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Abstract— Nonlinear Model Predictive Control (NMPC) is
utilized to compute optimal administration protocols for
chemotherapeutic treatment. By using model-based methods,
the side effects of the drug can be mitigated in conjunction
with a decrease in treatment expenses. The designed controller
was able to provide the protocol in the form of impulses that
can model administration by injection, using a smooth approx-
imation of the Dirac delta distribution. For the implementation
of the NMPC algorithm, Direct Multiple Shooting (DMS) was
chosen so that the computational time of the problem remains
reasonable. Numerical effects on the stability of the computation
were discussed, with a solution for each issue present. The
controller was also tested on virtual patients, with data from
mice experiments, which concluded in applicable treatment
protocols.

I. INTRODUCTION

Physiological control is a flourishing area of control engi-
neering. The field includes topics such as diabetes control [1],
automated anesthesia [2] or optimal control of tumor growth.
Cancerous diseases entail high mortality rates worldwide
including the European Union with a predicted 1.410.000
deceases in 2019, according to [3]. While the tendency shows
a fall in mortality, which could be partially attributed to
improved medicine, the vast majority of people are still
treated with conventional methods until this day, which has
adverse side effects. These side effects can be mitigated
by optimizing the therapy which produces individual ad-
ministration protocols. By minimizing the amount of drug
used during the treatment, expenses can be reduced as well
which can alleviate the financial burden on healthcare. The
optimization can be tackled by the use of optimal control
methods, which can calculate the dosage protocols while
retaining the effects of disturbances on the treatment.

There are several examples concerning optimal tumor
growth regulation using chemotherapy [4] or angiogenic
inhibition [5]. Solutions in the literature vary from clas-
sical linear techniques [6] to sophisticated modern control
methods, such as TP-LPV control [7], H∞ control [8] or
feedback linearization [9]. However, a controller can not be
designed without a proper mathematical description of the
problem. Recently, a minimal model of tumor growth under
chemotherapeutic treatment was developed by Drexler et al.
where the parameters were estimated from mice experiments
[10]–[12]. The main motivation of the developed model was
to have a simple model that can describe the dynamics,
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with a relatively small number of parameters to facilitate
identifiability and practical application of the model. While
the model covers the most significant aspects of tumor
growth on a macroscopic level, it does not encapsulate the
effect of drug resistance. Hence, in order to obtain stable
results, we assume that no resistance occurs during the
treatment.

The choice of the model was motivated by its simplicity
and the availability of realistic model parameters, based
on mice experiments. There are numerous tumor growth
models in the literature - for some recent developments see
e.g., [13]–[15]. Nevertheless, these usually lack parameter
values validated with real measurements and the equations
are much more complex, which is not beneficial for neither
identification nor controller design.

Our previous works concerned designing optimal dosage
protocols for angiogenic inhibition, for which an NMPC
was utilized, using the Hahnfeldt model [16]. Since the
two problems share similar traits, NMPC was employed for
chemotherapy optimization as well. One apparent issue was
that the trajectory generation of the NMPC was very slow
due to its implementation. Another issue arose from the
continuous nature of the controller. Traditionally, NMPC uses
piecewise-constant input signals as optimization variables.
Nonetheless, a more realistic approach in therapy optimiza-
tion would be the use of impulse signals that model the
effect of injection treatment as opposed to a continuous type.
Only a few examples exist for such a solution in optimal
cancer treatment literature, using impulsive control based
methods in angiogenic therapy [17], chemotherapy [18], or
immunotherapy [19].

In Section II, the minimal model is presented, which is
followed by an introduction of the NMPC technique, in
conjunction with the impulsive action of the controller in
Section III. The operation of the controller is described in
Section IV, where different numerical aspects of the problem
are discussed in conjunction with results on the virtual
patients and the computational time of the optimization.

II. MINIMAL MODEL OF TUMOR GROWTH

The model that describes the tumor dynamics was taken
from [10]. The states under consideration are the living
tumor cells, the dead tumor cells, and the drug level. Model
equations contain the effect of living tumor proliferation,
tumor cell necrosis, dead cell washout, the effect of the drug
with saturation (pharmacodynamics) and drug depletion,
using mixed-order pharmacokinetics (also called capacity-
limited pharmacokinetics) [20]. Mixed-order pharmacokinet-



TABLE I: Model parameters and their dimensions

Parameter Unit Description

a 1/day Tumor growth rate
n 1/day Tumor necrosis rate
b 1/day Drug efficacy rate

ED50 mg/kg Effective median dosage
w 1/day Dead tumor cell washout
c 1/day Clearance rate of the drug

KB mg/kg Michaelis-Menten constant
bκ mg/(kg · day · mm3) Modified efficacy rate

ics expresses that for low drug concentrations, the dynamics
is first-order, while for large concentrations, the dynamics is
zero-order, which is true for the pharmacokinetics of many
drugs [21, p. 132]. The equations defining the dynamics are

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3

ẋ2 = nx1 + b
x1x3

ED50 + x3
− wx2

ẋ3 = −c x3
KB + x3

− bκ
x1x3

ED50 + x3
+ u

(1)

where x1 is the living tumor volume in mm3, x2 is the
dead volume in mm3, x3 is the level of drug in the host
measured in mg/kg and u is the injection rate in mg/(kg ·
day). Description of the parameters with their corresponding
dimensions can be seen on Table I and explanation for the
terms in the differential equations can be found in [10].

Model parameters were estimated from animal experiment
data, where breast cancer was targeted with pegylated lipo-
somal doxorubicin (PLD) in mice [22]. The estimation was
performed using the Stochastic Approximation Expectation-
Maximization (SAEM) algorithm and the concrete results
can be found in [10], [11]. The algorithm maximizes the
likelihood of each parameter using all the experimental data
during the optimization iteratively. As such, each set of
model parameters can be considered as a realization of a
random variable from the underlying distribution that was
obtained from the SAEM method.

III. NONLINEAR MODEL PREDICTIVE CONTROL

Nonlinear Model Predictive Control is an optimal control
methodology that can be utilized to compute optimal admin-
istration protocols for chemotherapeutic treatment. NMPC
has a finite prediction horizon that can predict the evolution
of the system by utilizing the mathematical model of the
process [23]. This prediction is used in a predefined cost
function in order to calculate an optimal sequence of control
signals that are able to steer the system into the desired
region. The sequence is calculated by minimizing the cost
function using an optimization algorithm, which allows the
use of constraints both on the inputs and states. Nonlinearity
means that the algorithm supports the use of nonlinear mod-
els and constraints, as opposed to its linear counterpart. In
practice, this leads to the use of more complicated numerical
techniques, because no analytical solution can be carried
out in the vast majority of cases. The cost function and

constraints also imply the use of nonlinear optimization
algorithms, such as the interior-point algorithm or Sequential
Quadratic Programming (SQP). There are many ways to
decrease the computational time of the calculations, although
the Direct Multiple Shooting (DMS) method, in particular,
is the state of the art technique, which provides a remedy to
the computational burden.

A. Direct Multiple Shooting

The DMS is a continuous formulation of the NMPC
framework, which is a simultaneous approach meaning that
the optimization and the integration of the model are done
in parallel [24]. First, the controls are discretized on a finite
interval and assumed to be constant. By the use of these
controls and artificial initial values, N ODEs are solved
which can be interpreted as trajectory pieces in the finite
horizon. The continuity of these pieces is ensured by N + 1
constraints in the nonlinear program which leads to a valid
trajectory of the system at a feasible solution. The discretized
control signal can be written as:

u(t) = qi, t ∈ [ti, ti+1] (2)

with the associated ODEs:

ẋi(t) = f(xi(t), qi), t ∈ [ti, ti+1]

xi(ti) = si
(3)

where xi denotes the states of the system on the ith time
interval and si is the artificial initial value of the ith segment.
The cost function can be defined as a functional of a stage
cost on each prediction intervals:

Li(si, qi) =

∫ ti+1

ti

`(xi(ti; si, qi), qi)dt (4)

with stage cost:

`(xi, qi) = λyi + ξqi (5)

where yi is the total volume of the tumor (y = x1 + x2) on
the ith time segment and λ, ξ > 0 are the weighting scalars.
Continuity of the pieces can be ensured by imposing the
conditions si+1 = xi(ti+1; si, qi) as a constraint for the op-
timization. The optimal control problem can be summarized
as follows:

min
s, q

JN (s, q) :=

N−1∑
n=0

`(xi, qi) + E(sN )

s.t. s0 − x0 = 0,

si+1 − xi(ti+1; si, qi) = 0 i = 0, . . . , N − 1,

hi(si, qi) ≥ 0 i = 0, . . . , N − 1,

r(sN ) = 0,

(6)

where E(sN ) denotes the terminal weight, which is zero
in this case. The first equality constraint represents the
measurement, which is followed by the continuity con-
straints. The third and fourth constraints are the path and



terminal constraints respectively, from which input (path)
constraints were considered in order to avoid overdosing
the patient. In accordance to the literature, the upper bound
qmax must be smaller than 8 mg/kg, which is the maximum
tolerable dosage of PLD, and usually specified as qmax ∈
{2, 4, 6} [25]. Lower bound must also be included in the
optimization, because one can not extract drug from the
patient, hence the interval can be given as 0 ≤ qi ≤ 2
for each control input in the sequence, which are the path
constraints hi(si, qi). Combining variables si-s and qi-s into
a single vector w = [s1, . . . , sN , q1, . . . , qN−1], and using
the notation gi(si+1, si, qi) := si+1 − xi(ti+1;si,qi), one
can rearrange the constraints in the problem as g(w) =
[g0, . . . gi, . . . gN , gN+1] with g0 being the initial value em-
bedding (s0 − x0 = 0) and gN+1 = r(sN ) = 0. While
the bound constraints must be also included in the path
constraint vector theoretically, most optimization algorithms
can handle it as an additional input argument in practice. By
these modifications, the problem can be reformulated as a
classical nonlinear program:

min
w

JN (w)

s.t. g(w) = 0,

0 ≤ qi ≤ 2

(7)

This nonlinear program can be solved by nonlinear con-
strained optimization algorithms. One can also support the
optimization algorithm with gradient matrices of the ob-
jective function and constraints, which has a block sparse
structure that leads to faster and more reliable computations.
Nevertheless, in many cases, the use of numerical differ-
entiation can be fast and accurate, while the symbolical
computations of these gradient matrices can be difficult
without the use of a computer algebra system.

B. Impulsive action

The NMPC scheme discussed previously will provide
piecewise-constant input signals for the rate of administra-
tion. In the case of chemotherapeutic treatment, this will be
insufficient, since in practice infusion based administration
is omnipresent. This entails that a different definition of the
input signal must be introduced, which can model such an
aspect of the therapy. One must be aware that in NMPC
the constant nature of input signals is just a matter of choice
and can be arbitrarily replaced by other piecewise continuous
signals [23]. The idea for the impulsive control is to represent
the Dirac delta distribution with a continuous approximation
that can be used to model the infusion based administration.
The main reason for the approximation is that numerical
solvers can not perform well with discontinuities present
in the system, hence the following bump function based
estimate was utilized:

u =


ζ

2ε

(
1 + cos

(
π(t− ξ)

ε

))
, t0 ≤ t ≤ t0 + 2ε

0, elsewhere
(8)
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Fig. 1: The unitary impulse function

where ε controls the approximation, ξ = t0+ε is the shifting
term, ζ is responsible for the scaling and t0 is the starting
time of the impulse. Such a bump function is compactly
supported and continuous so that the function vanishes at
the endpoints (as opposed to Gauss distribution for example).
The area of the curve is unitary, meaning that the integral
of the impulse equal to 1 mg/kg PLD dosage. The particular
approximation can be seen on Fig. 1, where ζ = 1, ε =
(1/24)/2 and t0 = 0. The value of ε is chosen according
to the duration of a bolus administration which is usually
between 30 − 90 minutes, hence in this particular case an
hour-long treatment was considered. It can be seen in Figure
1. that the function is shifted so that it always lies at the
beginning of each optimization interval. As it was indicated
in [26], the times of injections are determined by the doctors,
so that it can not be a free optimization variable. Instead
of that, ζ is used for the optimization, which allows one to
increase the area of the function thus injecting more drug into
the patient. This leads to qi = ζi in the optimization process
which computes the scaling terms ζi for each [ti, ti+1].

IV. SIMULATION

Simulations were conducted using MATLAB and the
optimization was performed with fmincon. The model was
integrated using ode45 with a 100 equidistant integration
point on a 1 day interval, which gives the piecewise solution
to equation (3). From the definition of the cost function (5),
it is clear that the controller aims to drive the volume as
close to 0 mm3 as possible while minimizing the effect of
the input. In the case of NMPC, tuning the design parameters
of the controller is usually problem specific and hence done
experimentally. The prediction horizon was set to N = 4
which proved to be sufficient. It must be mentioned that in
theory, increasing the horizon enhances the stability of the
system, however, by practice, it was not the case because the
algorithm was prone to get stuck in local minima frequently.
The issue can be tackled by restarting the algorithm from
a different initial point w0 or adjusting the integration
tolerances in the optimization. Therefore, if the algorithm
halts in a local minimum, a different initial value, wnew

0 , is
chosen randomly from a normal distribution with wnew

0 ∼
N (w0, 0.5

√
w0) for a given number of iteration nmax ≤ 10



until a feasible minimizer is obtained. In the cases where
the stochastic approach fails to provide meaningful results,
the integration tolerances can be fine-tuned which solves the
problem.

For the stage cost, parameters were also determined ex-
perimentally, from which λ = 1 and ξ = 0.1. This particular
choice will result in the first control signal to be large in
amplitude, compared to the consecutive actions. This effect
can be mitigated by decreasing the value of λ while ensuring
that the system retains its stability. In particular, λ ≈ 0.3
provided stable results with no windup in the control signal
at the beginning for each virtual PLD specimen.

One advantage of the design is that the length of the
optimization intervals ∆t = ti+1 − ti can be modified
arbitrarily. By doing so, daily, weekly or different adminis-
tration protocols can be obtained by the algorithm. It must be
noted, however, that longer intervals can increase the error of
integration in the prediction, which can cause singularities in
the solution. This can be alleviated by fine-tuning the error
tolerances of the integration as well. Besides the problem
of the error accumulation, lower bounds on the inputs 0 ≤
ζi can pose another issue. During the optimization, the
algorithm might choose some ζi to be zero. Because the
unforced response of the system grows exponentially, this
can cause singularities during iterations corresponding to
longer time intervals. In order to overcome this issue, a
different lower bound can be set, so that the system remains
stable during each iteration. For the weekly administration,
0.05 ≤ ζi provided convergent results for each virtual patient
PLD. Examples for the weekly administration can be seen
in Figure 2, simulated for 7 · 30 = 210 days from PLD2
to PLD5. On the corresponding administration protocols, a
spike represents the integral of one impulse on a control
interval that is the total amount of drug injected for a single
infusion. One can see that in some cases, for example, the
input signals are not computed correctly for PLD3. This can
be attributed to the aforementioned numerical errors in the
objective function. Nevertheless, the solutions are feasible,
which implies the stability of the closed-loop response [23].
In the examples PLD2 and PLD5, the simulation time was
not enough for the system to reach steady-state, however,
they will decay eventually.

Drug resistant virtual patients were also examined, which
can be seen in Figure 3. Prediction interval was set to ∆t = 1
day because larger horizons lead to non-convergent behavior
of the algorithm. While the growth of PLD8 can be brought
to a stable equilibrium point, PLD1 grows exponentially
which can not be altered by the controller significantly. In
the case of PLD9, linear growth can be achieved instead of
exponential behavior.

There was a major decrease in terms of computational
time as well. For the above mentioned parameter choices,
the algorithm was able to calculate the optimization task at
each control cycle in ∼ 1 second on average, which was
performed by an Intel Core i7-8550U, 1.8 GHz processor.
In Table II, one can see the increase of computational
time for longer prediction horizons in the case of PLD2.

N Mean computational time
(sec)

7 1.0247
5 0.5671
3 0.2047
2 0.1129

TABLE II: Mean computational time of one control cycle
for PLD2

Results can be compared with previous works, concerning
antiangiogenic treatment using NMPC with single shooting,
since the two models share similar traits [27]. In that case, the
computational time of the optimal solution usually took 1 day
to compute, for N = 10, which was inefficient, compared
to the DMS implementation. The additional decrease in
computational time can be achieved, if one considers the
result w of the optimization to be the initial guess w0 for
the next iteration, which is usually called a warm start in the
MPC literature.

In conclusion, the proposed control method is able to
compute optimal dosage protocols in each case. Results,
however, are affected by numerical imprecisions, especially
for longer prediction horizons or larger initial tumor volumes,
which can be solved by the aforementioned changes in the
tolerance of the computations. Nevertheless, a more robust
algorithm would be favorable, which can be achieved by
non-dimensionalizing the model equations.

V. CONCLUSION

An NMPC controller was developed using impulsive input
actions that can produce optimal administration protocols
for chemotherapy. The impulsive action of the controller
was introduced by using a continuous approximation of
the Dirac delta distribution. The design was tested on the
minimal model, for each virtual patient, identified from
mice experiments. Results showed that the controller was
able to produce an optimal input signal sequence for each
PLD patient, even in the case of resistant behavior. The
effect of numerical inaccuracies was discussed with solutions
proposed for each problem arisen.

In future works, the stability of the computations should
be improved in general, by either non-dimensionalizing the
model, or introducing stabilizing constraints in the opti-
mization routine. It must also be mentioned, that for the
NMPC, the whole state must be measured, which is not
possible directly from the given model. Because the model
is observable, a nonlinear observed can be designed so that
the whole state can be reconstructed from the measurements.
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Fig. 2: Results of the optimization for PLD2-PLD5. The evolution of the states x1, x2, x2 in conjunction with the total
volume of the tumor y = x1 +x2 (left) and the individual dosages presented as the integral of the calculated inputs u, given
in [mg/kg] (right). Design parameters were: N = 3, λ = 0.7, ξ = 0.1,∆t = 7.
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ics modeling based on formal reaction kinetics,” Acta Polytechnica
Hungarica, vol. 16, pp. 31–44, 2019.

[11] D. A. Drexler, T. Ferenci, A. Lovrics, and L. Kovács, “Compar-
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