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Óbuda University, Budapest, Hungary,
Email: kovacs@uni-obuda.hu, eigner.gyorgy@nik.uni-obuda.hu, czako.bence@phd.uni-obuda.hu, siket.mate@gmail.com

†Antal Bejczy Center for Intelligent Robotics
Research, Innovation, and Service Center of Óbuda University, Budapest, Hungary

Email: tar.jozsef@nik.uni-obuda.hu
.

Abstract—In this paper a novel control strategy is introduced
in order to create robust and adaptive control approach for
type 1 diabetes mellitus. This approach uses Robust Fixed Point
Transformations which hinders the negative effect of inherent
model uncertainties and measurement disturbances. The results
are validated by extensive simulation on the proposed control
algorithm from which conclusions were drawn.

Index Terms—Robust Fixed Point Transformation, Nonlinear
Control, Cyber-medical Systems

I. INTRODUCTION

Modeling and control of biological systems is a difficult
task in which the classical mathematical tools mostly inap-
plicable because of several unfavourable properties of such
systems e.g. non-linear behaviour, often occurring saturations,
and time-delays. In the recent years in-silico modeling and
testing became extremely important due to the advancement of
computational methods and the decreasing numbers of in-vivo
laboratory experiments on living organisms. When the task
is to develop approximate models of physiological systems
concerning human beings and to use these models in controller
design in order to handle some properties of living organisms,
the effects of modeling imprecisions become more and more
critical [1]. The aforementioned effects typically occur in the
control of Diabetes Mellitus (DM). While DM is an incurable
disease, the treatment of the metabolic system is possible
concerning insulin hormone. Insulin is produced by pancreatic
β-cells and plays a crucial role in dispensing the main energy
source - glucose - through the cell-wall of adipose tissues
and striated muscle cells with insulin-regulated glucose trans-
porters, regulating (with other hormones) the glycogenesis-
glycogenolysis cycle and other important processes [2]. From
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all the types of DM the most dangerous is Type 1 DM (T1DM)
which is associated with the lack of insulin caused by the
destruction of β-cells during an autoimmune reaction [3].
In the case of T1DM the patient requests external insulin
administration in order to maintain its glycemia. In general the
treatment can be done manually by the use of an insulin pen or
can be automated by insulin pumps [3] however regardless of
the administration methodology the main goals of such ther-
apies are the same: avoidance of hypoglycemia, moderately
occurring hyperglycemia [4] and/or low variability of glycemia
[5]. From an engineering point of view, the insulin pump based
Artificial Pancreas (AP) concept might be the best solution in
order to reach the optimal glycemia. The AP concept is based
on Continuous Glucose Monitoring Sensors (CGMS) [6], an
insulin pump, and advanced control algorithms [8]. In this
study we investigate the applicability of the recently developed
RFPT-based control design methodology for T1DM control.
The developed algorithms are able to deal with the different
glycemic loads caused by daily nutrition.
The paper is structured as follows: the RFPT methodology
and design steps are introduced first followed by a case
study concerning the operation of the controller, on which
conclusions are drawn with a discussion of future research
directions.

II. RFPT-BASED CONTROLLER DESIGN IN CASE OF
PHYSIOLOGICAL PROCESSES

The RFPT methodology can be introduced by the realized-
response scheme as described in [9], [10]. The underlying idea
is that upon inverting the model of the system, one can obtain
a proper control signal which steers the controlled states along
a desired trajectory. The profound issue is that in almost every
case the parameters of the inverted model are not exactly the
same in relation to the exact model so that the calculated input
will cause a different behaviour of the physical system. The
RFPT tackles this issue by deforming the desired trajectory
in a way that the physical system will behave as one would978-1-7281-3345-4/19/$31.00 c©2019 European Union
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require. This can be achieved by using a deform function
which in SISO case is defined as follows according to [9],
[11]:

rn+1 = G(rn; rDes) , (rn +Kc)×{
1 +Bc

[
tanh(Ac(f(rn)− rDes))

]}
−Kc ,

(1)

where Kc, Ac, and Bc = ±1 are the control parameters.
The function has to be iterated as {r0

def
= rDes, r1 =

G(r0) . . . , rn+1 = G(rn), . . .} so that a proper fixed point
can be achieved. A detailed description of the operation and
the structure of the controller can be found in [9] and [11].

A detailed description of the controller design procedure
is described next, beginning with the general properties of the
mathematical model of the phenomenon that we wish to use in
the control. By revealing the more specific model properties
an effect chain can be deduced that determines the relative
order of the control task. Using a simple approximate model
the need for the information on the components of certain
state variables can be evaded. The adaptivity of the designed
controller can compensate for the effects of these modeling
imprecisions.

A. Modeling difficulties in general

In diabetes research mathematical modeling of the physio-
logical processes and the in-vitro investigations have impor-
tant relevance due to the fact that the possibility of in-vivo
experiments are limited since the subjects of the examinations
are human beings. In such investigations the real patients are
substituted with models of various complexity called patient
models, which can be completed with other sub-models (e.g.:
absorption model, sensor model, noise model, etc.) in order
to simulate the behaviour of the human metabolic system
regarding the glucose-insulin household. However when the
available mathematical models are utilised during the con-
troller design, several unfavourable model properties might
appear such as strong non-linearities and time delay effects
that are essential parts of the reality [1]. Efficient handling
of the intra- and inter-patient variability is also a challenging
aspect, since a virtual patient can be described with a given
parameter set of the mathematical model. Furthermore an
identified individualized virtual patient model belongs only
to the patient under consideration so that the model can not
be used in general terms. That means that the model-based
controller design solutions based on a virtual patient model
as exact model may be seriously affected by these problems:
they can handle only a particular group of patients who
have the same metabolic attitudes. However in spite of these
unfavourable circumstances, maintaining the generality of the
controller and in the same time providing personalized control
would be most beneficial. In general adaptive controllers could
provide such solutions. Specifically the RFPT-based adaptive
controller design methodology could be a possible candidate
due to that fact that it requires only a roughly approximate
mathematical model of the controlled phenomenon.

B. Investigation of the effect chain of the control action

In order to realize the RFPT-based controller an inverse
model must be established which effectively captures the
approximate dynamics of the connection between the control
signal (the injected insulin) and the controlled variable (the
Blood Glucose (BG) level). The most simple way is using a
virtual patient model at this point instead of a real patient,
however models can be created based on measurements as
well. Three possible cases can occur:
• Real patient data is used: a model can be created that

describes the relationship between the insulin signal and
the BG level;

• Simple virtual patient model is used: usually, the insulin
affects higher derivatives of the BG level via simple
interconnections that determine the necessary order of
the control law; the model structure can be considered
and transformed to an approximate model to capture this
dynamics;

• Complex virtual patient model is used: insulin affects
high derivatives of the BG level via complex intercon-
nections; the model structure cannot be used during the
approximate model design.

C. Designing the approximate model

If BG measurements and insulin injection data are available
of the real patient, a general mathematical model can be
created and the well known identification procedures also
can be employed at this point. The main restrictions are that
the carbohydrate (CHO) intake can be considered only as a
random disturbance input and in the case when insulin injec-
tions are known the CHO intake still has an impulse attitude.
Moreover the sensor noise influences the BG measurements.
Beside these unfavourable circumstances the goal is to create
such a mathematical model, which can approximately catch
the dynamics of the process. For example, a nonlinear discrete
autoregressive-type NARMAX model can be a reasonable
choice because of its simplicity and general applicability [12].

The rough approximation model can be also generated from
the given patient model if its structure is simple which is
true in the presence of only a few state variables. This does
not correspond to model-based process in the classical sense,
although the model structure is utilized during the procedure.
The parameters of the model can be arbitrarily determined or
randomized within reasonable limits. For instance, assume that
the original first order non-linear system is described as

Ġ(t) = f(t, G(t), u(t), d(t)) . (2)

where variable G denotes the BG level. Via restructuring the
equation, the dynamic connection among the insulin input and
the first derivative of the BG level will be:

u(t) = h(t, Ġ(t), G(t), u(t), d(t)) . (3)

In the case of more complex models it can happen that the in-
sulin input influences directly the higher order derivative of the
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BG level. If the insulin input modifies directly only a very high
order derivative of G the use of this model in its original form
is not sufficient. Although certain parts of the original models
can be considered during the approximate model design, (e.g.
the connections between the subsystems), the complex model
can be handled as a virtual patient and similar techniques can
be used as in the first case when the patient measurements
are available. That means that measurements can be generated
based on in-silico trials and identification can be applied.
However a different approach exists as well. Since the macro-
scaled physiological processes are slowly varying the Quasi
Stationary Theorem (QST) from classical thermodynamics
[13] can be used in approximate model design. The principle
of the approach is that the inputs can be mapped by little
modification of the stationary outputs if the solution of the
equations of motion is stable stationary for stationary inputs.

D. Selection of the control law

Since the design of the RFPT-based adaptive controller
is commenced with the determination of a purely kinematic
prescription of the tracking error, a proper function has to be
elaborated. While various possibilities can be employed, in
many cases (and this in particular) a PID type tracking can be
considered which is defined as:

(
d

dt
+ Λ

)(n+1)
t∫

t0

(
GN (ξ)−G(ξ)

)
dξ = 0, (4)

where n is the relative degree of the system, Λ is a control
parameter, GN (t) is the desired BG concentration to be
tracked, G(t) is the realized BG concentration, and the error
signal is the e(t) = GN (t) −G(t) ought to converge to zero
in infinity, i.e. e → 0 as t → ∞. On the subject of the
aforementioned considerations a general RFPT-based T1DM
control environment can be finalized as it is shown in Fig. 1.
It also depends on the approximate model to be applied.

E. Considerations and restrictions regarding the controller
design in case of T1DM

Modeling and control of T1DM is effected by several
unfavourable practical and physiological constraints. These
could be the lack of information on the internal state variables
of the patient model (as it is in the case of a real patient), the
impulse nature of the inputs, the output (the BG level) being
quantized and not available in every time instant, the controller
cannot administer arbitrarily big insulin ingress for example.
Every mentioned impacts can be handled with sub-models
or restrictions that increase the complexity of the model.
Naturally, simplifications can be done in order to reduce the
complexity. During our investigations we applied simplifica-
tions in modeling the feed intake. Since the absorption sub-
models well characterise the rate of glucose appearance in the
blood generally (they provide satisfying approximations), it is
assumed that the outputs of the applied absorption models are
known. Furthermore, the total amount of insulin consumed in

Figure 1. General structure of a RFPT-based controller: the two delay blocks
correspond to the cycle time of the digital controller

the control of glycemia is also important: practically this value
is limited.

III. CONTROL OF THE HOVORKA MODEL

In order to demonstrate and prove the usability of the RFPT-
based design methodology, the Hovorka T1DM model was
selected which is frequently used among scientific researches
[14], [15]. Instead of applying parameter identification, mod-
els with their given parameters were chosen so that further
comparison could be done in the literature. Since the primary
goal was the introduction of a new controller design method
this was a reasonable choice. During our investigations adverse
circumstances were applied, namely high glucose amounts and
long simulation time, in order to prove the long term usability
of the developed controllers.

A significant difficulty should be noted regarding the use
of PID type laws. Since the controller can only decrease the
BG level with the control signal and the feed intake is a
disturbance from this point of view dead periods may occur
in the control after the insulin injections. If too much insulin
is injected, which may causes dangerous decrease in the BG
level, the controller has to wait for the depletion of the insulin
via the natural channels because there is no practical means
to extract insulin from the human body. (The desired control
action in this case should cause instant decrease in the insulin
level that is impossible. The best realizable control signal
in this case is the zero insulin ingress rate.) Furthermore
the integrated error could considerably increase during the
dead periods. There are several solutions to this problem,
namely the application of other (e.g. PD-type) control laws,
or cutting the error signal at zero if the prescribed nominal
BG level GN is higher than the actual G(t). In this case
the PID type control law was appropriate without modification.
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The model under investigation was the Hovorka model
described by (18), which is a complex T1DM model. It
originally occurred in [16], but in this study a slightly different
model was used from [17]. Due to the lack of space the
the state variables are not detailed here but can be found
in [16], [17]. The model has ten state variables that describe
not just only the glucose-insulin dynamics but also captures
the externally injected insulin’s absorption and distribution,
the insulin effects, the insulin independent BG changes, and
the internal glucose production too. Moreover it also contains
an embedded glucose absorption model. The model equations
in conjunction with the description of the parameters can be
found in the Appendix.

The relative order of the possible kinematic control type is
five since the input signal appears in the 5th derivative of the
controlled state Q1(t). This entails that high order derivative
is presented from (18) in the approximate model. Because of
the relative order, the 5th derivative of the controlled state
Q1(t) must be determined. The relative order implies that
some simplification should be imposed on the exact model.
Two different types of simplifications can be utilized: the
use of parameter approximation instead of exact parameters
or neglecting parts from the model elements. Both of these
restrictions were applied on the approximate model.
The 5th order derivative of Q1(t) was carried out first, which
can be derived from (18):

Q
(5)
1 (t) =

D
(4)
2 (t)

VGτD
− F (4)

01,c − F
(4)
R

−x(4)1 (t)Q1(t)− 4x
(3)
1 (t)Q̇1(t)−−5ẍ1(t)Q̈1(t)−

4ẋ1(t)Q
(3)
1 (t)x1(t)Q

(4)
1 (t) + k12Q

(4)
2 − EGP0x

(4)
3 (t)

.

(5)
Equation (5) can be rearranged and completed with a new

term, the affine parameter A, which represents each neglected
elements. Thus the control signal directly appears in x

(4)
1 (t)

and x
(4)
3 (t) state derivatives, hence the approximate model

takes the form of:

Q
(5)
1 (t) = −x(4)1 (t)Q1(t)− EGP0x

(4)
3 (t) +A . (6)

The 4th order derivative of x
(4)
1 (t) and x

(4)
3 (t) can be

derived from the model equation (18), however the presence
of the control signal has to be identified first. This can be done
by using the following equations:

Ṡ1(t) = u(t)−
S1(t)

τS
. (7)

S̈2(t) =
Ṡ1(t)

τS
−
Ṡ2(t)

τS
=
u(t)

τS
−
S1(t)

τ2S
−
Ṡ2(t)

τS
. (8)

I(3)(t) =
S̈2(t)

VIτS
− keÏ(t) =

u(t)

VIτ2S
−
S1(t)

VIτ3S
−
Ṡ2(t)

VIτ2S
− keÏ(t) .

(9)

x
(4)
1 (t) = −ka1x(3)1 (t) + kb1I

(3)(t) =

= −ka1x(3)1 (t) + kb1

(
u(t)

VIτ2S
−
S1(t)

VIτ3S
−
Ṡ2(t)

VIτ2S
− keÏ(t)

)
.

(10)

x
(4)
3 (t) = −ka3x(3)1 (t) + kb3I

(3)(t) =

= −ka3x(3)3 (t) + kb3

(
u(t)

VIτ2S
−
S1(t)

VIτ3S
−
Ṡ2(t)

VIτ2S
− keÏ(t)

)
.

(11)
Equation (10) and (11) can be substituted into (6). More-

over, the neglected subparts can be incorporated in variable A
as follows:

Q
(5)
1 (t) = −kb1

u(t)

VIτ2S
Q1(t)− EGP0kb3

u(t)

VIτ2S
+A . (12)

From (12), one can rearrange the equation so that the
connection between the control signal and the 5th derivative
of Q1(t) leads to:

u(t) =
Q

(5)
1 (t)−A

−kb1Q1(t)− EGP0kb3
VIτ

2
S =

=
−Q(5)

1 (t) +A

kb1Q1(t) + EGP0kb3
VIτ

2
S

. (13)

Equation (13) is a proper candidate for an approximate
model. We applied further modifications since the exact model
parameters are not available in every case. The finalized
approximate model that we utilized in this study was the
following:

u(t) ≈
−Q(5)

1 (t) +Aconst

kb1appQ1(t) + EGP0appkb3app

VIapp
τ2Sapp

, (14)

where a 10% random deviation was used in the approx-
imated parameters. Moreover the affine A parameter was
replaced with a constant Aconst.

For the kinematic part of the controller a simple PID type
prescription was employed. One can assume that the glucose
distribution volume is known at this point as well which allows
writing the kinematic type PID control law to Q1(t) in the
form of:

Q
(5),Des
1 (t) = Q

(5),N
1 +

5∑
s=0

(
6

s

)
Λ6−s

(
d

dt

)s

·

·
t∫

t0

(
QN

1 (ξ)−Q1(ξ)
)
dξ

(15)
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IV. SIMULATION RESULTS

In the current simulation realistic circumstances were in-
troduced to the highest extent possible. For this purpose
practical feed intake protocol were employed based on the
recommendations of the World Health Organization (WHO)
[18]. In order to apply this protocol the treatment assumed a
27 years old female patient of 70 kg weight with little physical
activity. Based on the WHO recommendations the required
calorie intake for a day is described by (16) [18]:

CHOreq/day = 15.3BW + 679 = 1750
kcal

day
. (16)

Since the applied absorption model contains the CHO as
the only input parameter an assumption was made that the
total calorie intake was made up from only CHO, namely
glucose. Generally speaking the carbohydrates and complex
meals have lower glycemic index and needs longer absorption,
therefore this simplification can be considered as a worst
case scenario, because of the fast increment of the glucose
concentration in the blood. Since accurate coordination of the
feed intakes cannot be provided (it depends on the lifestyle) a
randomization was designed in the amounts and time frames
of the glucose intakes. Furthermore 1 g CHO is equivalent with
4.2 kcal [4] the total calculated CHO intake should be equal
with 416.667 g. The amount was divided into five parts; three
bigger meals (breakfast, lunch, dinner) and two smaller meals
(snacks). Randomization were made in the amounts and time
frames of different intakes as can be seen in Table I. Moreover

Table I
RANDOMIZATION OF THE GLUCOSE INTAKES

Notation Amount [g]
Duration
[min]

Time of intake
[min]

CHObreakfast
20− 25% of
CHOreq/day

15± 5% 210± 5%

CHOsnack1
10− 15% of
CHOreq/day

10± 5% 390± 5%

CHOlunch
25− 30% of
CHOreq/day

20± 5% 510± 5%

CHOsnack2
10− 15% of
CHOreq/day

10± 5% 780± 5%

CHOdinner
20− 25% of
CHOreq/day

20± 5% 900± 5%

a strict constraint was applied on the total calorie intake in the
form of:

CHObreakfast + CHOlunch + CHOdinner =

= 75% of CHOreq/day

CHOsnack1 + CHOsnack2 = 25% of CHOreq/day

. (17)

The simulations were made in ScilabTM and the
figure plots were created with MATLABTM. The
initial states of the 48 hours long simulation were
xini(t) = [D1,ini, D2,ini, S1,ini, S2,ini, Iini, x1,ini
, x2,ini, x3,ini, Q1,ini, Q2,ini]

T =
[0, 0, 687.5, 687.5, 10.783, 5.521e − 2, 8.842e − 3, 0.5607e −

1, 86.3, 63.66]>. The results of the numerical simulations are
presented in Fig. 2. Without external glucose intake the BG
level is increasing due to the glucose secretion of the liver
which is embedded in the model. The applied controller starts
the insulin injection when the BG level is increasing and
turns off upon decreasing BG level. This switching attitude
can be derived from the applied control strategy and this
is a consequence that the controller cannot apply negative
control input. It can be seen that despite of the continuously
absorbing external glucose concentration the controller can
manage the glycemia and able to avoid the hypoglycemia
while minimizing the hyperglycemia. The latter cannot be
totally eliminated because of the high and random glucose
intakes. On the basis of the numerical results it can be stated
that the controller could achieve its goal and operated as
expected.
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Figure 2. Results of the 48 hours long simulation of the Hovorka model
[QN

1 = 90mmol/L (GN = QN
1 /VG ≈ 8.036mmol/L), Λ = 1e − 4,

Ac = 1/10|Kc|, Kc = 5e− 1 and Bc = −1]

V. CONCLUSION

In this paper, our goal was to provide a general overview
about the RFPT-based controller design approach. While these
solutions can be extended into other physiological areas,
we focused to the control of T1DM in our research. We
showed the full path of the RFPT-based controller design
in case of physiological systems step-by-step. Moreover we
demonstrated the design approach in case of T1DM control
via case studies. The RFPT-based control design approach
has several benefits against model-based control design; these
advantages were detailed in the text. However, in this study
we did not apply parameter optimization on the controller
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parameters, or identification on the used T1DM models which
we are going to investigate in our future work.
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APPENDIX

The equations of the Hovorka model are the following [16], [17]:

Ḋ1(t) = AGD(t)−
D1(t)

τD

Ḋ2(t) =
D1(t)

τD
−
D2(t)

τD

Ṡ1(t) = u(t)−
S1(t)

τS

Ṡ2(t) =
S1(t)

τS
−
S2(t)

τS
Q̇1(t) = UG(t)− F01,c − FR(t)− x1(t)Q1(t)+

+k12Q2(t) + EGP0(1− x3(t))

Q̇2(t) = x1(t)Q1(t)− (k12 + x2(t))Q2(t)

İ(t) =
UI(t)

VI
− keI(t)

ẋ1(t) = −ka1x1(t) + kb1I(t)
ẋ2(t) = −ka2x2(t) + kb2I(t)
ẋ3(t) = −ka3x3(t) + kb3I(t)

D(t) =
1000 · d(t)
MwG

G(t) = Q1/VG

(18)

The following table contains the parameters, their descriptions and
their values which were used in this study regarding the Hovorka
model [16], [17]:

Table II
PARAMETERS AND THEIR DETAILS IN THE USED HOVORKA MODEL

Notation Unit Description Value
BW kg Body weight 70
MwG g/mol Molecular weight

of glucose
180.15588

k12 min−1 Transfer rate 0.066
ka1 min−1 Deactivation rate 0.006
ka2 min−1 Deactivation rate 0.06
ka3 min−1 Deactivation rate 0.03
ke min−1 Insulin

elimination
rate

0.138

τD min CHO absorption
constant

40

τS min Insulin
absorption
constant

55

AG − CHO to glucose
utilization

0.8

VI/BW L · kg−1 Insulin distribu-
tion volume

0.12

VG/BW L · kg−1 Glucose distribu-
tion volume

0.16

EGP0/BW L · kg−1min−1 Liver glucose
production at
zero insulin

0.0161

F01/BW L · kg−1min−1 Insulin indepen-
dent CNS con-
sumption

0.00097

SIT L/mU Insulin sensitivity
of transport / dis-
tribution

51.2 · 10−4

SID L/mU Insulin sensitivity
of disposal

8.2 · 10−4

SIE L/mU Insulin sensitivity
of EGP

520 · 10−4
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