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Abstract— Mathematical modeling of tumor growth dynam-
ics may have great impact on modern medicine. The dynamical
model of tumor growth which describes the effect of drugs
can be used e.g., for therapy optimization, therapy supervision,
drug development. Based on a single drug tumor growth model,
we create a model that can be used to describe the effect
of two drugs. The extended model is created using formal
reaction kinetics analogy, thus the meaning of the equations
is interpretable for experts not familiar with differential equa-
tions. We carry out parametric identification using nonlinear
mixed-effect model, for the identification we use measurements
from mice experiments carried out using bevacizumab and
fluorouracil treatment. The results of the identification show
that the measurements can be reproduced using the model with
small error, and the interpatient variability for most of the
parameters is relatively low.

I. INTRODUCTION

Application of system and control theory in physiologi-
cal problems opens new perspectives in modern medicine.
Modeling and control of BIS (bispectral index) in anesthesia
[1]–[3], or modeling and control of blood glucose level in
artificial pancreas applications [4]–[7] are well representative
results of this interdisciplinary field. Modeling and control
of tumor growth is an intensively researched area of physi-
ological control as well aiming to automatize therapies and
optimize treatment protocols [8]–[10].

A system theoretic model of tumor growth, which can
describe the effect of the drug on tumor evolution, is a
fundamental element of tumor control. Besides the control
application, reliable tumor growth models can be used in
drug research, patient monitoring and prognosis as well.
There are various tumor models in the literature. The Hahn-
feldt model describes tumor volume and endothelial volume
dynamics under the effect of angiogenic inhibition, describ-
ing Gompertzian tumor growth, i.e., the tumor volume has
an upper plateau [11]. A mechanistic model of tumor growth
using partial differential equations describing the effect of
chemotherapy is given in [12]. A compartmental model for
the treatment of low-grade glioma with chemotherapy or ra-
diotherapy is given in [13]. A cellular automation model was
developed in [14]. A tumor model describing tumor volume
dynamics, vessel support dynamics and pharmacodynamics
of the drug was published in [15].
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A third-order tumor growth model with proliferating tumor
volume, dead tumor volume and drug level dynamics was
proposed in [16]. The model uses linear tumor growth,
linear necrosis, and a Hill function to define the effect of
drug (pharmacodynamics) and the drug depletion (mixed-
order pharmacokinetics). The Hill function is an essential
component of the model since it describes that the effect
of the drug does not increase linearly as the drug level
increases. Hill functions were used to describe continuous
saturation on the drug effect in a model used for control
of anesthesia in [3]. We use the model with Hill function
drug effect given in [16] and modify it to describe the
effect and pharmacokinetics of two drugs. The original model
is described in Section II, while the modified model with
multiple inputs is defined in Section III.

We use results from an experiment carried out on 10
immunosupressed mice implanted with human xenograft
(HT-29 colorectal adenocarcinoma) with a combined ther-
apy of bevacizumab and fluorouracil to validate the model
structure and carry out parametric identification in Section
IV. In the experiments, the mice got 7.09 · 10−4 mg/ml
bevacizumab and 0.1424 mg/kg fluorouracil in the form of
injection each day after the 8th day of tumor implantation.
The parametric identification shows that the extended model
can efficiently describe the measurements. The paper ends
with the conclusions in Section V.

II. THE ORIGINAL TUMOR GROWTH MODEL

The tumor growth model proposed in [16] is described
with the analogy of formal reaction kinetics. This analogy
has several benefits: the differential equations can be auto-
matically generated from the stoichiometric equations using
the techniques from [17] once the kinetics is described (e.g.,
mass-action of Michaelis-Menten kinetics), the stoichiomet-
ric equations reveal the meaning of the differential equations
in a form that is interpreted for expert not familiar with
differential equations, e.g., medical experts, biologists, and
the transition from stoichiometric equations to differential
equations automatically guarantees the positivity of the re-
sulting system.

In the third-order model, we use three fictive species X1,
X2 and X3 that are the species representing the proliferating
tumor volume, the dead tumor volume, and the drug level,
respectively. The corresponding state variables x1, x2 and
x3 are the time functions of the proliferating tumor volume,
dead tumor volume and drug level, respectively. The sto-
ichiometric equations defining the fictive reactions, which
correspond to the physiological phenomena governing tumor
growth are



• X1
a−−→ 2 X1 that describes tumor proliferation with

tumor growth rate a. We consider this effect with mass-
action kinetics, which results in the linear differential
equation ẋ1 = ax1;

• X1
n−−→ X2 that describes tumor cell necrosis (death)

with necrosis rate n. We consider this effect with mass-
action kinetics, the corresponding differential equations
are ẋ1 = −nx1, ẋ2 = nx1;

• X3
c−−→ O that describes depletion of the drug with

reaction rate coefficient c, i.e. the clearance of the drug.
We use consider Michaelis-Menten kinetics with quasi
steady-stace approximation, which results in mixed-
order model for the pharmacokinetics, and the corre-
sponding differential equation is ẋ3 = −cx3/(KB +
x3), where the parameter KB is the Michaelis-Menten
constant of the drug;

• X1 + X3
b−−→ X2 that describes the effect of the

drug in a general way, i.e., if living tumor and drug
meets, they turn into dead tumor. We consider this reac-
tion with Michaelis-Menten kinetics with quasi steady-
state approximation, Michaelis-Menten constant ED50

(the effective median dose) resulting in the velocity
term x1x3/(ED50 + x3). The effective median dose
defines the dose of the drug that exerts 50% of the
maximal effect, thus if x3 = ED50, the component
x3/(ED50+x3) has the value of 1/2. The effect of the
proliferating and dead tumor volumes is considered with
reaction rate coefficient b, resulting in the differential
equations ẋ1 = −bx1x3/(ED50 + x3) and ẋ2 =
bx1x3/(ED50 + x3). We use the differential equation
ẋ3 = −bkx1x3/(ED50 + x3) to describe the effect
of the drug on drug level dynamics, where the rate
coefficient bk has different dimension than b.

The sum of these effect yields the differential equations of
the system:

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3
(1)

ẋ2 = nx1 + b
x1x3

ED50 + x3
(2)

ẋ3 = −c x3

KB + x3
− bk

x1x3

ED50 + x3
+ u, (3)

where x1 is the time function of the proliferating tumor
volume in mm3, x2 is the time function of the dead tumor
volume in mm3, x3 is the time function of the drug level in
mg/kg and u is the input that is the time function of drug
injection rate in mg/(kg · day).

The output y of the system is the measured tumor volume
in mm3 that is the sum of the proliferating (x1) and dead
(x2) tumor volumes, i.e.

y = x1 + x2. (4)

The dynamics of the output is described by the differential
equation

ẏ = ax1 (5)

that is the sum of (1) and (2), thus the change of the measured
tumor volume depends directly only on the tumor growth rate

constant a and the actual volume of the proliferating tumor
volume.

The qualitative analysis of the model with the application
of state-feedback and neglicted dead volume dynamics is
carried out in [18]. The system has a trivial equilibrium
x1 = 0 mm 3, x3 = 0 mg/kg, which is a stable node if
a − n < 0, i.e., tumor necrosis is faster than proliferation,
and a saddle point if a − n > 0, i.e., tumor proliferation is
faster than necrosis. The system is controllable, i.e., the drug
can decrease tumor volume if and only if a−n−b < 0, which
is the criterion for the existence of a nontrivial equilibrium
for the pathological case a− n > 0.

III. MODIFICATION OF THE TUMOR GROWTH
MODEL

The model discussed in Section II has only one input,
but this input can be any drug which have effect on tumor
growth due to the general formalism of the drug effect
mechanism. We modify this model to describe two inputs
by duplicating the stoichiometric equation defining the drug
effect mechanism, and the stoichiometric equation defining
the drug depletion. Let X3 be the species corresponding to
drug 1, while X4 be the species corresponding to drug 2.
The stoichiometric equations defining the effect of drugs are

X1 +X3
b1−−→ X2 (6)

X1 +X4
b2−−→ X2. (7)

The inhibition rate of drug 1 is b1, while the inhibition rate
of drug 2 is b2. We suppose that the drugs act independently,
and there are no cross interactions, they have no effect on
the other drugs effectiveness. Let the effective median dose
parameter of drug 1 be ED50,1, and the effective median
dose parameter of drug 2 be ED50,2. Let x3, x4 denote the
time functions of the drug level of drug 1 and 2, respectively.
The velocities caused by the stoichiometric equations are

ẋ1 = −b1
x1x3

ED50,1 + x3
− b2

x1x4

ED50,2 + x4
(8)

ẋ2 = b1
x1x3

ED50,1 + x3
+ b2

x1x4

ED50,2 + x4
(9)

ẋ3 = −bk1
x1x3

ED50,1 + x3
(10)

ẋ4 = −bk2
x1x4

ED50,2 + x4
, (11)

with bk1 and bk2 being the rate coefficients that specify the
velocity of drug depletion caused by the effect of drug 1 and
2, respectively.

The stoichiometric equations defining the depletion of the
drug are

X3
c1−−→ O (12)

X4
c2−−→ O. (13)

The clearance rates of drugs 1 and 2 are c1 and c2, re-
spectively. Let the Michaelis-Menten constants of the drugs
be KB,1 and KB,2. The velocity terms defined by the



stoichiometrix equations considered with Michaelis-Menten
kinetics are

ẋ3 = −c1
x1x3

KB,1 + x3
(14)

ẋ4 = −c2
x1x4

KB,2 + x4
. (15)

Both the drug effect mechanism and drug depletion are
considered with Michaelis-Menten kinetics resulting in a
Hill function in the corresponding differential equations.
Combining (8)-(15) with tumor proliferation and necrosis
considered with mass-action kinetics (i.e., linear differential
equation), we get the differential equations of the extended
model:

ẋ1 = (a− n)x1

−b1
x1x3

ED50,1 + x3
− b2

x1x4

ED50,2 + x4
(16)

ẋ2 = nx1 + b1
x1x3

ED50,1 + x3
+ b2

x1x4

ED50,2 + x4
(17)

ẋ3 = −c1
x1x3

KB,1 + x3
− bk1

x1x3

ED50,1 + x3
+ u1 (18)

ẋ4 = −c2
x1x4

KB,2 + x4
− bk2

x1x4

ED50,2 + x4
+ u2. (19)

The inputs of the extended model are the time function u1

of the injection rate of drug 1 and the time function u2 of
the injection rate of drug 2. The dimension of x3 and x4 can
be mg/kg or mg/ml. In general, the dimensions of the inputs
can be mg/kg/day or mg/ml/day. Since in our experiments
the dose of bevacizumab is given in serum level (mg/ml),
while the dose of fluorouracil is given in mg per body weight
kilogram (mg/kg), the dimension of x3 will be mg/ml and
the dimension of x4 will be mg/kg in the next section.

This system is positive (nonnegative), since it is kinetic
[17], thus for all positive initial conditions and for positive
inputs the trajectories are positive. Note that all the param-
eters of the model are supposed to be positive as well.

Theorem 1: Consider the extended system without dead
tumor volume dynamics, i.e., the dynamic system described
by (16),(18) and (19). The trivial equilibrium point x∗1 = 0,
x∗3 = 0, x∗4 = 0 with constant input u∗1 = 0, u∗2 = 0 is
stable in the sense of Lyapunov, if a− n ≤ 0, and unstable,
if a− n > 0.

Proof: Let f denote the right-hand side of the differ-
ential equation of the system without dead tumor volume
dynamics, with zero input functions:

f =


(a− n)x1 − b1

x1x3

ED50,1 + x3
− b2

x1x4

ED50,2 + x4

−c1
x1x3

KB,1 + x3
− bk1

x1x3

ED50,1 + x3

−c2
x1x4

KB,2 + x4
− bk2

x1x4

ED50,2 + x4

 .

(20)
The Jacobian of f evaluated at the equilibrium point is

f ′(0, 0, 0) =

 a− n 0 0
0 0 0
0 0 0

 (21)

which has eigenvalues {a− n, 0, 0}. If a− n > 0, then the
Jacobian has a positive eigenvalue, thus the equilibrium point
is unstable.

In order to analyze the case a − n ≤ 0, consider the
Lyapunov function

V =
1

2

(
x2
1 + x2

3 + x2
4

)
(22)

and its derivative

V̇ = x1ẋ1 + x3ẋ3 + x4ẋ4 (23)

= x1

(
(a− n)x1 − b1

x1x3

ED50,1 + x3
− b2

x1x4

ED50,2 + x4

−c1
x2
3

ED50,1 + x3
− c2

x2
4

ED50,2 + x4

−bk1
x2
3

KB,1 + x3
− bk2

x2
4

KB,2 + x4

)
, (24)

which is negative semidefinite if a − n ≤ 0, since the
system is positive (nonnegative), i.e., x1, x3, x4 ≥ 0 and
the parameters are all positive. Since the derivative of the
Lyapunov function is negative semidefinite, this implies that
the zero equilibrium is stable in the Lyapunov sense if
a− n ≤ 0.

Theorem 2: Consider the pathological case a − n > 0,
i.e., the tumor dynamics is unstable without drug. Then the
tumor volume can be decreased with the appropriate control
if and only if a− n− b1 − b2 < 0.

Proof: If a−n > 0, the tumor volume can be decreased
if and only if there exists positive drug levels x3 and x4 such
that the right-hand side of (16) is negative, i.e.,

(a− n)x1 − b1
x1x3

ED50,1 + x3
− b2

x1x4

ED50,2 + x4
< 0. (25)

Suppose, that the drug levels are high, i.e., take the limits
x3 → ∞, x4 → ∞. The limits of the Hill functions are 1,
i.e.,

lim
x3→∞

x3

ED50,1 + x3
= 1 (26)

lim
x4→∞

x4

ED50,2 + x4
= 1, (27)

thus the tumor volume dynamics is described by

ẋ1 = (a− n− b1 − b2)x1 (28)

which is negative if and only if a− n− b1 − b2 < 0. Since
the value of Hill functions is between 0 and 1 for finite drug
levels, we have that

−b1 − b2 < −b1
x3

ED50,1 + x3
− b2

x4

ED50,2 + x4
, (29)

which yields that

a−n−b1−b2 < a−n−b1
x3

ED50,1 + x3
−b2

x4

ED50,2 + x4
,

(30)
thus ẋ1 < 0 implies that a− n− b1 − b2 < 0.
It is possible that for some positive b1 and b2, the inequalities
a−n−b1 > 0 and a−n−b2 > 0 hold, thus the single therapy
is not effective against the tumor, but a− n− b1 − b2 < 0,
thus combination of the drugs can decrease tumor volume.



IV. RESULTS OF PARAMETRIC IDENTIFICATION

For the purpose of parametric identification, we used mea-
surements from experiments carried out on 10 immunosup-
pressed SCID (Severe Combined ImmunoDeficiency) male
mice. A human tumor, HT-29 colorectal adenocarcinoma
was injected subcutaneously into the mice, and the treat-
ment started eight days after tumor implantation. The mice
received 7.09 · 10−4 mg/ml bevacizumab (which is an an-
giogenic inhibitor) and 0.1424 mg/kg fluorouracil (which
is a cytotoxic agent) in the form of injections each day.
The experiments were carried out at the 1st Department of
Pathology and Experimental Cancer Research, Semmelweis
University in 2018 between 24th of October and 26th of
November. The measurements for the 10 mice numbered
from C1-C10 are shown by the green circles in Fig. 1, and
are interpolated linearly with the green curves. The black
arrows in Fig. 1 show the time of injections.

In the multidrug model discussed in Section III, the first
input u1 is bevacizumab (which was 7.09 · 10−4 mg/ml per
day), thus x3 is a serum level with dimension mg/ml, and
u1 has the dimension mg/ml/day, while the second input
u2 is fluorouracil (which was 0.1424 mg/kg per day), thus
x4 is the drug level in mg/kg, and u2 has the dimension
mg/kg/day. Parameter fitting was carried out using a mixed-
effect model. First, the differential equation systems were
converted to a nonlinear model in which the parameters were
assumed to be random effects. As a result, every subject has
an own realization for each parameter which is assumed to
be a random draw from a given distribution (usually assumed
to be normal), so that the number of estimated parameters
is always fixed – for normal distribution these parameters
are the mean and standard deviation – irrespectively of the
number of subjects [19]. The mean measures the overall –
population – value, while standard deviation characterizes
the between-subject variability. This model can handle the
within-subject correlations, therefore these models are widely
used to describe repeated-measures data and are also univer-
sally applied in population pharmacokinetics [20], [21].

Estimation was performed with Stochastic Approximation
Expectation-Maximization (SAEM) method which is one
of the modern methods to solve the likelihood equations
arising from the above-described nonlinear mixed effects
models [22], [23]. Calculations were carried out under R
statistical program package version 3.5.2 [24] using the
library nlmixr version 1.0.0-7 [25].

The initial values of the states were x2(0) = 0 mm3,
x3(0) = 0 mg/ml, x4(0) = 0 mg/kg, while x1(0) was
estimated as a parameter (called x10 in Fig. 2 and Table I).
Parameter estimation results showed that the values of kb1
are kb2 are small compared to the values of c1 and c2
(smaller by six order of magnitude), thus we have fixed
kb1 = kb2 = 0, and rerun the parametric identification. The
results of the parametric identification and the measurements
for the 10 mice are shown in Fig. 1. The magenta curves
show the result of the simulation based on the model with
parameters identified for the individual mice. The magenta

dots show the values of the simulation in the time instants
where measurements were carried out. The blue curves show
the result of the simulation with parameters created for the
population mean, whose values are listed in Table I. The
parameters for the individual fits are shown in Fig. 2. The
dots represent parameter values corresponding to individual
fits, the particular individual (mouse) is identified by the
number above or below the dot.

Table I shows that the parameters specific to the tumor
(tumor growth rate a and necrosis rate n) has small between
subject variability. The coefficients c1 and c2 describing
drug depletion shows large between subject variability, while
the Michaelis-Menten constants KB,1, KB,2 related to drug
depletion have small between subject variability. The coeffi-
cients b1 and b2 characterizing the effect of the drug on tumor
dynamics have relatively small between subject variability,
however, the effective median dose parameters ED50,1,
ED50,2 shows larger variability between the individuals.
This latter observation is critical in therapy design, since the
effective median dose parameters fundamentally characterize
the dosage required to treat the patient.

V. CONCLUSION

The parametric identification carried out on measurements
from mice experiments where multiple drugs were applied
showed that the extended multidrug model is able to describe
the measurements with more drugs as inputs. The paramet-
ric identification showed that drug depletion is negligibly
affected by the drug effect mechanism, thus we can use the
approximation bk1 = 0, bk2 = 0. The mixed-effect model
showed the intersubject variability of the parameters. The
tumor specific parameters show small variability, while the
effective median dose and clearance parameters of the drugs
show large intersubject variability. The large variability of
the pharmacokinetic and pharmacodynamic parameters of the
drugs has significant effect on the therapy, which should be
taken into consideration during design of therapies.
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