in which the cases XF  from the future period fall. We will prove that for 
any linear transformation: 

 
 Y = AX + B, (4) 
 

for which, when A ≥ 0 the future cases falling within this range are preserved, 
i.e.: 

 
 AX1R +B < AXF + B < AX2R + B . (5) 
 
Let us consider the left inequality and assume the opposite, 
 
 AX1R +B  ≥  AXF + B, (6) 
 
or 
 A(X1R - XF) ≥ 0. (7) 
 
When A > 0, we get X1R ≥ XF, which contradict to Eq. (3). In the same way, 

the correctness of the right part of Eq. (5) is proved. Once this is true for all of 
the cases, it is also true for the ratio of their sum C. The particular case, A = 0, is 
when probability density function (pdf) is only "moved" on the X-axis. 

The proposed index is an indicator, which signs if the signal from the 
control run to the future one is changed by the applied “bias correction” method.  

One important question is how stable the value of C i.e., the ratio XF / XR is. 
This depends on the inherent errors of the model (for example, as a result of 
accepted parameterizations, approximation of equations, etc.). The following 
equation Eq. (8) shows that if the error is proportional to the value of X, the ratio 
between the reference and the future simulation does not change. The “drizzle” 
effect mentioned above actually is an error of the magnitude of rainfall rates 
simulated by the model Dai (2006) and Sun et al. (2006). The error component 
proportional to the magnitude does not affect the C-index. 

Let k be the error coefficient, then: 
 
 (XF + k XF ) / (XR + k XR )  =  XF(1+ k) / XR(1+ k) = XF  / XR .  (8) 
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Note, that this index is determined separately for each point of the model's 
grid. So, instead of fixed thresholds, it is possible to have different intervals at 
each grid point. This will be illustrated in the next example. 

3. Example with an interval defined by standard deviation σ and mean µ 

We will illustrate the C-index by looking at the change of the number of cases 
falling within a certain interval (δ1=µ-σ; δ2=µ+σ). The C-index is determined 
by the ratio of the number of cases of the future period and the reference period 
falling within this range defined by the mean μ and the standard deviation σ of 
the reference period. 

About 68% of values drawn from the Gaussian distribution are within one 
standard deviation σ away from the mean µ. Let the cases falling within this 
interval be considered as "normal", and the cases outside it as "extreme". When 
C ≥ 1, more cases of the future period fall within this interval, i.e., in this 
definition the future period becomes "more normal" from the point of view of 
the “referent period simulation observer”, and this change will not seriously 
affect the environment, but it is possible to have more cases of “extreme” 
weather outside this interval. When C < 1, it means that less cases from the 
future period fall in the interval defined by the reference period, i.e., this can be 
considered as a sensitive climate change. The smaller the C, the greater the 
change. 

Simulation results with the regional model ALADIN forced with boundary 
conditions from the ARPEGE global (A1B scenario) and RegCM4.4.5 regional 
climate models (Giorgi et al., 2012) forced with boundary conditions from the 
HadGEM2-ES global climate model (Hadley Centre Global Environment Model 
– Earth-System version 2, Collins et al., 2011) according to the RCP45 scenario 
(Thomson et al., 2011) were used. Both models have a resolution of 20 km. In 
Figs. 1 and 2, the C-index distribution of the temperature value from ALADIN 
and RegCM4 models by seasons (winter - DJF; spring – MAM; summer – JJA; 
and autumn – SON) is shown. Areas with C ≥ 1 are marked in red (C > 1) and 
orange (C = 1) (actually, where the weather is "usual"). For C < 1, the color 
gradation is by intervals of 0.2. In Figs. 1a and 2a, temperature tendencies with 
ALADIN and RegCM4 models are shown, i.e., the difference between the future 
and reference periods by seasons in degrees Celsius (°C). For the 2021–2050 
period the warming trend is notable throughout the whole year for both models, 
especially during the JJA season. Similarly, in Figs. 3 and 4, the C-index 
distribution of precipitation values for both models is presented, while in 
Figs. 3a and 4a, the tendencies for precipitation calculated by the two models 
are shown (in %). Both models show less precipitation in summer (JJA) and 
more precipitation in spring (MAM). 
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Fig. 1. Temperature C-index distribution from ALADIN model simulation for reference 
(1975–2004) and future (2021–2050) periods by seasons (winter - DJF; spring - MAM; 
summer - JJA; autumn - SON). 

 
Fig. 1a. Temperature tendencies with ALADIN model - difference between future (2021–
2050) and reference (1975–2004) periods by seasons (winter - DJF; spring - MAM; 
summer – JJA; autumn - SON) in °C. 
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Fig. 2. Temperature C-index distribution from RegCM4 model simulation for the 
reference (1975-2004) and future (2021-2050) periods by seasons (winter - DJF; spring - 
MAM; summer - JJA; autumn - SON).  

 
 

 
Fig. 2a. Temperature tendencies with RegCM4 model - difference between future (2021-
2050) and reference (1975-2004) periods by seasons (winter - DJF; spring - MAM; 
summer - JJA; autumn - SON) in °C. 
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Fig. 3. Precipitation C-index distribution from ALADIN model simulation for reference 
(1975–2004) and future (2021-2050) periods by seasons (winter - DJF; spring - MAM; 
summer - JJA; autumn - SON). 

 
 

 
 

Fig. 3a. Precipitation tendencies with ALADIN model - difference between future (2021–
2050) and reference (1975-2004) periods by seasons (winter - DJF; spring - MAM; 
summer - JJA; autumn - SON in %. 
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Fig. 4. Precipitation C-index distribution from RegCM4 model simulation for reference 
(1975–2004) and future (2021-2050) periods by seasons (winter - DJF; spring - MAM; 
summer - JJA; autumn - SON). 

 

 
 

 
Fig. 4a. Precipitation tendencies with RegCM4 model - difference between future (2021–
2050) and reference (1975-2004) periods by seasons (winter - DJF; spring - MAM; 
summer - JJA; autumn - SON) in %. 



561 

For both models, the biggest changes, i.e., large areas with small values of 
the C-index occur during the summer season. For the RegCM 
model,temperature C-index maps (Fig. 2) show small values (C < 1) in winter 
and summer over the whole area and small C-index in autumn over a significant 
area in the northern part of the modeled domain. In spring, C ≥ 1 over the whole 
area. The RegCM precipitation C-index spatial distribution maps (Fig. 4) show 
small C-index (C < 1) in summer (especially in the northern part of the domain). 
In winter and spring, the RegCM precipitation C-index (Fig. 4) is equal to or 
more than 1 over a significant part of domain. For the ALADIN model, 
precipitation C-index distribution maps (Fig. 3) show small C-index in summer 
over the central and north-eastern parts of the domain, where the model shows 
the biggest changes in precipitation. These examples illustrate the added value 
of applying the C-index as a measure of climate change. If the tendencies are 
small (e.g., zero) and the σ of the future climate simulation is greater than the σ 
of the reference period, then the C-index may be much smaller than 1 
(significant change). The opposite situation is when the value of the index is 
about 1 (relatively small change in climate in the sense of preserving or 
increasing the number of cases falling within the specified interval), and the 
trend is significant. In this regard, we would like to draw attention to two 
specific cases. The first one occurs in the spring season on the RegCM4 
temperature (Fig. 2a) and C-index temperature distribution maps (Fig. 2). It is 
shown that in the northeastern part of the domain, where temperature warming is 
above 2 °C, the C-index distribution is more than 1. The other case occurs in the 
autumn season on the ALADIN temperature (Fig. 1a) and C-index temperature 
distribution maps (Fig. 1), where in the northeastern parts of the domain, the 
temperature warming is also about 2 °C, while the corresponding C-index is 
greater than 1. If the interval (μ - σ; μ + σ) is considered as an interval of cases 
with “normal” temperature or precipitation, the increasing of their number in the 
future is not considered as a dangerous climate change. This means, that in these 
cases (C ≥ 1) the future temperature changes will not affect the potential impact 
on the environment, regardless temperature warming, but it is possible to have 
more cases of extreme weather there. In fact, pdf deforms to higher or smaller 
values, remaining in the same interval. Choosing another interval can lead to 
other values of the C-index and even to a change in the direction of the 
inequality. 

In some areas the differences between the tendencies of models may look 
more or less significant than the differences between the C-index, for example, 
the temperature in the models for the summer season. The reason is in the effect 
of combination between σ and µ. Despite of tendencies, because of re-
distribution, a bigger or smaller number of cases falls in the interval defined by 
the mean and sigma of the referent period. The differences between the µ of a 
future run and the µ of the control (reference) run may be compensated by a 
smaller σ of the future period and vice versa. The reason for this is that the  
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C-index is sensitive to changing the distribution of cases from the future period 
to the reference. When this change is the same for both models, then their  
C-indices coincide. If the expected trends for the two models are the same, but 
the changes in the distributions are significant, then the C-indices differ 
significantly. This is the added value of this index for climate change 
assessment. 

For better understanding of the relationship between the C-index and the 
tendencies, the standard deviation of the past period is shown in Figs. 5a and 6a 
for temperature and in Figs. 5b and 6b for precipitation for both models, which 
is actually in connection with the width of the selected interval. The change of 
standard deviation – the ratio between the future (2021–2050) and reference 
(1975–2004) periods is presented in Figs. 7a and 8a for temperature and in 
Figs. 7b and 8b for precipitation.  

Figs. 5a and 6a show temperature standard deviation distribution (in °C) 
from ALADIN and RegCM models, respectively, for the reference period 1975–
2004 by seasons (winter - DJF; spring – MAM; summer – JJA; autumn - SON). 
Both models show the biggest temperature σ in spring (MAM) and autumn 
(SON) seasons between 3.5° and 5°C. In winter (DJF), the σ values are between 
0.8° and 1.6 °C for the ALADIN model and between 1.2° and 2.7 °C for 
RegCM. In summer (JJA), the temperature standard deviation for ALADIN is 
between 1.2° and 1.8 °C and between 1.2° and 2.4 °C for RegCM, respectively. 

In Figs. 5b and 6b, precipitation standard deviation distribution (in mm) 
from ALADIN and RegCM models, for the reference period 1975–2004 by 
seasons (winter - DJF; spring – MAM; summer - JJA; autumn - SON) is shown. 
Precipitation standard deviation distribution from the ALADIN model is 
between 10 and 30 mm in all seasons, while the RegCM standard deviation 
values are between 20 and 60 mm. 

The changes of values of σ from the reference (1975–2004) to the future 
(2021–2050) periods are presented in Figs. 7a, 7b, 8a, and 8b.  
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Fig. 5a. Standard deviation of temperature (in °C) from the ALADIN model for the 
reference period 1975-2004 by seasons (winter - DJF; spring - MAM; summer - JJA; 
autumn - SON) 

 

 

 

 
Fig. 5b. Standard deviation of precipitation (in mm) from the ALADIN model for the 
reference period 1975-2004 by seasons (winter - DJF; spring - MAM; summer - JJA; 
autumn - SON). 
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Fig. 6a. Standard deviation of temperature (in °C) from the RegCM4 model for the 
reference period 1975-2004 by seasons (winter - DJF; spring - MAM; summer - JJA; 
autumn - SON). 

 
 

 
 
 

 
Fig. 6b. Standard deviation of precipitation (in mm) from the RegCM4 model for the 
reference period 1975-2004 by seasons (winter - DJF; spring - MAM; summer - JJA; 
autumn - SON). 
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Fig. 7a. Temperature standard deviation change (in °C) from the ALADIN model – the 
ratio between future (2021–2050) and reference (1975–2004) periods by seasons (winter - 
DJF; spring - MAM; summer - JJA; autumn - SON). 

 

 

 

 
Fig. 7b. Precipitation standard deviation change (in mm) from the ALADIN model – the 
ratio between future (2021–2050) and reference (1975–2004) periods by seasons (winter - 
DJF; spring - MAM; summer - JJA; autumn - SON). 
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Fig. 8a. Temperature standard deviation change (in °C) from the RegCM4 model – the 
ratio between future (2021–2050) and reference (1975–2004) periods by seasons (winter - 
DJF; spring - MAM; summer - JJA; autumn - SON). 

 

 

 

 

Fig. 8b. Precipitation standard deviation change (in mm) from the ALADIN model – the 
ratio between future (2021–2050) and reference (1975–2004) periods by seasons (winter - 
DJF; spring - MAM; summer - JJA; autumn - SON). 
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In Figs. 7a and 8a, the temperature standard deviation change (in °C) from 
ALADIN and RegCM models is shown – the ratio between the σ of future 
(2021–2050) and the σ of the reference (1975–2004) periods by seasons (winter 
- DJF; spring - MAM; summer - JJA; autumn - SON). The biggest change in 
temperature standard deviation occurs in summer (JJA) between 1.0° and 1.2 °C 
for ALADIN, where temperature changes are the biggest (Fig. 1a), C < 1 
(Fig. 1) and the temperature standard deviation is small (Fig. 5a). In JJA and 
SON for RegCM model the temperature standard deviation change is between 
1.0° and 1.3 °C, and 1.1° and 1.3 °C, respectively, where the C-index is small 
(Fig. 2) and temperature changes are the biggest (Fig. 2a).  

In Figs. 7b and 8b, precipitation standard deviation change (in mm) from 
ALADIN and RegCM models is shown – the ratio between the σ of future 
(2021–2050) and the σ of the reference (1975–2004) periods by seasons (winter 
- DJF; spring – MAM; summer - JJA; autumn - SON). Both models show that 
the precipitation standard deviation change is between 0.4 and 1.4 mm in all 
seasons. The biggest precipitation σ change from the RegCM model is in 
summer (JJA) and autumn (SON), where precipitation changes are the biggest 
(Fig. 4a) and C < 1 (Fig. 4). The biggest precipitation σ change from the 
ALADIN model is in summer (JJA) which corresponds to C < 1 (Fig. 3) and to 
a decrease of the summer precipitation (Fig. 3a). 

4. Example with two BCMs 

A very simple but useful method of bias correction is the "delta change" method. 
Let μref and μf be the average of N cases obtained from the reference and future 
periods for temperature or precipitation. Let Xi (i= 1, N) are the corresponding 
series of observations. The corrected range of temperature for the future is: 
 
 Yi

cor = Xi + (μf – μref). (9) 
 
For the precipitation, relative changes are considered: 

 
 Yi

cor = Xi * (μf / μref). (10) 
 
For averages, we find: 
 
 (∑ Yi

cor)/N = μ'f = (∑ Xi
c)/N + (μf – μref) = μo + (μf – μref) (11) 

 
or  
 
 μ'f = μo + (μf – μref). (12) 

 
For precipitation, respectively, we find: 
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 μ'f = μo * (μf /μref). (13) 
 

Obviously, both transformations are linear and they conserve the C-index, 
as proved above. The trends are sufficient to assess the extent of climate change 
as a whole in the area of integration, and together with the C-index they can be 
used as coordinates to analyze the original signal from the models. Additionally, 
as mentioned in Maraun (2016), the delta change method is a useful benchmark 
for bias correction. Indeed, this method imposes the trend towards the actually 
measured sequence of cases. There is no “transfer” function as in other BCMs. 
This is the reason to introduce a reversed analogue, using the sequence from the 
future period.  

Let μo be the average obtained from the observation (temperature or 
precipitation). The corrected range of temperature for the future is: 
 
 Yi

cor = Yi + (μo – μref), (14) 
 

and for precipitation it is: 
 
 Yi

cor = Yi * (μo / μref). (15) 
 

For averages, we find: 
 
 (∑ Yi

cor)/N = μ'f = (∑ Yi)/N + (μf – μref) = μf + (μo – μref), (16) 
 
or  
 
 μ'f = μf+ (μo – μref) = μo + (μf – μref). (17) 

 
For precipitation respectively we find: 
 
 μ'f = μf* (μo /μref) = μo * (μf / μref). (18) 

 
The reason for naming this method as a “reverse delta change” (RDC) is 

that the dependencies between the mean values for both methods have identical 
equations as it was proved.  

Now, the transfer functions are:  
 

 (μo – μref) and (μo / μref), (19) 
 

so the transformations are linear. As a second method we will consider the 
quantile mapping (QM).  

To illustrate the application of both methods and the dependence of the  
C-index on them, we will use observations from Cherni Vrah, the highest peak in 
the Vitosha Mountains. The synoptic station was established in 1935. At that time it 
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was the highest mountain station. There has been no interruption of the 
observations, and the measurement method has been retained so far. There are no 
influences from industrial and urban changes or replacement, unlike at other 
stations. 

The transfer functions defined by the Quantile-Quantile plots are shown in the 
next figures. To find a more general relationship between the observed and 
modeled data, we do not divide them into seasons. We assume that a certain 
observed value corresponds to a given modeled value regardless of the season. This 
assumption is justified by the results below. In Figs. 9a and 9b, the transfer 
functions for temperature and precipitation from the ALADIN simulation are in the 
top right corners of the plots. The same is in Figs. 10a and 10b, but for RegCM. 
 

 

ALADIN TEMPERATURE y = 0.8252x - 6.9898
R2 = 0.9923
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Fig. 9a. Quantile-Quantile plot comparing the distribution of observed (Cherni Vrah station) 
and modeled (ALADIN) temperature data for the period 1975–2004. The transfer function for 
temperature from the ALADIN simulation is in the top right corner of the plot. 
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Fig. 9b. Quantile-Quantile plot comparing the distribution of observed (Cherni Vrah station) 
and modeled (ALADIN) precipitation data for the period 1975–2004. The transfer function 
for precipitation from the ALADIN simulation is in the top right corner of the plot. 
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RegCM TEMPERATURE y = 0.7912x - 6.2929
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Fig. 10a. Quantile-Quantile plot comparing the distribution of observed (Cherni Vrah 
station) and modelled (RegCM4) temperature data for the period 1975–2004. The transfer 
function for temperature from the RegCM4 simulation is in the top right corner of the 
plot. 
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Fig. 10b. Quantile-Quantile plot comparing the distribution of observed (Cherni Vrah 
station) and modelled (RegCM4) precipitation data for the period 1975–2004. The 
transfer function for precipitation from the RegCM4 simulation is in the top right corner 
of the plot. 

 
 
 
 

As it can be seen, linear functions approximate very well the main part of the 
quantiles. The C-index should be determined before and after applying the BCM, 
i.e., the transfer functions should be applied to the original data from the reference 
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run according to Eq. (2). Then it happens, that all cases are in this linear part at 
certain intervals (mean ± standard deviation). The results of these methods are 
presented in Table 1 for temperature and in Table 2 for precipitation. 
 
 

Table 1. Mean, standard deviation, and C-index before (μ, σ, and C-index) and after (μ', 
σ' and C-index’) applying BCMs (RDC – reverse delta change; QM – quantile mapping) 
for temperature by using ALADIN and RegCM4 models. 

 μ σ C-index μ' σ' C-index’ 

ALADIN 
RDC 

8.741668 7.500746 0.9839572 0.2236101 7.500748 0.9839572 

ALADIN 
QM 

8.741668 7.500746 0.9839572 0.2238232 6.189616 0.9839572 

RegCM 
RDC 

8.236060 7.827411 0.9627907 0.2236048 7.827417 0.9627907 

RegCM 
QM 

8.236060 7.827411 0.9627907 0.2234672 6.193053 0.9627907 

 

 
 

Table 2. Mean, standard deviation, and C-index before (μ, σ, and C-index) and after (μ', 
σ', and C-index’) applying BCMs (RDC – reverse delta change; QM – quantile mapping) 
for precipitation by using ALADIN and RegCM4 models. 

 μ σ C-index μ' σ' C-index’ 

ALADIN 
RDC 

43.83639 17.93699 1.024096 67.95747 27.80694 1.024096 

ALADIN 
QM 

43.83639 17.93699 1.024096 67.95921 39.49014 1.024096 

RegCM 
RDC 

102.7887 55.78205 0.9433199 67.95747 36.87967 0.9433199 

RegCM 
QM 

102.7887 55.78205 0.9433199 67.95520 39.54397 0.9433199 

 
 
 

In the tables μ, σ, C-index, μ', σ', and C-index' are the mean, the standard 
deviation, and the C-index before and after applying the BCM. The significant 
changes in the mean values are mainly due to the distance between the grid 
points of the models and the station location as well as the topography in model 
points. We used the closest point (the models have different grids) without any 
interpolations. The BCM should overcome these discrepancies. Any method for 
localization will add its own error. We can see that in the results, after these 
different corrections, the mean values are almost identical. For the temperature, 
the differences between σ and σ' after using the RDC for any of the models are 
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insignificant. The standard deviations of temperature and precipitation have 
similar values after applying both methods for both models. Indices C do not 
change as expected. Their values for temperature are practically identical for 
both models. For the precipitation they are on both sides of the benchmark “1”. 

Another example of using the proposed index is the overall assessment of 
climate change in the integration domain by means of graphs in the coordinate 
system of the trend and the C-index. In Figs. 11a, 11b, 12a, and 12b examples 
are given for temperature and precipitation from ALADIN and RegCM, 
respectively. The values in the grid points are placed in tendencies–C-index co-
ordinate system. 
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Fig. 11a. Tendencies–C-index chart of temperature during the spring season for the 
ALADIN model. 

 

ALADIN PRECIPITATION AUTUMN
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Fig. 11b. Tendencies–C-index chart of precipitation during the autumn season for the 
ALADIN model. 
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 RegCM TEMPERATURE SPRING
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Fig. 12a. Tendencies–C-index chart of temperature during the spring season for the 
RegCM4 model. 
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Fig. 12b. Tendencies–C-index chart of precipitation during the autumn season for the 
RegCM4 model. 

 
 
 

Both models have significant munber of cases with C ≥ 1, i.e., these cases 
remain or are moved within the interval determined by the reference simulations. 
In spring, ALADIN shows tendencies mainly in the interval 1 – 1.5 °C. RegCM 
predicts two areas with different temperature tendencies. The first one have 
tendencies in the interval 1.5 – 2.3 °C and the second one in interval 0.3 – 1.5 °C. 
Positive rainfall trends in autumn are up to 20% for ALADIN and RegCM. 
Negative rainfall trends are 10% for ALADIN and up to 20% for RegCM. 
Generally speaking, RegCM is warmer and drier than ALADIN during these 
seasons, but both models have a significant number of cases with C ≥ 1, 
especially for the temperature. Similar diagrams make analyses easier than using 
maps. 
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5. Conclusion 

All ETCCDI indices analyzed in Dosio (2016) are various measures for 
assessing climate change. The proposed C-index provides two options. The first 
is to assess the structure of climate change in the future period from the point of 
view of an "observer" of the climate in the control (reference) period. The other 
option is to keep the index when applying the "transfer function" as a 
requirement not to lose the original climate change signal. 
From the examples above, it can be seen that in both models there are large 
areas with the same C-index, determined by the interval (µ – σ; µ + σ). If a bias 
correction method is applied, the distribution of C-index should be the same, 
i.e., the figures shown above should remain the same.  

The C-index can be defined for each interval (δ1, δ2) of different 
meteorological elements or indices. Within this range, the properties mentioned 
above will be retained. This index can be considered as a measure of “climate 
change” at this interval. The smaller the index, the bigger the change in the 
climate. Another possibility is to use it as an indicator for changing the signal of 
the model. If the index changes, the logic of the model simulations will be lost. 
Then the future climate after bias correction will look differently for the 
“observer” from the reference period. 

The determination of the interval depends on the analysis to be made. In 
the examples presented here, we followed the assumption that the extreme 
weather is outside the range defined by the mean and standard deviation. If the 
goal is to assess the change above or below some threshold, then we must take 
into account the distribution error in the reference period. For example, many 
models are colder during the reference period and a priori defined threshold may 
not exist. This indicates an other fact, that should be taken into account. As 
mentioned in Dosio (2016): “Results show that absolute-threshold indices are 
largely affected by bias adjustment, as they depend strongly on both the present 
mean climate value (usually largely biased in the original RCMs) and its shift 
under climate change”. The stability of the proposed index depends not only on 
the error of the model (the linear component has no impact on the index as 
shown above) but also on the number of cases falling in the chosen interval. A 
small number will lead to its instability. Methods providing the automatic 
presence of a significant number of cases, such as using standard deviation, are 
suitable for determining a stable index. 
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