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Abstract— Low-dose metronomic (LDM) chemotherapy
shows promising results in cancer treatment. However, the
scheduling of the therapy, including the determination of the
optimal biologic dose is usually based on empiricism. This
paper contributes to an in-silico analysis targeting parameter
optimization of LDM chemotherapy design. The in-treatment
tumor growth model used by the analysis formulates tumor
proliferation and necrosis, dead tumor cell washout, as well as
pharmacokinetics and pharmacodynamics of the administered
drug. The model parameters are identified based on mouse
experiments. The optimization goal is the minimization of the
total amount of drug delivered throughout the full length of
the therapy with governing constraints ensuring the efficacy
of the treatment. Results show that a clear optimum exists in
the scheduling of the treatments, that is, an optimal choice for
the rest periods can be done. The optimum is independent of
the length of the therapy, and only slightly depends on the
parameter sets of the individual patients.

I. INTRODUCTION

Low-Dose Metronomic chemotherapy (LDM) was first
proposed 20 years ago as a therapy with low dose high
density drug administration versus Maximum Tolerated Dose
(MTD) treatment [1]. Initially, it was considered as an
antiangiogenic therapy inhibiting the formulation of blood
vessels supporting the growth of the tumor cells. Since
then, LDM strategies turned out to be effective also in
immunotherapy and its direct effects on cancer cells has been
discovered as well. It has been examined as a monotherapy
and in combination with other treatment methods like MTD
chemotherapy and radiotherapy. Recent results show that
LDM strategies can outperform MTD strategies, especially
for fast-growing tumors [2]. Reviews on the study of LDM
therapy can be found in Loven et al. [3] and André et al. [4].

From engineering perspective, LDM can be modelled as
a discrete time control problem with impulsive inputs. The
theory of impulsive control is well known from e.g [5]
and [6]. The main concept is that inputs are modelled as
instant changes in the values of some state variables, not
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as explicit input signals as in traditional control theory. We
started to adapt this technology to cancer treatment a few
years ago, see [7] and [8]. Research studies targeting similar
goals but using different models can be found in [9] and [10].

The objective of this paper is to propose optimal schedule
of LDM chemotherapy. This is done by presenting a detailed
in-silico analysis of our therapy generation algorithm using
an impulsive discrete time patient model, introduced in [7]
and [8]. Our main findings are that an optimal choice for
rest periods between treatments can be done, this choice is
independent from the length of the therapy and correlates
with the clearance and median effective dose of the applied
chemotherapeutic drug (pegylated liposomal doxorubicin)
for the individual patients. The rest of the paper is structured
as follows: Chapter II describes the tumor growth model
as the evolution of previous studies. Chapter III expounds
the therapy generation algorithm. Chapter IV presents the
tools and methods used for the analysis of which results are
discussed in Chapter V. Finally, Chapter VI concludes the
paper.

II. THE TUMOR GROWTH MODEL

The tumor growth model used in this paper is based on a
minimalistic approach (i.e., using as few state variables and
parameters as possible), which was refined in several itera-
tions after its first publication. The final model is presented
here as the result of a step-by-step development process.

The initial model [11] describes tumor cell proliferation
and the pharmacokinetics of the applied angiogenic inhibitor
using only two state variables: the tumor volume and the
inhibitor serum level. This model is extended in [12] by
incorporating the effects of necrosis and the pharmacody-
namics of the drug. Tumor volume is divided here to living
and dead tumor cells, so the number of state parameters
is increased by one. In [13], [14], the direction of the
research changes from angiogenic inhibition to chemother-
apy. According to this change, the model is modified by
incorporating the washout of dead tumor cells, which is a
critically important phenomena during chemotherapy. The so
far final extension of the model presented in [8] increases
the number of state variables by one again, refining the
pharmacokinetics with the application of a two-compartment
system (central and peripheral). This representation showed
better results during parameter identification than the formal
description with three sate variables. Furthermore, the inputs
of the system are modelled as impulsive effects in the value
of the state variable describing the drug level in the central
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compartment. This is in contrast with the classical approach,
which formulates injections as direct, discrete-time inputs.

The tumor growth model used for the in-silico analysis
is presented below in two forms. At first, an illustrative
explanation is given using an analogy to formal reaction
kinetics. Suppose that X1, X2, X3 and X4 are fictive species
representing the volume of the living tumor cells, the volume
of the dead tumor cells, the drug level in the central com-
partment and the drug level in the peripheral compartment,
respectively. The tumor growth during chemotherapy is then
given by the following reaction steps:

• X1
a−−→ 2 X1: proliferation of living tumor cells;

• X1
n−−→ X2: tumor cell necrosis;

• X2
w−−→ O: dead tumor cell washout;

• X1 + X3
b−−→ X2 pharmacodynamics (the effect of the

chemotherapeutic drug);
• X3

c−−→ O: pharmacokinetics (depletion of the drug);

• X3
k1−−→←−−
k2

X4 two-compartment pharmacokinetics (the

spread of the drug in the body).
We give another representation of the tumor growth model,

which uses system engineering terminology. The state-space
model is given as follows:

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3
(1)

ẋ2 = nx1 + b
x1x3

ED50 + x3
− wx2 (2)

ẋ3 = − (c+ k1)x3 + k2x4 − bk
x1x3

ED50 + x3
(3)

ẋ4 = k1x3 − k2x4, (4)

in the intervals [0, t1], [t1, t2], ..., [ti, ti+1], ... for i = 1, 2, ....
The injections ui are administered in time instants ti, i =
1, 2, ... and have effect on the third state as

x3(t
+
i ) = x3(t

−
i ) + ui. (5)

The state variables of the system are x1, x2, x3 and x4. x1
is the time function of the proliferating tumor volume in
mm3, x2 is the time function of the dead tumor volume in
mm3, x3 is the time function of the drug level in the central
compartment in mg/kg and x4 is the time function of the
drug level in the peripheral compartment in mg/kg.

The output is the total tumor volume in mm3 that is the
sum of the living and dead tumor cells:

y = x1 + x2. (6)

The dynamics of the total tumor volume is then described
by the differential equation

ẏ = ax1 − wx2, (7)

which means that the change of the measured tumor volume
depends directly on the tumor growth rate constant a, the
tumor washout rate constant w and the actual volume of the
proliferating and dead tumor cells.

The model parameters were identified based on real mea-
surement data also in [8] based on the experiments described

in [15]. The identified parameters for the seven mice not
showing resistance against the administered drug in the
experiments in [15] are presented in Table I. Note that the
parameter bk on the right hand side of (3) was close to zero
during the identification, therefore it is not present in the
Table I and is neglected in our analysis.

III. THERAPY DESIGN

We use the tumor growth model described in Chapter II for
developing optimal LDM chemotherapy. The related treat-
ment scenario and the optimal control problem was founded
in [16]. Here, the angiogenic inhibitor is administered to
the patient in form of injections scheduled in fixed and
equidistant time intervals called rest periods. Every time the
doctor investigates the patient, the tumor volume is measured
and recorded. In the next step, the doctor defines the desired
volume of the tumor for the end of the following period. The
optimal control problem is then to find the minimal amount
of drug that is required to be administered to the patient such
that the tumor volume at the end of the next period is less
than or equal to the desired level.

A binary search algorithm was proposed to solve the
optimal control problem [16], which was later modified and
adapted to the new tumor growth model in [7]. We recall
this procedure in Algorithm 1 due to its high importance
with respect to our analysis.

The generation of the full therapy is constituted by running
the search algorithm several times (defined by the total length
of the therapy and the chosen length of the rest periods)
consecutively, while giving the initial values of the state
variables equal to their final values calculated by the previous
execution of the algorithm. The very first initial value of the
proliferating tumor volume (x1) is given by the identification
process (see Table I), while the other three states (dead tumor
volume x2, drug level in the central compartment x3 and
drug level in the peripheral compartment x4) are assumed
to be zero for k = 0. The reference volume is calculated
in silico by giving UMAX dose of the drug, which is the
MTD by default, but will be modified in the later analysis
in Subsection V-C.

IV. ANALYSIS

Given the therapy generation algorithm described in Chap-
ter III, our aim was to find the optimal input parameter
set, and particularly, the optimal schedule of injections in
order to minimize the total amount of chemotherapeutic
drug necessary for a successful therapy. Altogether, the input
parameter set consists of the following constants:

• UMAX [mg/kg]: injection dose limit,
• ε: maximum tolerated distance from the desired tumor

volume,
• TOL: maximum tolerated distance from the analytical

optimum of the injection dose (also determining the stop
condition of the algorithm),

• L [days]: total duration of the therapy, and
• Ts [days]: length of the rest periods.
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TABLE I
THE IDENTIFIED PARAMETERS FOR THE TUMOR GROWTH MODEL BASED ON MICE EXPERIMENTS [8]

Parameter PLD2 PLD3 PLD4 PLD5 PLD6 PLD9 PLD10
a[1/day] 0.110418406 0.215526754 0.16765648 0.140906773 0.146644234 0.10046402 0.06409301
b[1/day] 0.420126468 0.471192264 0.769957493 0.414039983 0.397670985 0.638828893 0.228345556
c[1/day] 0.920366148 0.711276923 1.123719728 0.591860057 0.635236124 0.745639795 1.217108287
ED50[mg/kg] 0.001479554 5.03E − 05 8.96E − 05 0.00072989 0.001534443 0.001392283 0.000323682
k1[mg/kg] 7.182480087 10.36900747 4.665498045 5.139064896 10.03181807 7.427887027 5.455678554
k2[mg/kg] 74.42509769 34.27463714 69.08963483 139.8784866 62.82274197 69.76133667 60.57456315
n[1/day] 0.00026832 0.000269518 0.00032116 0.000277835 0.000276248 0.000344623 0.00028237
w[1/day] 0.015339999 0.08779158 0.064449621 0.014813315 0.087397824 0.011934765 0.097799656
x1(0)[mm3] 14.05317925 130.6485947 45.75888757 15.44381186 24.07972372 22.39883988 95.50732075

Data: The initial values x1[k], x2[k], x3[k] and x4[k].
The maximal drug injection UMAX and the
accuracy parameters ε and TOL.

Result: The minimal drug dosage u[k] that is
required to reach the tumor volume in the
vicinity of the desired tumor volume
(parameterized by ε) in the next step.

Let umax = UMAX and umin = 0;
Let u = UMAX . Calculate the tumor volumes in the
next time instant (k + 1)Ts by solving the initial
value problem on time interval [kTs, (k + 1)Ts]
defined by (1)–(4) with initial values
x1[k], x2[k], x3[k] + u, x4[k], denote them by
x1[k + 1] and x2[k + 1], and let the desired tumor
volume in the next time instant be
yref [k + 1] := x1[k + 1] + x2[k + 1].;

while umax − umin > TOL do
u = (umax − umin)/2;
Calculate the tumor volumes in the next time
instant (k + 1)Ts by solving the initial value
problem on time interval [kTs, (k + 1)Ts]
defined by (1)–(4) with initial values
x1[k], x2[k], x3[k] + u, x4[k], denote them by
x1[k + 1] and x2[k + 1].;

Let y[k + 1] = x1[k + 1] + x2[k + 1];
if y[k + 1]− yref [k + 1] > εyref [k + 1] then

umin := u;
else

umax := u;
end

end
Algorithm 1: The search algorithm to find the minimal
drug delivery for the next step [7]

Throughout the analysis we tuned the parameter Ts defin-
ing the schedule of injections while keeping the remaining
parameters fixed in several different configurations. The total
amount of drug required to fulfill the generated therapy was
calculated for each case and plotted against the length of the
rest periods.

Although classical MTD (Maximum Tolerated Dose) ther-
apies apply typically longer rest periods than ten days, our
aim was to find the optimal schedule of LDM (Low-Dose
Metronomic) precisely, instead of comparing the two types

of therapy strategies. Therefore we focused only on intervals
between 12 hours and ten days.

Note that we only investigated such configurations that
resulted in successful therapies, i.e., where the tumor volume
was reduced to zero or close to zero after the treatments.
Therapy validation was carried out by comparing the series
of desired tumor values with the output of the patient model
under simulation (as defined by (6)).

The drug was administered by means of injections dis-
tributed equidistantly in time for all the test cases. That
means that the length of the rest periods Ts was kept
constant during the therapy. As the length of the therapy
L itself was also fixed, the number of injections was less
for cases designed with longer rest periods than for cases
with shorter ones. That might cause sudden jumps in the
output curves if the maximal amount of drug administered
via a single injection UMAX was limited. Moreover, the
end of the therapy was defined as the last possible date of
drug administration, and not as the target date of the full
elimination of the tumor. Consequently, it might happen for
some cases that the patient receives the final injection on
the last days of the therapy, but the tumor will only be fully
eliminated some days after.

We used the parameter set of patient PLD6 for therapy
generation. This choice was made already in [7], since this
patient had the largest ED50 parameter, thus it requires the
largest doses and serves as a worst case scenario. This way
we had the possibility to compare the outputs with previous
results.

As the therapy was generated every time for an individual
patient, we further analyzed the algorithm to find inter-patient
variability in relation with the optimal scheduling, and also
to give a quantitative description of the correlations between
the parameter sets of the patients and the generated therapies.

The patient model was implemented in Simulink and tested
by custom scripts written in the MATLAB programming
language. The figures presented in Chapter V were generated
also by these tools.

V. RESULTS AND DISCUSSION

We discuss the results of the simulations by analyzing the
effect of each of the input parameters, one after another.
The main results are read from the generated figures, how-
ever, numerical data is also available as the output of the
simulations.

SoSE 2020 • IEEE 15th International Conference of System of Systems Engineering • June 2-4, 2020 Budapest, Hungary

000413

Authorized licensed use limited to: University of Exeter. Downloaded on July 02,2020 at 13:38:19 UTC from IEEE Xplore.  Restrictions apply. 



A. The effect of time between injections Ts

The total amount of drug required for the therapy depends
on the length of the rest periods (Figs. 1-5). The function has
a clear minimum point between one and four days (depend-
ing on the other parameters) for PLD6 (cf. Figs. 1, 2, and 4).
This schedule is optimal because the minimal injection dose
(defined by parameter TOL) is enough to be administered
at each treatment during the therapy. This holds obviously
also for shorter rest periods, however, shorter periods means
more injections, and so, the total amount of administered
drug becomes greater when the full course of the therapy is
considered.

B. The effect of achievable distance from the reference
output ε

There is no reason to lower the achievable distance from
the reference output below 0.01 (see Fig. 1), because much
more drug is needed without having measurably better results
in the final tumor volume. Allowing a greater distance,
however, may lead to unsuccessful therapy, see e.g. [7].

C. The effect of injection dose limit UMAX

The default upper limit of the injection dose used by our
algorithm is the MTD value, which is 8 mg/kg for the
applied drug, i.e., pegylated liposomal doxorubicin. Setting
this limit to lower values helps to approximate the analytical
minimum point more closely for rest periods shorter than
two days or longer than 6 days (Fig. 2), which reduces
in those cases also the total amount of required drug for
the entire therapy, since this parameter directly affects the
desired tumor volume.

D. The effect of algorithm accuracy TOL

Although running the search algorithm for more iterations
may result in lower injection doses as the algorithm is
enabled to approximate the analytical minimum point closer,
those minimal improvements are practically irrelevant for
such low doses in the scale of µg/kg. On the other hand,
limiting the number of iterations (widening the tolerance
interval) may lead to drastic increase in the amount of drug
required, especially for short rest periods, where very low
injection doses are sufficient to reduce the tumor volume.
In other words, if the tolerance is higher, the algorithm will
stop very soon and propose large doses, which are far from
the optimum. This phenomena can be seen in Fig. 3.

E. The effect of therapy length L

Figure 4 illustrates that the optimal schedule of the injec-
tions (i.e,. the rest period which minimizes the total amount
of drug) is independent of the total length of the therapy.
Note that 30 days are not enough to reduce the tumor
volume to zero in most of the cases. In turn, 90 days are
unnecessarily long, because the tumor size will be eliminated
in ca. 60 days independently of the duration of the rest
periods.
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Fig. 1. The effect of achievable distance from the reference output. Patient:
PLD6, UMAX = 8 mg/kg, TOL = 8∗10e−3 mg/kg, L = 60 days
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Fig. 2. The effect of injection dose limit. Patient: PLD6, TOL =
UMAX/1000 mg/kg, L = 60 days

F. Inter-patient variability

The minimal total amount of drug correlates to the me-
dian effective dose (ED50) parameter, which is identified
individually for the patients under test. Patients with higher
ED50 and clearance values (PLD2 and PLD10) need higher
amounts of drug only in the cases of longer rest periods
applied. Rest periods below the desirable two - four days
period are not optimal, because the drug will not be depleted
from the body in such a short time. This is related to the
clearance parameter of the patient. The simulation results for
the different patients are visualized in Fig. 5. (The parameter
sets of the patients are described in Table I.)

VI. CONCLUSION

We performed an exhaustive in-silico analysis on our
therapy generation algorithm and concluded that an optimal
schedule of LDM therapy can be found, and the schedule
only slightly depends on the input parameter set of the ther-
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Fig. 4. The effect of therapy length, Patient: PLD6, UMAX = 8mg/kg,
ε = 0.01, TOL = 8 ∗ 10e− 3 mg/kg

0 1 2 3 4 5 6 7 8 9 10

Rest periods [days]

0

2

4

6

8

10

12

14

16

18

T
o
ta

l 
a
m

o
u
n
t 
o
f 
d
ru

g
 [
m

g
/k

g
]

PLD2

PLD3

PLD4

PLD5

PLD6

PLD9

PLD10

Fig. 5. Inter-patient variability. UMAX = 8 mg/kg, ε = 0.01, TOL =
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apy generation algorithm. The optimal schedule is defined by
the ED50 and clearance parameters of the individual patients,
which meets previous expectations. Limitation is that we
performed only a quantitative analysis yet. Our future goals
are to describe the correlations between the parameters and
the generated therapies qualitatively, and to characterize the
generated therapies with less parameters in order to simplify
the therapy generation process.
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of antiangiogenic tumor therapy,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 13 504 – 13 509, 2017, 20th IFAC World Congress.

SoSE 2020 • IEEE 15th International Conference of System of Systems Engineering • June 2-4, 2020 Budapest, Hungary

000415

Authorized licensed use limited to: University of Exeter. Downloaded on July 02,2020 at 13:38:19 UTC from IEEE Xplore.  Restrictions apply. 



B. Péceli et al. • Optimal scheduling of low-dose metronomic chemotherapy: an in-silico analysis

000416

Authorized licensed use limited to: University of Exeter. Downloaded on July 02,2020 at 13:38:19 UTC from IEEE Xplore.  Restrictions apply. 


