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The Poor Man’s Laser Scanner:  
A Simple Method of 3D Cave 
Surveying  
Attila Gáti, Nikolett Rehány, Balázs Holl, Zsombor Fekete, and Péter Sűrű 
describe how a Disto X with modified firmware has been used to provide a 3D laser 
scanning facility at a fraction of the price of a conventional commercial laser scanner.

Introduction  
The most widely used measuring devices 

for cave surveying are Beat Heeb’s DistoX 

(Heeb, 2009) and DistoX2 (Heeb, 2014), 

which are a laser distance meter equipped 

with compass and inclinometer. Using these 

devices, one can take several hundreds of 

splay shots from a station in a few minutes. 

Doing this systematically, we can make a 

sparse 3D survey of a cave. However, we can 

measure only about ten or twenty thousand 

points in a day with a single DistoX, which is 

very few compared to point clouds obtained 

from Terrestrial Laser Scanners (TLS) 

(Bedford, 2003), or GeoSlam’s ZEB1/ZEB 

REVO handheld laser scanners (Williams, 

2014). In addition, the distribution of the 

sampled points can be extremely uneven. The 

question then arises: is it possible to acquire 

a 3D model of a cave based on such few and 

unevenly distributed measurements? 

Considering the price of TLS and ZEB 

devices and the fact that it is very 

complicated or even impossible to use TLS 

in narrow places, this problem is of great 

importance.  

In this paper we give a first report on the 

Poor Man’s Laser Scanner (PMLS), which is 

a new cave surveying technique and 

associated software based on splay shots 

performed with the DistoX or Disto X2. We 

have developed a simple yet robust and 

reliable surface reconstruction algorithm that 

interpolates the measured points with a 

watertight surface of good quality, free of 

self-intersections. Recent advances in 3D 

software technology significantly improved 

the possibility of such software development. 

Nowadays, many software libraries and 

programs are available for manipulating and 

viewing 3D data effectively. These pieces of 

software come from the field of 3D scanning, 

3D medical imaging, and 3D animation. 

Building upon these tools, we created a 

software solution for acquiring good quality, 

realistic 3D cave models from DistoX 

measurements with modest software 

development efforts. We have surveyed 

Hungary’s deepest cave, the Bányász Cave 

(273m), which is about one kilometre long, 

and we think that the required on-site work is 

also reasonable. In one day, we could survey 

50-100m long sections with a single DistoX. 

We compared one of our models with a 

dense point cloud resulting from a thorough 

TLS survey. The vast majority of the TLS’s 

points were closer to our model than 300mm.  

Related Work 
Let us take a look at the already existing 

methods that can provide 3D cave models. 

By conventional cave surveying, it is 

common to take splay shots in four directions 

with DistoX: left, right, up, and down 

(LRUD) in addition to the leg shots. Some 

widely used cave mapping programs – 

Compass (Fish, undated), WinKarst, Therion 

(Budaj & Mudrák, (2008) – are capable of 

producing rough 3D models from centreline 

and LRUD measurements. LRUD models are 

very inaccurate and not very realistic, but the 

survey is fast and cheap. Therion can also 

produce 3D models by combining passage 

outlines from digitized 2D maps and height 

data. In Hungary, Joe Mészáros created some 

3D models based on cross-sections and 

centrelines (Mészáros, 2011). Both of these 

techniques result in unrealistic models. The 

problem with these approaches is that they 

try to recover the 3D layout from separate 2D 

and 1D information. This kind of divide and 

conquer strategy leads to poorly distributed 

sampling of 3D reality, because we can only 

build upon data points lying on specific cross 

section planes or some projection planes. In 

the case of Therion, the information is 

furthermore distorted by the projection. 

Proper 3D reconstruction methods must use 

3D data directly and treat all the three 

dimensions together.  

Besides the techniques based on 

traditional cave mapping, there are solutions 

that can provide detailed, high quality models 

based on dense and accurate point clouds. 

Unfortunately, the equipment has a price that 

definitely cannot be afforded by caving 

clubs. The terrestrial laser scanner is the 

equipment of professional 3D surveying 

(Bedford, 2003). TLS scanners are usually 

very accurate, even at a range of several 

hundred meters. On the other hand, it is 

impractical to use TLS in tight caves due to 

their size and fragility (Holenstein et al., 

2011). Since these devices must be mounted 

on a tripod, large cave chambers and wide 

passages are most suitable for surveying, 

where data can be captured from a modest 

number of stations (Rüther et al., 2009; 

Lerma et al., 2010); Strange-Walker, 2013; 

Berenguer-Sempere et al., 2014; Milius & 

Petters, 2012; Roncat, 2011; Gede et al., 

2013; Gede et al., 2015; Gallay et al., 2015). 

In extremely large chambers, TLS is the only 

possibility (Walters, 2016). A rather new 

piece of equipment is the ZEB1 (Williams, 

2014) and its enhanced version, the ZEB 

REVO (Dewez et al., 2016). These are 

handheld laser scanners utilizing the so-

called Simultaneous Localisation and 

Mapping (SLAM) technology (Bosse & Zlot, 

2009, 2010; Holenstein et al., 2011). 

Neglecting the price, this is probably the best 

tool for 3D cave mapping in general. It is 

easy to carry, easy to use, and the survey is 

extremely fast. It is not as accurate as TLS, 

but its accuracy is good enough for our 

needs, meeting grade XD according to the 

BCRA survey grading system, although it 

can be difficult to use in tight places. In 

(Dewez et al., 2016) the authors tested 

accuracy on a planar wall and noticed 25-

32mm of deviation, operating at a range of 

30m. The ZEB REVO weighs about 4kg so it 

is heavier than a DistoX and has only an IP64 

rating, but the main problem is its price. In 

Hungary, we can buy a ZEB1 for €20,000, 

while a ZEB REVO is sold for €30,000. The 

SLAM software costs another €13,000, but 

you can also choose cloud processing on 

GeoSlam’s servers and pay for each of your 

surveys.  

Our new method, the Poor Man’s Laser 

Scanner (PMLS), is a technique that makes it 

possible to acquire detailed and realistic 

models, almost like those obtained with 

tripod-based or handheld laser scanners, but 

using the surveying equipment that we 
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already have, since most caving groups own, 

and are familiar with, the DistoX or similar 

devices. A PMLS model can also piece 

together disconnected 3D surveys created 

from other sources. 

The Proposed Method 
Our main contribution is a surface 

reconstruction method and associated soft-

ware that applies the method. In our case, we 

would like to create a realistic 3D model of a 

cave that corresponds to our measurements. 

If our measurements capture enough 

information about the geometric layout of the 

cave, then our model will correspond to 

reality. Our algorithm solves the problem of 

surface reconstruction reliably and it can be 

assembled from pieces of software already 

implemented by others, so we can realize the 

method with minimum software development 

effort.  

From our point of view, a cave is a 

connected cavity. We try to approximately 

reconstruct the boundary surface of this 

cavity from rather sparsely-sampled points in 

the form of a triangular mesh. As cavities are 

physical objects, the boundary of a cavity is a 

watertight surface. Watertight means that 

there are no holes in it. Such surfaces divide 

the 3D space into two parts: the interior and 

the exterior of the surface. The surface’s 

interior is a solid – the cavity itself.  

We have rather few samples of a 

complicated surface, so we must be able to 

use all the information that our measure-

ments capture. In addition to the location of 

the splay shots, there is also a relation 

between them. We know which shots were 

taken from the same station and the 

coordinates of all the stations are also known. 

We call a given station, together with the 

splay shots measured from that station, a 

hedgehog. So, we are looking for a watertight 

surface that satisfies two constraints:  

Constraint 1 

The splay shots lie on the surface. 

Constraint 2 

The segments connecting the splay shots to 

their stations are in the interior of the surface. 

Unfortunately, for a finite number of 

splay shots, there are infinitely many feasible 

surfaces, i.e. that satisfy the constraints, and 

most of them are very unrealistic. For 

instance, the surface that resulted from 

replacing the segments in the hedgehogs with 

poles satisfies the constraints but cannot be 

accepted as a cave model. It is clear that we 

must select the best, or at least a rather good 

surface from the feasible solutions. We thus 

face a constraint optimization problem. In 

such problems, the solutions that satisfy the 

constraints are called feasible solutions. The 

goal is to find a feasible solution with 

optimal value of a function called the 

objective function.  

The criterion by which we choose a good 

surface, i.e. the objective function, will be the 

bending energy (Germain, 1821; Wardetzky 

et al., 2007), which is defined for the surface 

S as: 

 ∫=
S

b dAHSE 2

2

1
)(  (1) 

where H is the mean curvature (Perdigão do 

Carmo, 1976), i.e. the sum of the principal 

curvatures, and dA is the differential area. A 

feasible surface with low bending energy will 

likely be free of unnecessary and undesirable 

‘bending’ and ‘wrinkles’. Our algorithm 

consists of four steps. In the first three steps, 

we construct an acceptable surface that 

satisfies the above constraints, at least for the 

vast majority of the splay shots. In the last 

step, we deform this surface to find a feasible 

solution with low bending energy. 

Algorithms processing signals or 

measurements about real world phenomena 

usually have to incorporate the ability of 

detecting and removing outliers, i.e. 

anomalous measurements. Our algorithm 

also applies outlier detection. We remove the 

outliers, and do not require the constraints to 

be satisfied with respect to the outliers. An 

outlying splay shot can be the result of 

erroneous measurement with extremely long 

or short distance reading. If the laser beam 

accidentally hits a drop of water, the distance 

reading can be excessively long. On the other 

hand, short outliers usually result from shots 

on the surveyor’s own body or objects that 

should be skipped over, like ropes or other 

artificial equipment in the cave. 

Unfortunately, outliers can also be caused by 

insufficient sampling (as described under 

‘Reconstructing Surfaces for the Extended 

Hedgehogs Separately’), so sometimes 

outlier detection can make bad decisions and 

remove accurate measurements, which leads 

to useful information being lost.  

Extending the Hedgehogs 
In the first step for each station we try to 

find all such points that are likely to be 

visible from the given station, but were 

measured from some other station. In other 

words, for each splay shot, we determine all 

the stations that it is visible from, and we add 

the point to the hedgehogs of these stations. 

We call the resulting hedgehogs the extended 

hedgehogs. In Figure 1 we can see the 

extended hedgehogs of 1275 splay shots 

measured from two stations. The survey took 

place in the Mátyás-hegyi Cave under 

Budapest.  

Reconstructing Surfaces for the 
Extended Hedgehogs Separately 

In this step we create a watertight surface 

for each extended hedgehog separately. All 

surfaces will be watertight and will satisfy 

our two constraints with respect to their own 

extended hedgehog.  

First, we cut back the splay shots to unit 

length, centred on the station (Figure 2).  

Second, we take the convex hull of the 

endpoints of the unit length shots. If the 

points are in a general position, i.e. any four 

points are not coplanar, then the convex hulls 

will be a polyhedron with triangular faces –

Figure 3 (Na et al., 2002; Davies, undated).  

Third, we keep the triangulation, i.e. the 

connectivity among the points, but put them 

back to their original positions (Figure 4). 

The resulting triangular surface is called the 

turtle of the given extended hedgehog. 

Note that turtles are watertight triangular 

surfaces, that are free of self-intersections, so 

they are polyhedrons and encapsulate three-

dimensional solids. Each turtle estimates the 

  
Figure 1 – Extended hedgehogs (Balázs Holl’s survey) Figure 2 – Extended hedgehogs with unit length splay shots 
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part of the cave that is visible from its station 

with an interpolation of the distance readings 

in the spherical coordinate system centred on 

the given station.  

We propose here two conditions on the 

samples that are necessary for the correctness 

of our algorithm. 

Condition 3 

Neighbouring turtles are overlapping. 

Condition 4 

Splay shots that do not lie on the boundary of 

the volumetric union of the turtles, but in the 

interior of the union, come from erroneous 

measurements and they can be safely 

considered as outliers. 

We assume that neighbouring turtles are 

overlapping. This can easily be guaranteed 

by taking overlapping measurements from 

the corresponding stations. Condition 3 

implies that neighbouring turtles are not 

disjoint and the resulting model will not be 

disconnected. 

Condition 4 is necessary for correct 

outlier detection. The process of extending 

the hedgehogs ensures that splay shots lying 

in the interior of any turtle do not exist. 

Turtles are star-shaped objects, i.e. there 

exists a point, the station, from which all the 

points lying in the interior or on the boundary 

of the turtle are visible. So, the extending 

procedure has to result in turtles that do not 

contain any splay shots in their interior. 

Otherwise the given point should be 

considered visible from the station and added 

to the hedgehog of the station. In that case, 

the given point becomes a vertex of the 

turtle. Unfortunately, such boundary vertices 

may still lie in the interior of the union. To 

fulfil Condition 4 volumetric objects inside 

the cave, that are large enough to survey, like 

large stalactites or the bridge in Figure 7, 

have to be surveyed from at least two 

opposite sides. 

Creating the Union of Extended 
Turtles Based on Voxelisation 

The union of the separate turtles are 

prepared by a robust method based on 

voxelisation. Voxels are 3-dimensional 

pixels. Voxelisation means that we divide the 

space into many small cubes, just like digital 

images are built up from pixels. In this step, 

we create a 3-dimensional binary image 

where each voxel represents the centre of a 

small cube. We set the value of a voxel to 1 

if the centre-point is in the inside of any 

turtle, otherwise we set it to 0. We re-mesh 

(triangulate) the boundary of the volume 

made up of voxels with a value of 1. In 

Figure 5, we can see the resulting surface. 

The black dots show the splay shots.  

By re-meshing, we make the mesh rather 

dense, so it will have much more vertices 

than the number of splay shots. We proceed 

in this way, because we will deform this 

mesh by moving its vertices while 

maintaining the connections, i.e. the 

triangles, among the vertices.  

Under Condition 4 the theoretical union 

of the turtles satisfies Constraints 1 and 2, 

neglecting some erroneous measurements. 

The voxelised union is only an estimation of 

the true union and may lead to additional 

splay shots that dissatisfy the constraints. 

Voxelisation is robust because it introduces a 

simple form of regularisation since volu-

metric features with extremely small volume, 

like needles or blades, will likely disappear. 

The corresponding samples will not satisfy 

the constraints, but usually they can be safely 

regarded as outliers resulting from measure-

ment errors. 

Optimization 
During this step we shall deform the 

union in order to minimize the bending 

energy of the surface and conform to the 

constraints with as few 'wrinkles’ as possible. 

In a continuous model, deformation is a 

function p defined on the points of the 

surface to deform. For all points, we assign 

its new position: p: S → S′, where S and S′ are 

sets of coordinate vectors. We assume that p 

is a regular parametrisation of the new 

surface with the old one, i.e. the mapping is 

one to one and continuously differentiable at 

least two times. Regular means that linearly-

independent directions remain independent 

during the mapping. We apply the method 

described in (Jacobson et al., 2010) to 

minimize the bending energy. For the sake of 

efficient computing we apply an 

approximation: 

 ∫ ∆∆≈
S

b dAppSE ,
2

1
)'(  (2) 

where Δ is the Laplace-Beltrami operator on 

the reference surface and ⟨ , ⟩ denotes the 

  

Figure 3 – Convex hull of the endpoints Figure 4 – Overlapping turtles 

 

 

Figure 5 – Voxelized union of turtles Figure 6 – Final biharmonic surface 
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inner product in ℝ3. The related Euler-

Lagrange equation is the biharmonic 

equation with the unknown function p: 

 02 =∆ p  (3) 

The approximation in Equation (2) 

requires that p be closely isometric, which 

likely does not hold for large deformations. 

The integral in Equation (2) is sometimes 

called the Laplacian energy. In addition to 

minimising Equation (2), we have to ensure 

that our constraints are satisfied. Constraints 

can be incorporated into our framework as 

boundary values of the unknown function p 

in the biharmonic differential equation. For 

some points on the reference surface, i.e. the 

union, we can prescribe new positions by 

boundary values of the form: 

 
ii cxp =)(  (4) 

where x i will be some selected vertices of the 

reference mesh and c i will be the new 

coordinates of these vertices.  

We choose x i and c i as follows. For all 

vertices v i of the reference mesh we assign 

the closest splay shot: 

 ),(minarg
)(

cvd

Cc
vf

i

i ∈
=  

where C is the set of sample points (splay 

shots) and d is the Euclidean distance in the 

3-dimensional space. For each c i from the 

range of f let 
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where f--1(c i) = {v: f(v) = c i}. The splay shots 

that were not assigned to any vertex 

by f are considered outliers (erroneous 

measurements) and removed.  

Solving the above boundary value 

problem and evaluating the resulting function 

p in every vertex of the reference mesh gives 

the vertices of the deformed mesh. While 

moving the vertices to their new positions, 

we maintain the same triangulation. The 

deformation assures that Constraint 1 will be 

satisfied with respect to the measurements 

that have not been regarded as outliers. 

Satisfying Constraint 2, namely keeping the 

segments of the hedgehogs in the interior, is 

achieved in a less elegant way. We detect the 

segments that have some interval outside the 

new surface. We sample these intervals 

equidistantly. For these new points, we 

assign vertices from the original mesh in the 

same way as for the splay shots, and we add 

a further boundary value condition, but we 

keep the assigned vertices in their rest 

positions, i.e.  

 
ii xxp =)(  (5) 

We solve this extended boundary value 

problem again on the original union mesh. 

Figure 6 shows this solution in the case of 

our example.  

In Figure 7 we can see the same mesh 

from the inside (left) and a photo of the real 

cave from nearly the same point of view.  

Note that our algorithm estimates cave 

geometry by interpolating instead of 

approximating the splay shots. This implies 

that we do not apply any error model in order 

to eliminate the effects of errors in the 

measurements that have not been removed by 

outlier detection. The algorithm is designed 

to work on extremely sparse samples, so 

interpolation seemed to be a more app-

ropriate approach than approximation. In the 

case of having a large number of splay shots, 

it is worth to apply smoothing on the 

resulting mesh as a post-processing step and 

achieve a suitable smooth approximation.  

Implementation 
As PMLS is a project done by hobby-

cavers, we did not have much time for 

software development. It was critical to find 

an algorithm that can be assembled from 

already existing software tools with moderate 

programming efforts. Most of the tools we 

have applied are free and open source. The 

only commercial program that we used is 

Matlab (Mathworks, 2015). Matlab is ideal 

for fast implementation of concepts and 

algorithms to verify, and to create a software 

prototype that can even be handed to the 

users for testing.  

To solve the surface reconstruction 

problem, we used several free and open 

source software in addition to Matlab. Con-

sidering the details of our algorithm, the step 

of creating the turtles from hedgehogs is 

done by Matlab functions. For extending the 

hedgehogs with points measured from other 

stations we used the fast ray casting software  

opcode (Terdiman, 2001), through a mod-

ified Matlab wrapper (Vijayan, 2013). The 

voxelized union is performed by Iso2mesh 

(Fang & Boas, 2009), which is a package 

containing many mesh-processing tools 

originating from the field of 3D medical 

imaging. The optimization of the bending 

energy is performed by the biharmonic 

deformation function of LibIgl (Jacobson & 

Panozzo, 2016).  

In order to effectively try out a concept, 

the developer needs a tool for visualizing the 

results. The program that we used for that 

purpose was Blender (Blender Online 

Community, 2016). Blender is a software 

package for creating 3D animations. Its 

coolest feature is that we can make a fly-

through of the models. During my talk at the 

EuroSpeleo conference, I demonstrated the 

potential of PMLS by performing a fly-

through inside one of our cave models 

(Editorial Team, 2016). Blender is excellent 

for viewing every tiny detail of 3D models. 

In addition, Blender’s functionalities can be 

extended with add-ons written in the Python 

programming language. On the other hand, 

Matlab has a Python interface, i.e. Matlab 

functions can be called from Python. It was 

straightforward to create a graphical user 

interface for our method in the form of a 

Blender add-on.  

We can load the input data from CSV 

files, then we can view and edit the 

hedgehogs in Blender. For instance, we can 

delete erroneous measurements. The steps of 

the surface reconstruction process can be 

triggered by pushing buttons. At the end we 

can view the resulting mesh, and we can 

Figure 7 The interior of the result (left), photo of the same place by András Hegedűs (right) 
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export it in many kinds of file formats. Our 

software will soon be available for download 

at cave3d.org.  

Guidelines for On-site Work  
The geometric layout of caves can be 

very complicated with features at all scales. 

So, do not try to make a perfect job, because 

it’s impossible. Note that the DistoX can 

have an error of 1-2 degrees in the horizontal 

angle, and try to capture details at a 

reasonable scale. The ‘take it easy’ approach 

is more effective than being a perfectionist. 

Typically, we take about 50 to 500 splay 

shots from one station. Stations can be on the 

walls, as in conventional centreline survey, 

or a station can also be on a tripod. The only 

strict rule that the surveyor must satisfy is to 

make sure that the measurements performed 

from neighbouring stations are heavily 

overlapping. You should take splay shots at 

least until the neighbouring stations, i.e. each 

turtle, contains its neighbouring stations.  

On the other hand, it is wise to avoid 

long range shots if the given section can be 

surveyed from a closer station, because angle 

errors cause displacement of points 

proportional to the distance. Try to think a bit 

in spherical coordinates. All your 

measurements assign a distance to a pair of 

angles. The first step of surface 

reconstruction will be an interpolation of the 

distance function, which should well estimate 

the cave section that is surveyed from a given 

station. The most important thing is to make 

measurements on corners and peaks, and to 

survey edge-like features with some detail. 

Flat surfaces can be surveyed with a small 

number of shots. Avoid shots where small 

changes in the direction can cause large 

errors in the distance. This is especially the 

case at some edges where a hidden surface 

becomes visible (discontinuities of the 

distance function), or by measuring walls 

nearly parallel to the laser beam. 

Discontinuities should be surveyed on both 

the near and the far sides, so do not skip such 

edges, but keep off a bit from the true edge.  

If a volumetric object inside a cave is 

surveyed, there should be enough samples on 

its opposite sides to fulfil Condition 4. 

We found that it is convenient to use a 

tripod wherever possible. Balázs Holl built us 

a special 3-axis, non-magnetic tripod head as 

shown in Figure 8 and in use in Figure 9. 

Tripod-based stations provide points of 

view in the interior of passages and 

chambers, which are usually much better 

than on-the-wall stations.  

An upgrade to the DistoX firmware by 

Beat Heeb accelerates the measuring process. 

It makes a scan mode available, so it is not 

necessary to push the button for each shot, 

but the device samples automatically as fast 

as it can. A shot requires one or two seconds, 

depending on the reflectivity of the wall.  

Results  
Validation Against a TLS Survey  

We needed to validate the results to see 

how realistic the PMLS cave surveying 

technique is. For the validation, we picked up 

an easily-accessible place in the Mátyás-

hegyi Cave where complex and internal 

surfaces are also found (see Figure 7). We 

scanned this location with a Faro Focus 3D S 

120 TLS (ranging error is ±2mm at 10m) to 

validate the surface whose creation was 

shown in the section entitled ‘The Proposed 

Method’. As our models are very inaccurate 

at their endings, where the walls are visible 

only from a single station, so we cut off the 

two ends, and kept only a 16.5m section 

around the bridge in Figure 7. 

We scanned the place with TLS from six 

positions, which resulted in a really high 

density pointcloud, therefore it was necessary 

to resample the points in a 1cm grid. The 

surface model was then transformed (only 

translation and rotation, without scaling) into 

the coordinate system of the TLS point cloud 

using the Iterative Closest Point (ICP) 

algorithm.  

We measured the distances of all the 24.5 

million samples in the mentioned grid points 

from the surface with the CloudCompare 

software.  

Figure 10 shows the orthogonal projection 

of the point cloud viewed from above and 

coloured according to its deviation from the 

model. Every point is closer to the model than 

one metre. 92% of the samples are closer than 

300mm and 85% of the points are closer than 

200mm.  

In Figure 9 we can see that errors larger 

than 500mm are due to small features that 

were not surveyed or were not even visible 

from the two stations of the PMLS survey. 

The cumulative histogram of the distances can 

be found in Figure 11.  

The mean of the distances is 113mm. 

Since the largest errors are caused by not 

surveying some narrow cracks, the median is 

a more appropriate descriptive measure, 

which is only 74mm. Considering that the 

860 splay shots that lie on the analysed 

surface have a 52mm mean deviation from 

the TLS point cloud, these results are very 

impressive, and show that our interpolation 

technique is rather effective. 

 

Figure 8 – Tripod Head for DistoX2 

 

Figure 9 – Surveying in Bányász Cave 

 

Figure 10 – Deviation 

of point cloud samples 

 

Figure 11 – Histogram 

of point cloud deviation 
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Bányász Cave  
Our main project is surveying the 

Bányász cave, the deepest cave in Hungary 

(273m). The cave is a true pothole, which 

requires heavy use of SRT. The entire cave is 

830m long, from which we have surveyed 

810m. Figure 12 shows the orthogonal 

projection of the result. The on-site work 

took 15 days. One surveying team worked 4-

8 hours each day. Usually we have worked 

with a single DistoX, but there were four 

days when we could use two DistoXs. We 

measured about 61,000 splay shots from 

197 stations.  

Legény Cave  
The surveyed section of Legény cave is 

not so long as in the case of Bányász cave. It is 

only 390m, but the cave has a rather 

complicated geometric layout – see Figure 13.  

The surveying took three days. On the 

first two days, we used a single DistoX, 

while on the last day we were able to use two 

DistoXs. We measured more than 24,000 

points from 112 stations.  
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