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Abstract— The growing cancer cases attract more and more
scientific research and introductions of new models, applied
control algorithms and methods. The models are fundamental
in the area of computer generated low-dose metronomic (LDM)
chemotherapy, when the administration of the drug is ought to
be optimized. Generally the in-silico tests and investigations are
based on a model, which is hypothesized to describe the given
process reliably and accurately. The analysis of the models and
its parameters is crucial for therapy generation. We performed
an analysis of a third-order tumor growth model based on
sensitivity analysis and identifiability tests. The results show
that a subset of parameters can be fixed as population values
and the rest of the parameter sets results in an identifiable
system with minor loss of accuracy.

I. INTRODUCTION
Cancer treatment and its related fields are intensively

studied subjects, since it is the second leading cause of
death globally [1], and it is predicted that there will be
21.4 million cases of cancer by 2030 [2]. The application
of modern control algorithms to adjust the dosage of drugs
has many unexploited potential [3]. With models accurately
describing the underlying physiological processes control
engineers have the possibility to define optimal therapies.
System engineers thrive to provide a proper description of
the patients, however the inter- and intrapatient variability
and the effects of different drugs are cumbersome to model.
Several models were introduced over the years [4]–[7]. One
of them is a third-order model describing living and dead
tumor cells and drug injections using pegylated liposomal
doxorubicin [7].

In the case of physiological systems, it is of great impor-
tance to get an overall view and understanding of the model
structure and its parameters. Identification is the key process
when the dynamic model is ought to be tailored to a specific
individual. However, other approaches are also present, e.g.,
online parameter estimation, a priori analysis of readily
available data [8]. What is common in all these techniques
is that they require knowledge about the identifiability of the
underlying model and the parameter sensitivities.
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Structural identifiability is crucial because it provides
information about whether during ideal conditions certain
parameters can be uniquely determined given the time series
of the inputs and outputs of the system. Although in real-
istic scenarios, structural identifiability does not inherently
guarantee the identifiability. If the system is not fully iden-
tifiable, meaning that only a subset of the parameters can be
uniqely determined, the sensitivity analysis provides useful
information about which parameters should be under focus,
i.e., which have the largest impact on the output.

The paper is structured as follows: Section II describes
the investigated tumor growth model. In Section III and IV
we present the toolboxes and applied methods for the model
analysis. In Section V the results are summarized. Finally,
in Section VI the paper is concluded.

II. THE APPLIED TUMOR GROWTH MODEL

The investigated tumor growth model is a third-order non-
linear system. The model differentiates between the living
and dead tumor cells by introducing separate state variables:
x1 [mm3] and x2 [mm3], respectively. The third variable x3
[mg/kg] describes the drug concentration. The dynamics is
described by the equations given in [6] at time t:

ẋ1(t) = (a− n)x1(t)− b
x1(t)x3(t)

ED50 + x3(t)
, (1)

ẋ2(t) = nx1(t) + b
x1(t)x3(t)

ED50 + x3(t)
− wx2(t), (2)

ẋ3(t) = −c
x3(t)

KB + x3(t)
− bk

x1(t)x3(t)

ED50 + x3(t)
+ u(t), (3)

where a describes the proliferation rate of the living tumor
cells, n is the tumor cell necrosis rate, w is the dead tumor
cell washout rate, c is the drug depletion rate. The pharma-
codynamics is affected by the b and ED50 (median effective
dose) parameters. The effect of the drug and the depletion
of the drug is characeterized by equations following the
dynamics of Michaelis-Menten kinetics, thus ED50 and KB

are Michelis-Menten parameters.
The therapy can be only effective if it can decrease the

tumor volume, which is determined by the value of the
parameters. In order to get an insight, suppose that we have
infinite dose of drug, thus the effect of the drug is described
by

lim
x3→∞

x3
ED50 + x3

= 1, (4)

which is maximum. In this case, (1) reduces to
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ẋ1 = (a− n− b)x1, (5)

and due to the positivity of x1 [7], the drug can decrease the
tumor volume if and only if

0 > (a− n− b) (6)

which results in the condition b > a− n.
It is beneficial to keep the term in (4) close to 1, since it

maximizes the effect of the drug. On the other hand due to
the harmful side effects, it is also beneficial to keep the drug
level as low as possible. The optimal scheduling of injections
is a distinct focus of the scientific field [9], [10].

III. SENSITIVITY ANALYSIS

Sensitivity provides information about the effects of pa-
rameter value variations on the output. We utilized the
AMIGO2 Matlab toolbox [11] for the sensitivity analysis.
This information can be used to reduce the number of
parameters which need to be estimated online, while we
can use population mean values for the other parameters.
The analysis is usually performed using various measures on
the difference between a nominal trajectory and a perturbed
trajectory caused by changes in parameter values. The most
typical measure is the root-mean-square error (RMSE), but
the direction of change can be extracted using a normalized
mean error as follows.

If we define a general nonlinear system in the form of (7),
where p are the parameters, then the sensitivities sp can be
given with the Jacobians in (9).

0 = f(ẋ, x, p, u, t), (7)

sp =
∂x

∂p
(8)

∂sp
∂t

=
∂f

∂x
sp +

∂f

∂p
, (9)

sp(0) = 0, (10)

Sp,k =
pi
y(k)

sp,k, (11)

where Sp,k is the normalized or relative sensitivity of pa-
rameter p in the k− th discrete step, y(k) is the output and
pi is the i − th sample from the LHS. In (11) the toolbox
normalizes with the value of the i − th parameter sample
and with the value of the output in the given k− th discrete
step:

δmsqr
p =

1

nenlhsnk

√√√√ ne∑
e=1

nlhs∑
i=1

nk∑
k=1

(Sp,k)
2 (12)

where ne is the number of different scenarios for experiments
(initial conditions or input schemes), nlhs is the number
of sampled parameter values, nk is the number of discrete
points at which the system is evaluated.

The sampling of the parameter values in a given range are
done by the Latin Hypercube Sampling (LHS), resulting in

equal distribution in the range and in the individual parame-
ters. Because of the nature of the tumor growth, the system is
unstable if untreated, and there are parameter combinations
which result in an unstable system even in the case of high
drug injections. To avoid the analysis of these combinations,
after the sampling, the unstable patients are removed from
the cohort. This results in a non-symmetric distribution of
the a, b, n parameters, as it is otherwise expected with the
LHS.

The resulting trajectories are dependent on the input, thus
the sensitivities also. In order to investigate the effect of
different kind of inputs, we applied two different drug ad-
ministration scheme. The first is similar to a typical protocol,
where the patients get the maximum tolerable dose every
week [12]. The other is a metronomic therapy using much
smaller doses. The doses for the second therapy are from
the investigation performed by [13]. The results indicate that
the optimal frequency of injections is between two and three
days, with an injection of around 4.5 · 10−3 [mg/kg/day].

The nominal values of the parameters and standard devi-
ations (SDs) are calculated from an identification done on
eight mice [6] these values are given in the Table I. The
upper and lower bounds for the parameters used during the
sensitivity analysis are defined as ±2 SD.
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Fig. 1. Histograms of the constrainted LHS parameter sets, showing the
number of simulations with the given parameter values.

In Fig. 1, the histograms show the number of simulations
with the corresponding parameter values. In the case of the
a, b, n parameters the asymetric distribution can be seen and
in the case of ED50 the +- 2 SD would have allowed negative
values, thus it is constrained to be positive. The yellow circles
show the parameters of the previously identified mice.

IV. IDENTIFIABILTY ANALYSIS
We use the definitions of structurally globally identifiable

(s.g.i.) and structurally locally identifiable (s.l.i.) for the
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Parameter PLD1 PLD2 PLD3 PLD4 PLD5 PLD6 PLD8 PLD9 Nominal SD
a [1/day] 0.333 0.307 0.307 0.310 0.289 0.299 0.308 0.311 0.306 0.0186
b [1/day] 0.116 0.169 0.198 0.180 0.163 0.184 0.174 0.167 0.166 0.0302
c [1/day] 0.235 0.297 0.304 0.272 0.312 0.365 0.187 0.161 0.257 0.0820
n [1/day] 0.115 0.148 0.153 0.173 0.134 0.161 0.133 0.145 0.144 0.0235

bk

[
10−7mg

kg·day·mm3

]
6.15 6.05 6.02 6.10 6.19 6.16 6.17 6.11 6.12 0.404

KB [mg/kg] 0.367 0.361 0.342 0.230 0.362 0.374 0.515 0.400 0.36 0.1242
ED50 [10ˆ-5mg/kg] 8.89 9.03 10.4 13.3 8.64 7.91 7.79 8.94 9.71 1.48

w [1/day] 0.346 0.344 0.331 0.341 0.341 0.339 0.336 0.342 0.34 0.0253

TABLE I
THE MEAN VALUES AND STANDARD DEVIATIONS OF THE IDENTIFIED PARAMETERS [6] BASED ON MICE EXPERIMENTS [12].

classification of systems [14] [15]. The structurally adverb
indicates that the result is only valid from theoretical point
of view. In practice due to noise and errors the identifiability
is not guaranteed using this method. Globally identifiable
means that there is only one unique parameter set that
describes a given trajectory with a given input. On the other
hand, in the case of local identifiability, there is a finite
amount of parameter sets. If the system is non-identifiable,
it means that there are infinite number of combinations. For
the identifiability analysis the GenSSI toolbox [16] has been
utilized.

If a dynamic system given in the form:

ẋ = f(x,p) + g(x)u, (13)
y = h(x,p), (14)

where x is the n-dimensional state vector, f and g are analytic
vector fields. The output scalar field is given by h and u is the
scalar input. This example is given with one input, however
the method can be extended to multiple input systems.

Using the Lie-derivatives L of x along f and g the system
can be written in the form [17]:

ẋ(t) = Lf (x(t),p)[x(t)] + Lg(x(t),p)[x(t)]u(t). (15)

Based on this representation the N th order Peano-Baker
series become:

y(t) = h(x(0),p) +

+
N∑

n=0

∑
k(0),...,k(n)∈{f ,g}

(
Lk(0)...Lk(n) h(x,p)|x(0)

· sk(0)...sk(n)
)
, (16)

where sf represents
∫ t

0
dσ and sg represents

∫ t

0
u(σ)dσ. The

task from identifiability point of view is to find kernels
Lk(0)(τ)...Lk(n)(0)h(x(0),p)|x(0) which can be uniqely
determined. The difficulty is that we do not know a priori the
necessary order N of Lie derivatives. Moreover, the required
high number of Lie derivatives can turn into computionally
unfeasible situations. For example if N = 2, the combina-
tions are limited: Lfh, Lgh LfLfh, LfLgh, LgLgh, LgLfh.
However it can be seen that with higher order of derivatives
the combinations quickly become voluminous.

V. RESULTS

A. Sensitivity

The results of the sensitivity analysis are investigated with
two different drug administration scheme as discussed earlier
in Section III. However it is important to be certain about
the consistency and reliability of the results, since usually
based on the findings of the sensitivity analysis one continues
with the selection of key parameter either during parameter
estimation or identification. To this end consistency tests are
done with different number of parameter samples, amount
of injected drug and initial tumor volume. In each case
the ”nominal” values (on which the results were based) are
the initial values and they are modified in increasing and
decreasing directions.

Figure 2 showcases the global relative RMSDs of the
model parameters with varying test parameters. It can be
seen that the results slightly differ with only 100 samples,
and above it remains constant, so the finally selected 1000
samples can be trusted from grid resolution point of view.
The multiples of the optimized drug injections are also
investigated. The ED50 and KB parameters show a decreas-
ing tendency and b an increasing tendency. This behavior
can be explained if one observes the system equations, in
particular the fraction in (4). If the input is large enough,
it increases the drug concentration x3 to an extent, that the
fraction converges to one. This means that above a certain
drug concentration, increasing the injections makes less
difference. On the other hand, when the fraction saturated,
the b parameter becomes the only variable as a scaling factor,
thus its relative importance grows. The initial tumor volume
is also modified with multiples of the nominal 40 [mm3],
the quasi horizontal lines indicate that the analysis is very
robust with respect to the different initial conditions.

In Fig. 3 the normalized measures can be seen. The
normalization is done in order to make each measure visible
in a single plot. We are interested in the relative values given
a measure, not the absolute ones. When ranking parameters
usually the RMSD or MAD is preferred. The two measures in
this case provide almost identical results. The most sensitive
parameter is a, followed by b and n (with sensitivity half
of a) which are very similar. The less sensitive ones are the
w, c,KB , ED50 in this order, bk becoming the least sensitive
one. The mean difference gives insight about the sign of the
change in the output.
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Fig. 2. Consistency of the different simulation setups.

Fig. 3. Normalized, global relative sensitivities based on the optimized
therapy.

Figure 4 depicts various drug concentration trajectories,
when the model parameters are varied in the given range.
The spikes occur every third day, when the patient receives
the chemotherapeutic drug. The red lines show the drug
concentration value when the fraction given in (4) equals
to 0.95, for the highest ED50 value (upper line), for the
lowest ED50 value (lower line). The two overlapping blue
lines show the concentration when the fraction equals to the
ED50 value.

Figure 5 depicts the results with the MTD therapy. Al-
though the ranking of the most sensitive parameters, and their
relative sensitivity to each other remained very similiar, there
is a minor difference compared to the optimized therapy. The
relative effect of the less sensitive parameters become even
less, this can be explained due to the fact that the high input

Fig. 4. Drug concentration trajectories in the population range.

Fig. 5. Normalized, global relative sensitivities based on the MTD therapy.

values make the Michaelis–Menten kinetics saturate and their
parameters become less relevant. This implies the importance
of the reasonable input-parameter ratios, otherwise the model
goes out of the physiologically relevant domain.

B. Identifiability

The assessment of identifiability requires high order Lie
derivatives, due to the high number of model parameters. In
order to be feasible computationally in each analysis only a
subset of parameters are tested. The rest of the parameters
are hypothesized to be a constant population value. The
important parameters were prioritized based on the result
of the sensitivity analysis.

Parameters s.g.i. s.l.i.
a, b, n, w - all
a, b, n, c all -
a, b, n,KB all -
a, b, n,ED50 all -
a, b, n, bk all -

a, b, n, w,ED50 - all
a, b, n, c, ED50 a b, n, c, ED50

VI. CONCLUSIONS
In this paper we presented the sensitivity and identifiability

analysis of a nonlinear third-order tumor growth model,
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with ensuring the consistency and reliability of the results.
The results clearly show that the system is significantly
more sensitive to a subset of parameters. By selecting those
parameters to be identified and the rest as nominal population
values, the system is identifiable. Further identifications,
parameter estimations and design of control algorithms can
be enhanced based on these findings.
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model for combined therapy,” in 2019 IEEE International Conference
on Systems, Man and Cybernetics (SMC), Oct 2019, pp. 886–891.

[4] P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, “Tumor
Development under Angiogenic Signaling,” Cancer Research, vol. 59,
no. 19, p. 4770, Oct. 1999. [Online]. Available: http://cancerres.
aacrjournals.org/content/59/19/4770.abstract

[5] A. d’Onofrio and A. Gandolfi, “Tumour eradication by antiangiogenic
therapy: analysis and extensions of the model by Hahnfeldt et al.
(1999),” Mathematical Biosciences, vol. 191, no. 2, pp. 159–184,
Oct. 2004. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S002555640400121X

[6] D. A. Drexler, T. Ferenci, A. Lovrics, and L. Kovács, “Modeling
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