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Abstract— In case of physiological systems state and param-
eter estimation is a crucial question. It is key to describe given
patient population with appropriate accuracy. Furthermore,
state feedback kind of applications also require some sort
of estimation procedure in order to get internal information
about the controlled system. Linear parameter varying (LPV)
framework is beneficial for controller design as well. However,
to realize the necessary scheduling parameters, estimation of
both state variables and model parameters is needed. A possible
solution is the application of Dual Extended Kalman Filter
(DEKF) which is able to estimate these signals. The developed
framework can be used to design LPV based controller in our
further work. In this study we introduce our developed DEKF
solution by using the widely applied Cambridge Type 1 Diabetes
Mellitus (T1DM) model for virtual patient generation. We have
found that our solution is able to estimate the state variables
with good accuracy. The variation of parameters can also be
tracked by using the proposed solution.

I. INTRODUCTION

Diabetes mellitus (DM) is a disorder of the natural blood
glucose concentration regulatory system. The prevalence of
DM is constantly rising, today presumably more than 425
million people are affected worldwide [1]. It is primarily
characterized by an elevated fasting blood glucose (BG)
level (called hyperglycemia), caused by a relative or absolute
deficiency in insulin. The latter one is also called type 1
diabetes mellitus (T1DM), which is the main focus of this
work. During an exactly not known autoimmune reaction
the insulin producing β-cells die, thus patients in such a
condition are in permanent need of exogenous insulin [2].

On the other hand, during exogenous insulin overdose the
BG level can fall under a critical level leading to serious
complications, thus it is a twofold task. The BG level has
to be kept in a narrow range with low variability, this
is the so-called tight glycemic control (TGC). In order to
maintain TGC one has to provide BG level feedback with
the highest possible sampling frequency. Current continuous
glucose monitoring systems (CGMS) achieve 5-minutes-long
sampling periods [3]. The sparseness of the measurements is
only one obstacle in the control design procedure, others
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include noises and disturbances or the uncertainty of the
mathematical model [4]–[6].

The idea of a completely autonomous insulin delivery
unit (Artificial Pancreas) is not a novel one, however the
final solution is yet to come. Among others the difficulties
mentioned above are the main hindrances of the TGC. In
order to overcome these issues the filtering of the measure-
ments, the estimation of the internal states and parameters
are fundamental. For the estimation and filtering purposes a
possible solution can be a DEKF algorithm [7], [8]. Typical
T1DM models are non-linear ones, for the practical handling
of these systems linear parameter varying technique is a
proven method.

The paper is structured as follows. First, we introduce
the investigated models in section II and II-C. After the
discretization method is introduced in subsection II-D. After-
wards the numerical investigations are presented in section
IV. Finally, our conclusions are drawn.

II. APPLIED MODEL

A. THE CAMBRIDGE MODEL

The Cambridge model [9], [10] is a non-linear, complex
model aiming to formulate virtual patients with T1DM
condition. The model consists of 10 state equations and
supplementary equations describing additional physiological
phenomena by using non-linear functions. The model equa-
tions are the following:

Q̇1(t) =
D2(t)
τD
− F01c − FR − x1(t)Q1(t) (1)

+k12Q2(t) + EGP0(1− x3(t)), (2)
Q̇2(t) = Q1(t)x1(t)− (k12 + x2(t))Q2(t), (3)

İ(t) = S2(t)
τSVI

− keI(t), (4)
ẋ1(t) = −ka1x1(t) + kb1I(t), (5)
ẋ2(t) = −ka2x2(t) + kb2I(t), (6)
ẋ3(t) = −ka3x3(t) + kb3I(t), (7)

Ḋ1(t) =
1000Ag

Mwg
w(t)− D1(t)

τD
, (8)

Ḋ2(t) =
D1(t)
τD
− D2(t)

τD
, (9)

Ṡ1(t) = u(t)− S1(t)
τS

, (10)

Ṡ2(t) =
S1(t)
τS
− S2(t)

τS
, (11)

where Q1(t) [mmol] is the glucose content in the accessible
compartment, Q2(t) [mmol] is the glucose content in the
non-accessible compartment, I(t) [mU/L] is the insulin con-
centration in the blood. Indirect effects of insulin on blood
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glucose are expressed in x1(t), x2(t) and x3(t). D1(t) and
D2(t) form the food absorption sub-model. S1(t) and S2(t)
form the insulin absorption sub-model.

Additional non-linearities are described by [10]:

F01c =

{
F01, if G(t) ≥ 4.5mmol/l
F01G(t)/4.5, otherwise

, (12)

FR =

{
0.003VG(G(t)− 9), if G(t) ≥ 9mmol/l
0, otherwise

, (13)

G(t) =
Q1(t)

VG
, (14)

VG = 0.16BW, (15)
VI = 0.12BW, (16)

where G(t) is the actual output of the system, namely, the
blood glucose concentration [mmol/L].

B. SENSOR NOISE MODEL FOR DATA GENERATION

In case of real CGMS applications the modeling of sen-
sor noise is a fundamental issue. The BG level is mostly
measured in the subcutaneous space of the abdomen or arm
which can be different from the average BG level of the
blood. Also, there are effects which corrupt the measurement
(e.g. time delay) or heat which can lead to sensor decalibra-
tion. In this study we have applied the following model [11]
to map these phenomena which can be directly connected to
the introduced model described by (1)-(16).

ek = 0.7(ek−1 + vk), k ≥ 1, (17)
vk ∼ Niid(0, 1), (18)

ηk = ξ + λ sinh

(
ek − γ
δ

)
, (19)

Ġsub(t) =
1

τsub
(G(t)−Gsub(t)), (20)

GCGM (kT ) = Gsub(kT ) + ηk, (21)

where we applied the parameters given by [11]: τsub=15 min,
ξ=-5.471 mg/dL, λ=15.96 mg/dL, γ=-0.5444 and δ=1.6898.
The Brownian motion like term can be initialized with e0 ∼
Niid(0, 1). The noisy measurement data can be calculated by
using the sampled output of the virtual patient system G(t)
is used to generate noisy measurement data with T = 5 min
sampling time.

C. LPV MODELING

General form of a given LPV state-space (LPV-SS) system
can be written in the following way [12]:

ẋ(t) = A(p(t))x(t) +B(p(t))u(t), (22)
y(t) = C(p(t))x(t) +D(p(t))u(t), (23)

where the p(t)-dependent state, control input, output, in-
put feed-forward and output feed-forward matrices are
A(p(t)) ∈ Rn×n, B(p(t)) ∈ Rn×m, C(p(t)) ∈ Rk×n,

D(p(t)) ∈ Rk×m. The x(t) ∈ Rn, y(t) ∈ Rk and u(t) ∈
Rm are the state, output and control input vectors. The LPV
modeling parameter is p(t) = [p1(t) . . . pR(t)] parameter
vector built up from scheduling parameters pi(t).

In case of the applied Cambridge model the efficient
handling of non-linearities (caused by the multiplication of
states and by the additional non-linear variables (F01c, FR))
is a crucial issue. One possible way to solve these problems
is to enclose these terms into the p(t) parameter vector,
this leads to a quasi-LPV (qLPV) model [13]. However,
this model can be designed in several ways, depending
on the selection of the parameters. In an earlier study we
have examined the effect of different parameter vectors [14].
We came to the conclusion that the main difference is in
the applicability of the discretization method described in
Section (II-D). By selecting the parameter vector described
in (25) the condition: Q1(t) > 0 has to be satisfied, which
is a reasonable presumption considering the physiological
property of the state variable.

Based on our preliminary investigations and assumptions
we have developed the following state space kind of LPV
model by using (1)-(16) and (22)-(23):

A(p(t)) =

p1(t) k12 0 −p2(t) 0
0 −k12 0 p2(t) −p3(t)
0 0 −ke 0 0
0 0 kb1 −ka1 0
0 0 kb2 0 −ka2
0 0 kb1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−EGP0 0 1
τD

0 0

0 0 0 0 0
0 0 0 0 1

τSVI

0 0 0 0 0
0 0 0 0 0

−ka3 0 0 0 0
0 − 1

τD
0 0 0

0 1
τD

− 1
τD

0 0

0 0 0 − 1
τS

0

0 0 0 1
τS

− 1
τS



,
(24a)

B =
[
0 0 0 0 0 0 0 0 1 0

]>
, (24b)

C =
[

1
VG

0 0 0 0 0 0 0 0 0
]
, (24c)

D =
[
0
]
, (24d)

p(t) = [p1(t), p2(t), p3(t)] =[EGP0 − F01c − FR
Q1(t)

, Q1(t), Q2(t)
]
.

(25)
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D. DISCRETIZATION METHOD

In our earlier findings [14], we concluded that the Com-
plete LPV-SS discretization is able to provide the best
accuracy among other methods [15]. Although this method
requires particular attention during the construction of the
LPV model, because of possible invertibility issues. The
discrete counterparts of the continuous time LPV state space
model can be realized as follows, where discrete time system
matrices are marked with d indices [15], [16]:

Ad(p(k)) = e(A(p(kT ))T , (26)

Bd(p(k)) = A−1(p(kT )(e(A(p(kT ))T ) − I)

B(p(kT )),
(27)

Cd(p(k)) = C(p(kT )), (28)
Dd(p(k)) = D(p(kT )), (29)

III. DUAL EXTENDED KALMAN FILTER

Kalman filter became a widely used mathematical algo-
rithm for filtering and also for state estimation purposes. The
algorithm takes into account the statistical uncertainty of the
dynamic mathematical model and the sensors [7]. Formerly
it was used only on linear system, however soon non-linear
approximations became the main focus of the researchers.
One of the longest established of them is the Extended
Kalman Filter (EKF). The special case when two EKF run
concurrently in parallel is called a Dual Extended Kalman
Filter (DEKF) [17]–[19]. This method creates the favourable
opportunity of parallel state and parameter estimation of the
system. Application of DEKF algorithm related to physiolog-
ical application is beneficial since not only the internal state
variables can be predicted but also the patient specific model
parameters as well to map differences between patients on
the model level. Furthermore, the variation of the patient’s
own parameters over time can also be tracked in this way.
In case of LPV based control these predictions can be used
to generate the p(t) connected to a LPV controller which
is able to adapt in this way to the specific needs of given
patients on the modeling.

After the initialization of the DEKF the algorithm consists
of a two-step procedure in both state and parameter instances
as it is introduced as follows [18], [19]:

Initialization:
• State

x̂ = E〈x〉, Px0
= E〈(x0 − x̂0)(x0 − x̂0)

>〉, (30)

• Parameter

ŵ = E〈w〉, Pw0
= E〈(w − ŵ0)(w − ŵ0)

>〉, (31)

Predict:
• State

x̂−k = F(x̂k−1,uk, ŵ
−
k ), (32)

P−xk
= Ak−1Pxk−1

A>k−1 +Q. (33)

• Parameter

ŵ−k = ŵ−k−1, (34)

P−wk
= λ−1Pwk−1

, (35)

where Q is the process noise covariance matrix, λ is the
forgetting factor (0, 1].

Update:
• State

Kx
k = P−xk

C>(CP−xk
C> +Rx)−1, (36)

x̂k = x̂−k +Kx
k(zk − y−k ), (37)

Pxk
= (I−Kx

kC)P−xk
, (38)

• Parameter

Cw
k = C

∂F(x̂, ŵ)

∂ŵ
, (39)

Kw
k = P−wk

(Cw
k )
>(Cw

k P
−
wk

(Cw
k )
> +Rw

)−1
, (40)

ŵk = ŵ−k +Kw
k (zk − y−k ), (41)

Pwk
= (I−Kw

k C
w
k )P

−
wk
, (42)

where Rx and Rw are the observation covariance matrices
of the state and parameter filters, respectively. The measured
variables represented in vector zk at each sampling time.

IV. RESULTS
In this work we have investigated parallel state and pa-

rameter estimation with Dual Extended Kalman Filter. The
relative accuracies of the filter in case of single parameter
(k12) and dual parameter (k12, ke) are compared and repre-
sented.

The simulations were developed in the MATLAB 2017b
software environment.

We have applied 10 days long simulated scenarios with
random glucose intake profiles and insulin profiles which
have calculated to be able to neutralize the effect of glucose
disturbance with respect to the model [10], [14]. In our
figure we show only a given representative slice. Due to
the length of the simulated time horizons the values cannot
be represented within one figure. However, we provide Root
Mean Square Errors (RMSE) based assessment as well ap-
plied on the whole 10 days long time horizon for verification
purposes.

The reference values were generated by solving (1)-(11)
using the inbuilt ode45() solver of the MATLAB software.
The reference G(t) values were the inputs to the sensor noise
model. The output of the system (17)-(21) was used as simu-
lated CGMS data. The inputs of the system follow a manual,
arbitrarily chosen carbohydrate and insulin administration
scheme. Carbohydrate intakes range between 10 [g] and 120
[g], insulin injections 2 [Unit] and 9 [Unit]. Both of the
inputs are bolus like. Previously we referred to carbohydrate
intakes as inputs, however from control point of view those
are modeled as disturbances. This means the filters have no
a priori knowledge about the temporality nor the magnitude
of the boluses.

The filters were initialized by adding a minor off-
set to the reference states and parameters. Important
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to note, that parameters which were not estimated
are equal to their reference counterpart. Initial states:
xref (0) = [90, 30, 0, 0.0088, 0.0012, 0.078, 0, 0, 0, 0]> and
xDEKF (0) = [100, 35, 0, 0.0088, 0.0012, 0.078, 0, 0, 0, 0]>.
Parameters which are common in case of single and dual pa-
rameter estimation are defined as follows: λ=0.99, Rx=0.2,
Rw=0.064.

A. SINGLE PARAMETER ESTIMATION

The only measured variable is the blood glucose concen-
tration in the daily life, this means by applying (30)-(42)
of the DEKF, only parameters present in the first (1) can be
estimated. This is an obvious consequence if we consider the
output matrix in (39). In a previous study it was shown that
k12 – which is the transfer rate from the blood to the tissues
[10] – has the most significant effect on the glucose levels
from the inputs points of view [10], thus our primary goal
was to estimate that parameter beside the state variables.

The process noise covariance matrix was determined by
experimental method, keeping in mind the possible variances
and uncertainties of each state in accordance with our pre-
vious findings [14].

Q =



31.5 6.25 . . . 125 125 0 0
6.25 1.25 . . . 25 25 0 0

...
...

. . .
...

...
...

...
125 25 . . . 500 500 0 0
125 25 . . . 500 500 0 0
0 0 . . . 0 0 0 0
0 0 . . . 0 0 0 0


, (43)

Figure 1 shows the ”nominal” Greference (output of the
virtual patient model), the measured Gsensor = GCGM and
the filtered GD−DEKF blood glucose levels, respectively. It
can be seen that despite the time delay and random Brownian
loads the DEKF is able to approach the nominal model with
acceptable accuracy. Since G(t) = Q1(t)/VG the diagram
can be interpreted to Q1 variable which having k12 in its
equation.
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Fig. 1. G(t) output of the DEKF with single parameter estimation.

Figure 2 shows the estimation performance of the DEKF
in case of Q2. It can be seen the DEKF performed well only
producing acceptable error coming from the time delay effect
of the noise model.

Figure 3 shows the estimation of the absorption sub-model
D1,2 in which the highest estimation errors obtained due to
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Fig. 2. Q2(t) output of the DEKF with single parameter estimation.

the fact that the DEKF did not have preliminary knowledge
about the incoming glucose intakes (disturbances). Neverthe-
less, the D2 state estimation has been acceptable.
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Fig. 3. D1(t) and D2(t) output of the DEKF with single parameter
estimation.

Figure 4 shows the k12 estimation for the whole simulation
horizon. The k12,reference(t) is the selected varying patient
specific model parameter. Higher estimation error obtained
after the initialization due to applied DEKF technique and
the time delay effect, however, we found the DEKF can be
applied for estimation purposes in this sense. Furthermore,
despite the varying estimated k12 the accuracy of the state
predictions have been acceptable taking into account the
applied circumstances.
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0.025
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0.125
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0.175
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Fig. 4. k12 parameter estimation of the DEKF with single parameter
estimation.
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B. DUAL PARAMETER ESTIMATION

Beside k12, ke is also an important parameter of the
Cambridge model as it substantially effects the insulin level.
Although by strictly interpreting the equations of the applied
filter, it is not possible to estimate ke. In order to estimate it
one has to make certain presumptions about the I(t) state.

Insulin concentration in the blood depends only on the
S1(t), S2(t) states and ke, τS , VI parameters. Due to τS
connected to the applied insulin and the VI is related to the
fluid space of the patient they can be handled as constant
on the investigated time frame. Thus, it can be assumed that
ke caused the main deviation of I(t). Thus, the state EKF
can be utilized as a parameter estimator in case of I(t).
Moreover the relation of the state and the parameter with
respect to the derivative of I(t) have to be investigated. It
can be seen in (4) that the two variables identically affect
the derivative (practically this means e.g. we do not have
to change the sign of the estimation during the conversion
from state to parameter). Finally the process noise covariance
matrix has to be altered. Variances have to be added to
the I(t) states, however magnitudes lower compared to the
other states because of the small values of the parameter and
possible small changes:

Q =

31.5 6.25 0.005 . . . 125 125 0 0
6.25 1.25 0.003 . . . 25 25 0 0
0.005 0.003 8 · 10−8 . . . 0.02 0.02 0 0

...
...

...
. . .

...
...

...
...

125 25 0.02 . . . 500 500 0 0
125 25 0.02 . . . 500 500 0 0
0 0 0 . . . 0 0 0 0
0 0 0 . . . 0 0 0 0


,

(44)
Figure 5 presents the Greference, the measured Gsensor =

GCGM and the filtered GD−DEKF blood glucose levels
in case of dual parameter estimation, respectively. Despite
the varying k12 and ke the signals are quite similar to the
previous case with almost the same filtering performance.
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Fig. 5. G(t) output of the DEKF with dual parameter estimation.

Figure 6 shows the Q2 state variables and estimation. It
can be seen that the estimation performance is similar as in
the previous case.
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Fig. 6. Q2(t) output of the DEKF with dual parameter estimation.

Figure 8 shows the I state variables and estimation. De-
spite the varying ke parameter the DEKF is able to estimate
the state with high accuracy.
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Fig. 7. I(t) output of the DEKF with dual parameter estimation.

Figure 8 shows the estimation of D1,2. It can be seen that
the DEKF’s performance was similar.
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Fig. 8. D1(t) and D2(t) output of the DEKF with dual parameter
estimation.

The most important diagram is Fig. 9 in which both the
changes and estimations of k12 and ke can be found. In both
cases the estimation accuracy was around 75% – which is
acceptable compared to the applied framework and varying
signals.
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Fig. 9. k12 and ke parameter estimation of the DEKF.

C. NUMERICAL ASSESSMENT

In order to better grasp the performance of the filter in
case of single parameter and dual parameter estimation a
numerical assessment was made. The states and parameters
are first normalized to [0, 1], between the normalized values
RMSE have calculated: ‖xn−reference(t)−xn−DEKF (kT )‖
in Table I. The estimation of two parameters (D-DEKF)
has only minor effect on the states which already had
significant uncertainty (Q1(t), Q2(t), D1(t), D2(t)). The
error in the remaining states in case of the single parameter
estimation (S-DEKF) is solely caused by the discretization
procedure, zero-order hold and numerical calculations. The
realization of the estimation of the second parameter (ke)
introduces further differences in the states which are directly
or indirectly dependent on ke. The increased error in I(t),
x1(t), x2(t), x3(t) is caused by the deviation of ke from its
reference value.

TABLE I
RMSE ERRORS

Filters Q1(t) Q2(t) I(t) x1(t) x2(t) x3(t)
S-DEKF 7.34 14.23 0.780 0.354 0.681 0.607
D-DEKF 7.38 15.7 2.44 5.86 2.44 2.56

Filters D1(t) D2(t) S1(t) S2(t) k12(t) ke(t)
S-DEKF 21.8 14.3 1.24 0.880 42.8 −
D-DEKF 22.0 14.9 1.24 0.880 45.0 44.7

V. CONCLUSIONS
In this paper we have introduced the development of a

DEKF framework which is able to estimate both the state
variables and model parameters simultaneously by utilizing
the discrete LPV methodology.

We have developed given qLPV model based on the non-
linear Cambridge T1DM model and we applied a nonlinear
noise model to map the noise effects appear during the
application of CGM system.

The graphical and numerical results have shown that the
performance of the developed DEKF is acceptable and we
can use it in our future work related to controller develop-
ment. The main estimation errors obtained due to the time
delay and unknown glucose disturbance.

In our future work we will improve on the DEKF algo-
rithm and adding extra smoothers in order to decrease the
error on the states and parameters.
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