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Abstract— Modeling tumor growth is a fundamental step in
the design of automated, optimal, patient specific therapies.
We extend our tumor growth model created to describe the
effect of an angiogenic inhibitor in order to make it suitable
to describe the effect of chemotherapy. By incorporating the
dead tumor cell washout into our previous model, we are able
to describe the most important phenomena during treatment
with chemotherapy. We use measurements from experiments
carried out on mice with a chemotherapeutic drug Pegylated
Liposomal Doxorubicin, and carry out parametric identification
of our model. The results show that the extended model can
describe chemotherapy sufficiently.

I. INTRODUCTION

Modeling the tumor growth dynamics and the effect of dif-
ferent drugs on tumor growth is a fundamental step towards
personalized, optimized tumor therapies. The existence of a
reliable tumor growth model lets us use control engineering
and mathematical methods to optimize the tumor treatment
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. A good
tumor model captures tumor dynamics and drug dynamics
as well, with realistic considerations such as the drug has a
maximal effect of the tumor growth dynamics.

The most widely used tumor growth model in control
applications is the Hahnfeldt model [12], which models the
effect of angiogenic inhibitors, but lacks the modeling of
pharmacodynamics and dead tumor volume. Experiments
showed that in the case of antiangiogenic therapy, the tumor
contains dead and living regions, and there is no washout
of the dead cells [13]. Moreover, the experiments have also
showed that the pharmacodynamics of the drug can not
be neglected, since giving one large dose according to the
protocol had the same effect as giving 1/180 of the dose each
day for an 18 days treatment period. This shows that after a
limit, increasing the dose of the drug does not result in linear
increase in the effect of the drug, but it has a plateau. This
phenomenon is captured by the pharmacodynamics, and is
crucial for designing tumor therapies. The Hahnfeldt model
has been modified and extended by other authors several
times, but they did not incorporate neither pharmacodynam-
ics nor dead regions [14]. A model with pharmacodynamics,
dead tumor cell regions and vasculature dynamics has been
published recently [15].
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A minimalistic model capturing tumor growth dynamics
without dead cell regions and pharmacodynamics has been
published in [16], and has been used for controller design in
[17], [8], [18], [19], [20], [3]. The model has been extended
with pharmacodynamics, mixed-order pharmacokinetics and
dead tumor volume dynamics in [21]. Although this model
was validated with experimental results from antiangiogenic
therapy, the model was formulated to be as general as
possible. However, due to the nature of the measurements
from antiangiogenic therapy [13], the model does not contain
washout of the dead tumor cells, which is an important
process in the case of chemotherapy [22]. We extend this
model to incorporate dead tumor cell washout [23] and use
the extended model to describe a therapy with a chemothera-
peutic drug called Pegylated Liposomal Doxorubicin (PLD)
[22].

We use experimental data from the Membrane Protein
Research Group of the Hungarian Academy of Sciences
published in [22]. We use the data acquired from experiments
with PLD. In some cases the mice in the experiments became
resistant of the chemotherapy, however, our model is not
capable to model this effect yet. Thus, we chose the set of
measurements where resistance did not seem to be present
(except for one case from the chosen measurement set).
Our results show that the general model originally created
for antiangiogenic therapy can sufficiently model the tumor
growth dynamics even in the case of chemotherapy, as long
as the tumors do not develop resistance against the drug.

The model extended with the dead tumor cell washout
is discussed in Section II, while the methods used for
parametric identification are detailed in Section III. The
results of the identification are shown in Section IV, while
the paper ends with the conclusions in Section V.

II. THE TUMOR GROWTH MODEL

We define the tumor growth model equations with the help
of stoichiometric equations using formal reaction kinetics
analogy [24]. The fictive species are the X1 proliferating
tumor volume, the species X2 which represents the dead
tumor volume, and the species X3 that represents the drug
level. In the corresponding differential equations the state
variables x1, x2 and x3 are the time functions of the
proliferating tumor volume, dead tumor volume and drug
level, respectively. The stoichiometric equations defining the
underlying physiological phenomena are

• X1
a−−→ 2 X1 that defines that the tumor cells proliferate

(divide) with a tumor growth rate a. The correspond-
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ing term in the differential equation using mass-action
kinetics is ẋ1 = ax1;

• X1
n−−→ X2 that defines the necrosis (death) of tumor

cells with necrosis rate n, which is the tumor necrosis
that is independent of the treatment. Using mass-action
kinetics, this equation modifies the dynamics of the
proliferating and dead tumor volumes with the terms
ẋ1 = −nx1, ẋ2 = nx1;

• X2
w−−→ O that defines the washout of the dead tumor

cells with washout rate w. Using mass-action kinetics,
this reaction step has the rate wx2. This extension was
not present in our original model [21].

• X3
c−−→ O that defines that there is an outflow of the

drug with a reaction rate coefficient c, i.e. the clearance
of the drug. We use the approximation of the Michaelis-
Menten kinetics in order to have a mixed-order model
for the pharmacokinetics, so this equations results in the
term ẋ3 = −cx3/(KB + x3), where the parameter KB

is the Michaelis-Menten constant of the drug;
• X1 + X3

b2−−→ X2 that defines the effect mechanism
of the drug in a general way, i.e., if there is living
tumor and drug, they turn into dead tumor. The ef-
fect of the drug is considered with the approxima-
tion of the Michaelis-Menten kinetics with Michaelis-
Menten constant ED50 resulting in the velocity term
x1x3/(ED50 + x3). This effect on the volumes is
considered with reaction rate coefficient b. The effect of
this equation on the dynamics of the proliferating and
dead tumor volumes is expressed by the terms ẋ1 =
−bx1x3/(ED50 + x3) and ẋ2 = bx1x3/(ED50 + x3).
The dimension of these velocity terms is mm3/day,
thus these terms can not be directly used to modify the
dynamics of the drug level, which has the dimension
mg/(kg · day). Thus, we use the constant bk with
dimension mg/(kg · mm3· day) to define the term ẋ3 =
−bkx1x3/(ED50 + x3).

The combination of these terms give the differential equation
of the system:

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3
(1)

ẋ2 = nx1 + b
x1x3

ED50 + x3
− wx2 (2)

ẋ3 = −c x3

KB + x3
− bk

x1x3

ED50 + x3
+ u, (3)

where x1 is the time function of proliferating tumor volume
in mm3, x2 is the time function of dead tumor volume in
mm3, x3 is the time function of drug level in mg/kg and u
is the input that is the time function of drug injection rate in
mg/(kg · day).

The output y of the system is the measured tumor volume
in mm3 that is the sum of the proliferating (x1) and dead
(x2) tumor volumes, i.e.

y = x1 + x2. (4)

The dynamics of the output is described by the differential
equation

ẏ = ax1 − wx2 (5)

that is the sum of (1) and (2), thus the change of the measured
tumor volume depends directly only on the tumor growth rate
constant a, the necrotic washout w and the actual volume of
the proliferating tumor volume and the dead tumor volume.

III. PARAMETER ESTIMATION

The differential equation system was first converted to a –
nonlinear – model where the parameters were assumed to be
random effects. In brief, this means that every subject has
an own value for each parameter which is assumed to be
a random draw from a given (usually normal) distribution,
hence the number of estimated parameters is always two –
mean and standard deviation – regardless of the number of
subjects [25]. The mean measures the overall – population
– value, while standard deviation characterizes the between-
subject variability. An advantage of this model is that it han-
dles the within-subject correlations, therefore these models
are widely used to describe repeated-measures data and are
also universally applied in population pharmacokinetics [26],
[27].

It was assumed that random effects are all independent
from each other. All parameters were estimated on log-scale,
which also ensures the positivity of the parameters. Initial
values were set to ln a = −0.5, ln b = −2, lnED50 =
−9.9, ln bk = −14, ln c = −2, lnn = −2, lnx1 (0) =
−4, lnKB = −0.5 and lnw = −1. Initial value for the
standard deviation of the random effect was set to 0.01 for all
parameters. Error term was assumed to be additive, with an
initial value of 1. Estimation was performed with Stochastic
Approximation Expectation-Maximization (SAEM) method
which is one of the modern methods to solve the likelihood
equations arising from the above-described nonlinear mixed
effects models [28], [29]. Calculations were carried out under
R statistical program package version 3.5.2 [30] using the
library nlmixr version 1.0.0-7 [31].

IV. RESULTS

Table I shows the estimated mean (population) parameter
values, along with their between-subject variability (mea-
sured with coefficient of variation). The between-subject
variability of parameters a, b, n, bk, and w are less than 30 %.
However, the pharmacodynamics parameter ED50 has large
variability (152 %), thus the results show that the effective
median dose changes greatly among mice. The initial tumor
volume has the largest variability (6050%), however, this is
not a model parameter, juts an initial value. Between subject
variability is further illustrated in Figure 1 which uses dotplot
to visualize the estimated (individual) value for each subject.

Results of the model, shown as the individual predicted
tumor volume superimposed on the actual tumor volume are
shown in Figure 2. The vertical arrows show the days when
the mice got treatments. The dose was 8 mg/kg each time.
The model shows good individual fits for the cases 2-6.

For case 1 we can observe from the measurements that the
tumor becomes resistant towards the drug during the therapy,
which process is not incorporated into the model. The model
neglects the initial phase when there is no resistance, and
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Parameter Est. SE %RSE Back-transformed (95%CI) BSV (CV%) Shrink (SD)%
Log a -1.18 0.0744 6.28 0.306 (0.265, 0.354) 6.08% 33.2%>
Log b -1.79 0.14 7.8 0.166 (0.126, 0.219) 18.2% 11.8%<
Log c -1.36 0.126 9.29 0.257 (0.2, 0.329) 31.9% 10.4%<
Log n -1.94 0.0642 3.31 0.144 (0.127, 0.163) 16.3% 22.2%=
Log bk -14.3 0.0482 0.337 6.12e-007 (5.57e-007, 6.73e-007) 6.60% 85.0%>
Log x1 (0) 1.94 0.802 41.4 6.94 (1.44, 33.4) 6050.% -1.74%>
Log KB -1.02 0.181 17.7 0.36 (0.253, 0.514) 34.5% 33.7%>
Log ED50 -9.24 0.764 8.26 9.71e-005 (2.17e-005, 0.000434) 152.% 84.2%>
Log w -1.08 0.0783 7.26 0.34 (0.292, 0.397) 7.43% 81.6%>
Error 124 124

TABLE I
ESTIMATED PARAMETERS OF THE NON-LINEAR MIXED EFFECTS MODEL (EST.), SE: STANDARD ERROR, RSE: RELATIVE STANDARD ERROR, CI:

CONFIDENCE INTERVAL, BSV: BETWEEN-SUBJECT VARIABILITY, CV: COEFFICIENT OF VARIATION, SD: STANDARD DEVIATION. LOG STANDS FOR

NATURAL LOGARITHM.
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Fig. 1. Estimated individual parameters for each mouse.

learns the curve where the tumor became resistant towards
the drug. By looking at Fig. 1, we can conclude that for
case 1, the model has the largest tumor growth rate a and
smallest necrotic rate n and inhibition rate b, which results
in ineffective therapy and uncontrollable tumor growth as
it can be seen in Fig. 2. For cases 8 and 9, most of the
parameters have average value compared to the other cases,
except for the pharmacokinetic parameters c and KB , where
the KB parameter is larger than for the other cases resulting

in faster depletion of the drug. As Fig. 2 shows, for cases
8 and 9 initially there is only one injection with a small
effect according to the model, and according to the model the
drug only had significant effect when the injections became
frequent. Probably, in these cases the problem is not the
resistance, but the nature of the measurements, since for most
of the time the measured volume is assumed to be zero, but
in reality there was some small tumor for both cases, but
they were unmeasurable. Note that we do not have case 7,
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since the measurement data was not accessible for the case
indexed originally with 7 in [22].

V. CONCLUSIONS

The results showed that our general model is suitable for
modeling the effect of chemotherapy as well after a mod-
ification which incorporates dead tumor cell washout. The
parametric identification showed that the pharmacodynamics
parameter ED50 (the effective median dose of the drug) had
the largest interpatient variability, while tumor growth rate
a, necrotic washout w and the rate of drug depletion due to
the effect bk had the smallest interpatient variability. These
results are important in therapy design, since the dosages
must be aligned to the value of effective median dose.

The results showed that the model is not capable of
describing the phenomenon when the tumor acquires drug
resistance. However, this is not expected, since the model
can not handle dynamics changes of the effect of the drug.
Incorporating this effect into the model is the subject of
further research.
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