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Abstract—The given paper details the development of a
decision support system application to help for people with
type 1 diabetes mellitus. The developed solution is based on
supervised machine learning and it focuses to predict the future
blood glucose level to support decision making of patients with
conservative therapy. We applied the Tensorflow and Keras
framework during our work to make our solutions embedded
system compatible. We applied the AIDA diabetes simulator to
generate data for the proof-of-concept. We found that our result
are promising and the performance of the developed solutions
are able to satisfy the requirements related the proof-of-concept.

Index Terms—Neural network, Tensorflow, Diabetes Mellitus

I. INTRODUCTION

Diabetes mellitus (DM) is one of the most common disease
affecting millions of people worldwide. DM is a malfunction
of the human metabolic system connected to the insulin
hormone. The most widespread types of DM are type 1
DM (T1DM) and type 2 (DM), however, other kind of the
malady appear in the population [1]. Today’s estimation of
the number of the diabetic population is appallingly high:
451 million adults within the age of 18 and 99 globally.
Moreover, according to the approximations 49.7% of these
people are undiagnosed. The predictions for 2045 is 693
million worldwide which is about 7% of the estimated human
population [2]. Thus, DM is one of those crucial fields of
engineering where such solutions have to be developed which
are able to help the affected people in their daily life, help the
physicians and decreas the load on healthcare.

DM is a disorder of the blood glucose regulatory system.
In the case of T1DM, the body does not produce insulin as a
results of a acute autoimmune reaction devastating the insulin
producer β-cells of the pancreas. Insulin is the key hormone of
transporting the glucose from plasma into muscle, fat, liver and
other types of body cells. Thus, without insulin these cells are
fasting despite the plasma is full of glucose, namely, energy.
The lack of insulin causes serious physiological conditions
in the short term which may result coma or death without
treatment [1], [3].
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Machine learning is one of the biggest promises of cyber-
physical systems and decision support systems related to
physiology. Many machine learning based application related
to DM have been developed which are able to improve the
therapeutic outcome [4]–[6]. It have to be noticed that most
of them focusing on prediction and quantification of diabetic
states [7].

In this paper we introduce the development of a machine
learning based solution to predict the future blood glucose
levels (BGL) focusing on the support of conservative therapy.
Conservative therapy is based on daily BGL measurements
by using finger pricking and manual insulin therapy by
considering the measured BGL and the carbohydrate intake
[2]. This therapy can be seriously improved by applying
decision support system using machine learning solutions.
In our application we were keen to approach reality in the
sense of we have input only when the sampling happens. In
this article we applied simulated patient model only to prove
our concept. Real patient data will be involved in the next
development phase of our research.

The paper is structured as follows. First, we introduce the
data source and data generation applied in this study. Then
we provide an overview of the development of the machine
learning application. After, we introduce our results, findings
and conclusions.

II. DEVELOPMENT PROCESS

A. Applied dataset

Our goal was to develop an application which can be applied
to predict whether the BGL one hour after the measurement
of the features falls into the low, normal or high BGL zones.
Furthermore, we have selected the features to approach reality
as much as possible – namely, selection of only a few
measurable or controlled features which mostly determine the
BGL evolution over time. We also considered the generality
of the application as well. Namely, we were keen to apply
methods which can be generally used regardless the source of
data in order to increase the robustness.

We have analyzed what kind of data are necessary in
order to fulfill the determined goals and we have selected the
following features to be applied:

• The weight of the patient (kg).
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• The time when the meal was consumed (s).
• The current glucose level (mmol/L).
• The consumed carbohydrates in g.
• The unit of short acting insulin used.
• The unit of long acting insulin used.
All of the selected features are available for a given patient

during his/her daily routine. The timing of meal consumption
and insulin administration can be given on an hourly basis as
well.

At this point of our research we have investigated two
possible sources of applicable data in accordance with the
aforementioned goal:

• using of real patient data using continuous blood glucose
monitoring sensor or finger prick test;

• using of virtual patient data simulating continuous blood
glucose monitoring sensor or finger prick test.

We have decided to use virtual patients at this stage of our
development process and switch to real patient data in our
future work. In this way, we were able to prove our concept
before validating our solution through costly clinical trials.

We have chosen to use the AIDA diabetes simulator [8],
[9] to generate the necessary data. The simulator is easy to
use and set and freely available. With AIDA, it is possible
to create or use already defined virtual patients with different
physiology. During our research we used 37 virtual patients
from the 40 provided patients by AIDA. These virtual patients
are based on clinical data [9]. It should be noted that the
simulator uses seconds as the basis for time and the time is
counted from the ”virtual midnight” equivalent with 0 sec.
By using the simulator it is possible to simulate one virtual
day at a time, however, the frequency of measurement can be
arbitrariliy selected (multiple measurements can be set).

The simulator is able to use the body weight, the timing
and amount of consumed carbohydrates, the types, amounts
and timing of short and long acting insulins as inputs –
these parameters can be set beside others. As an output, the
simulator provides the BGL level. For example, two sample
outputs of different simulations are shown on Figs. 1 – 2.

Fig. 1. AIDA simulation result - BGL and carbohydrates

The AIDA on-line simulator requires manual input for every
simulation run, the whole process was automated with the help
of Selenium [10], a web browser automation tool. Namely, we

Fig. 2. AIDA simulation result - plasma insulin level and insulin input

have developed a Selenium based script environment that was
able to replace the dozens of manual simulations and providing
automated run instead.

With these patients, we simulated various scenarios in terms
of carbohydrate input and insulin usage. The common points
were the logic behind the initiation of the simulations, the
data gathering and ordering and the format of the resulting
database.

As it was already mentioned, each virtual patient has
different habits in terms of time, carbohydrate and insulin
intakes, but all of them has six meals a day (breakfast,
snack, lunch, snack, dinner, snack), usually with 3 hours
difference. We used these features as a start-up and run several
iterations with randomized and non-randomized modifications.
We randomized the carbohydrate intake in every iteration in
a way we generated a random value between -10 and 10
and added to the corresponding meal. By non-randomized
modification we meant, that after a certain number of iterations
- 5 times going through all the patients with the randomized
carbohydrate inputs - we raised the insulin intake by one
unit and then repeated it. The result of one run contained
a 0-24 hour observation of the patient’s glucose level with
measurements in every 15 minutes (Fig. 3). After the input and
output parameters were known the dataset could be created.
Each of the samples is handled as individual instances.

As the result, we got 3560 entries with just a couple of hours
of runtime. As we wrote above, we applied the introduced
circumstances during the data generation. It should be noted
that we include the multiple measurements of the same patient
during the one day long simulation as different.

Each entry of the generated dataset contains 8 columns
consists of the 6 selected features (the time of the measurement
is given in hours and seconds as well that is why 7 columns
are given, however, this information is the same one) and the
output to be predicted. An example of the resulting dataset
can be seen in Table I which belongs to a given virtual patient
at a given simulated day.

In the realization of the final dataset we have applied
normalization in case of all features. Hence, all of the six
features have fallen between 0 and 1 – which is a suitable
input for the planned neural network based solution.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 18,2020 at 02:02:37 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Example export of AIDA of the first 5 hours of the day

Weight Time (h) Time (s) BGL (mmol/L) CHO (g) SAI (U) LAI (U) BGLT+1 (mmol/L)
68 7:30 27000 7.376 40 6 0 5.891
68 10:00 36000 4.252 19 0 0 4.978
68 12:00 43200 7.733 46 4 4 7.176
68 16:00 57600 5.243 15 0 0 6.046
68 19:00 68400 8.839 34 3 0 8.874
68 22:00 79200 10.41 13 0 0 11.804

TABLE I
EXAMPLE ENTRY OF THE DATASET. BGL: BLOOD GLUCOSE LEVEL; CHO:

CARBOHYDRATE; SAI: SHORT ACTING INSULIN; LAI: LONG ACTING
INSULIN; BGLT+1 : BLOOD GLUCOSE LEVEL ONE HOUR LATER

B. Outcome of the prediction

The main idea behind this research is to get advantage the
computation power of modern machine learning based solu-
tions and try to solve the glucose prediction as a classification
problem. In this interpretation the possible outcome of the
prediction is whether the glucose level is in the range of low,
normal or high values as follows:

• Low: BGL < 5.0 mmol/L.
• Normal: 5.0 mmol/L ≤ BGL < 8.0 mmol/L.
• High: 8.0 mmol/L ≤ BGL.
These values and boundaries are usually applied in the case

of manual therapy and when there is no distinguishing between
the pre- and post-prandial phases [1].

In our framework, the selected categories have applied as
the output of the neural network – thus, the output of the
net was ”Low”, ”Normal” and ”High” and the probability of
prediction.

C. Development framework

To implement the desired model we used Tensorflow [11]
(v1.13.1), an open source machine learning framework. Ten-
sorflow provides a high level API implementation for Keras
[12] (v2.2.4), an open source library to create neural networks.

One of our aim was to develop a model which can be
applied in embedded framework as well – due to our goal was
to include it into mobile application. Beside its many other
advantages, Tensorflow is a very convenient tool to satisfy
this requirement. By using the Tensorfow Lite, which exists

exactly for this purpose, we have the possibility to integrate
our already trained model into smartphone applications.

D. Developed neural network solution

During our development process we have investigated sev-
eral network configuration. In accordance with our further
aims we were keen to find the most simple network structure
which is accurate enough but its usage does not require too
much resources in an embedded framework, however.

Based on our investigations we have chosen a 3 layered,
fully connected neural network as it can be seen in Fig 4.

Fig. 4. The structure of the neural network

The input layer has 6 neurons, each represents the previ-
ously discussed features (weight, time, current glucose level,
carbohydrate input, short acting insulin input, long acting
insulin input). The hidden middle layer has 128 neurons with
ReLu (rectified linear unit) activation function. As Figure
5 shows, this function provides a 0 output in case of a
negative input and it returns the value itself for non-negative
inputs. Using of ReLu in the hidden layers does provide many
benefits due to its computational simplicity, linear behavior,
representational sparsity and easier training [13]. The output
layer has 3 neurons, according to the 3 expected classes. These
neurons uses the softmax activation function which returns a
probability between 0 and 1 (Fig 5).

E. Training method

To train our model we used supervised learning. Supervised
learning means that the training data already contains the
desired outputs then again the unsupervised learning where
the training data is unlabelled and the computer is left to find
out some kind of hidden structure by itself [13].

During our work we applied built-in solutions of Keras for
training and optimization of the network, namely, backpropa-
gation and the Adam optimizer which is a sort of an extension
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Fig. 5. ReLu (upper diagram) and Sotfmax (lower diagram) activation
functions.

of regular stochastic gradient descent method [14]. Adam is
a good choice from that point of view as well to support our
intention to use as less computational capacity as possible even
during the training.

The distribution of our 3560 data entry was the following:
2800 entry for the actual training and 760 for testing (all values
has been scaled and normalized to fall between 0 and 1).

III. RESULTS AND DISCUSSION

The confusion matrix (Figure 6) and the scatter charts
(Figure 7 - 8) show how our model performed on our 760
test data (on scatter plots Glucose class 1.0 means ”Low”, 2.0
means ”Normal” and 3.0 means ”High”):

In Figs 7–8 the test have cut apart into two parts for the
better representation. It is visible in both figures that the
prediction was quite accurate in case of the ”Low” cases, only
a few false prediction appeared. In case of the ”Normal” and
”High” values the results are not easy to decide the absolute
precision of the predictions. Furthermore, the high BGL are
over-represented in the test set randomly which make the
evaluation harder.

Based on the confusion matrix, the values of true positives
(TP), false positives (FP), true negatives (TN) and false
negatives (FN) for each class are shown on Table II.

To evaluate the performance of the model, the following
metrics were applied:

Accuracy =
True positives + True negatives

Total
, (1)

Specificity = True negatives
True negatives+False positives , (2)

Fig. 6. Confusion matrix of the trained model

Fig. 7. Correct and false predictions - 1. Horizontal axis means the number
of the sample while the vertical axis means the predicted group.

Precision = True positives
True positives+False positives , (3)

TPR(Recall) = True positives
True positives+False negatives , (4)

FPR = False positives
True negatives+False positives , (5)

Since it is a multi-class model, our approach was the One vs
All methodology [15] and then the calculation of the average.

For accuracy, the model achieved 0.879, which basically
shows us how often the model is correct in general. It should
be noted the prediction capability is good in this sense. The
specificity was 0.891, which represents the correctly identified
negatives. Precision, which shows what proportion of the
predicted positives is truly positive, was 0.817. In terms of
TPR, the outcome of the model was 0.759, and 0.109 for
FPR. TPR represents the correctly identified positives and FPR
represents the incorrectly identified negatives. It’s worth to
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Fig. 8. Correct and false predictions - 2. Horizontal axis means the number
of the sample while the vertical axis means the predicted group.

Low Normal High
TP 106 123 393
FP 7 50 81
TN 603 501 278
FN 44 86 8

TABLE II
THE AVERAGED METRICS

mention that F1 score could be calculated from precision and
recall, but since it doesn’t take the different misclassification
costs into account, the result could be misleading (classifying
glucose level as high when it’s normal cannot do much harm
compared to classifying glucose level as normal when it’s
actually low).

Fig. 9. ROC curve of the three classes

After the observation of the given confusion matrix, metrics
and the ROC curve (Fig 9 – 10), it’s already visible that
the model performs better on classifying ”Low” and ”High”
glucose levels. For class ”Normal” the model does have
smaller uncertainty in the prediction, especially, when it comes
to True Positive Rate, which is just slightly above 50%. The
individual TPR for class ”Normal” was 0.589. It can be also
seen on the ROC curve that the AOC value for class ”Normal”
is significantly lower compared to the other two. The other

Fig. 10. ROC curve of the three classes - zoomed in

weak point of the performance is the relatively high FPR for
class ”High”, which scored 0.226 individually. Even though
the model’s overall accuracy was above 80% but we found
that further investigation and improvement will be necessary
in our future work to be sure to avoid the danger of false
classification of ”Normal” BGL.

IV. CONCLUSIONS AND FUTURE WORK

We have developed a neural network based model which is
able to predict whether the patients have low, normal or high
glucose levels 60 minutes after the measurements (sampling).
We have found that the developed model is acceptably accurate
in case of predicting the low and high BGL with respect to
the testing, however, the prediction accuracy of normal BGL
should be improved. Nevertheless, the resulting model can be
applied as a part of a decision support system.

In our future work, we will be working on to increase
the performance of the developed neural network by trying
new optimization algorithms and different activation functions.
Besides, as it was mentioned earlier, our main focus is to create
a reliable predictor for real-world usage, that’s why we kept
in mind the ability to integrate our model to mobile devices.
With parallel to the research, a native Android application
development has started and proved the feasibility of our
solution. Additionally, to the predictor function, the app is
supposed to work as a digital logger for insulin, meals, etc.,
and has the ability to visualize various statistics about our
intakes and glucose level. Also, the testing the developed
solutions in clinical studies will be the part of our further
research.

REFERENCES

[1] R. I. Holt, C. Cockram, A. Flyvbjerg, and B. J. Goldstein, Textbook of
diabetes. Chichester, UK: John Wiley & Sons, 2017.

[2] N. H. Cho, J. E. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fer-
nandes, A. W. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global
estimates of diabetes prevalence for 2017 and projections for 2045,”
Diabetes Research and Clinical Practice, vol. 138, pp. 271–281, Apr.
2018.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 18,2020 at 02:02:37 UTC from IEEE Xplore.  Restrictions apply. 



[3] R. De Keyser, D. Copot, and C. Ionescu, “Estimation of patient sensitiv-
ity to drug effect during propofol hypnosis,” in 2015 IEEE International
Conference on Systems, Man, and Cybernetics. IEEE, 2015, pp. 2487–
2491.

[4] A. HAYERI, “Predicting future glucose fluctuations using machine
learning and wearable sensor data,” 2018.

[5] E. Daskalaki, P. Diem, and S. G. Mougiakakou, “Model-free machine
learning in biomedicine: Feasibility study in type 1 diabetes,” PloS one,
vol. 11, no. 7, p. e0158722, 2016.
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