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Abstract— In natural sciences, especially in life sciences,
controller designers frequently meet the problem that though
the controlled system is modeled by a set of nonlinearly coupled
Ordinary Differential Equations (ODE) containing various
independent variables, only a single control input is available
by the use of which the propagation of only one variable
has to be controlled. Normally the controlled state variable
can be observed by direct measurements, while no sensors
are available for obtaining information on the propagation of
the other ones. Though in the possession of a reliable system
model one has good odds to develop state observers, in the
practice just the reliable model used to be missing. While
the traditional control design methodologies normally need
some state estimation, the Fixed Point Iteration-based (FPI)
Adaptive Controller was developed to evade this difficulty. In
this design instead modeling the effects of the propagation of
the various state variables, these effects are directly observed
and compensated on this basis. This approach can be used
without structural modification if certain effects appear through
some time-delay (Delayed Differential Equations – DDE). In
many cases simple and effective models can be developed that
contain only pure delay effects. In this paper it is shown that
a recent DDE model of Diabetes Mellitus can be used in the
FPI-based adaptive blood glucose concentration level control
even if the available model is very imprecise. This statement is
substantiated by numerical simulations.

I. INTRODUCTION

In natural sciences, especially in life sciences, controller
designers frequently meet the problem that though the con-
trolled system is modeled by a set of nonlinearly coupled
ODEs containing various independent variables, only a single
control input is available by the use of which the propagation
of only one variable has to be controlled. In Classical
Mechanics these systems are referred to as “underactuated”
ones. For instance in anaesthesia control the measurable
quantities that convey information on the state of the patient
can be either the “Bispectral Index” [1], or a signal obtained
by wavelet analysis [2] that can quantify the cortical activity
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ematics Doctoral School of Óbuda University, Budapest, Hungary
varga.arpad@kvk.uni-obuda.hu

2 The Authors are with the Physiological Controls Research
Center within the Research, Innovation and Service Center of Óbuda
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of the patient. For the description of the same phenomenon
different models of various complexity can be developed. For
modeling the human glucose-insulin system the development
simple “minimal model” by Bergman [3] was followed
by more complex, multiple compartment models [4], [5]
in which certain effects manifest themselves through the
dynamic excitation of coupled subsystems, so some time
is needed after the elapse of which these effects became
“apparent”.

A relatively simple modeling possibility is the replacement
this complex mechanism by the introduction of pure time-
delay in the model as in [6], [7], [21] in which a definite
delay time is assumed as a constant parameter of the given
model. However, in many cases the delay time cannot be
constant. For instance, in object manipulation by teleopera-
tion the various information packages travel along different
routes on the communication media that may cause drastic,
and stochastically time-varying effects [8]. Another typical
example for short delays occurs whenever a mathematical
algorithm formulated in continuous time is implemented as
its discretized approximation by the use of digital controllers
[9]–[11]. In this case the computational needed for the
controller can cause some delay. The control of varying delay
systems is an interesting problem. For switching systems
[12]–[14] and neural network architectures [15] already
significant results have been published.

The traditional controller design approaches normally
need some “estimated state” of the controlled system. The
traditional approaches as the Kalman filters [16] and the
Luenberger observer [17] are designed for use in the case
of Linear Time-invariant (LTI) systems. Considerable results
were achieved in the field of the estimation of the state of
nonlinear systems (e.g. [18]–[20]).

To evade the problem of state estimation in the case in
which no reliable (formal) dynamic model is available, or in
the case when the model is available but its application could
conclude struggling with complicated formulae and computa-
tional burden adaptive approach was introduced [29], [30] in
which the effects of the various terms in the model were not
computed by the use of this model, its observed or estimated
state variables and available approximate parameters. Instead
of that it can be observed in the propagation of the directly
observable and controlled variable, and after observation, it
can be adaptively compensated. The great advantage of this
approach is that no precise and well identified system model
and parameters are needed for its use. This method can be
used on the basis of a very primitive, approximate system
model. In the same time, in general, it cannot be stated



that such controller can be successful or precise enough. Its
precision depends on the significance of the “omitted terms”,
and in the practice, simulation investigations have to done to
answer this question. Its application is especially attractive
in the case of a higher relative order control task, in which
only a higher order time-derivative of the controlled quantity
can be instantaneously set by the control signal through the
effect chain of coupled dynamic variables.

The FPT based theorem has been successfully adapted to
solve issues related to diabetes mellitus [34].

In the present paper the observer-based results published in
[21] are considered with the aim of answering the question: is
it possible to control the blood plasma glucose concentration
in the case of the illness of Diabetes Mellitus by the simple
FPI-based adaptive control? To this question the simulations
provided positive and promising answer. In the sequel at first
the DDE model of the phenomenon is analyzed. Following
that the principles of the FPI-based adaptive control and the
polynomial numerical differentiator applied in it is briefed.
Finally simulation results are provided and the paper is
closed by the conclusions.

II. THE DDE MODEL OF DIABETES MELLITUS

The equations of motion of the model are given in (1), its
variables and the parameters are expounded in Table I.

Ġ(t) = −KxgiG(t)I(t) +
Tgh

VG
, (1a)

İ(t) = −KxiI(t) +
TiGmaxf (G(t− τg))

VI
+

+
S2(t)

VItmax,I
, (1b)

Ṡ2(t) =
S1(t)− S2(t)

tmax,I
, (1c)

Ṡ1(t) = − S1(t)

tmax,I
+ u(t) , (1d)

f(G)
def
=

(
G
G⋆

)
1 +

(
G
G⋆

) . (1e)

It is evident that u does not directly affect Ġ. To reveal
the relative order of the possible control it can be noted
that according to (1d) Ṡ1(t) is directly influenced by u
as Ṡ1(t) = u(t) + Add1 in which Add1 denotes some
“additional terms”. The derivative of (1c) contains Ṡ1(t),
therefore S̈2(t) = u(t)/tmax,I + Add2. According to the
derivative of (1b)

...
I contains S̈2(t), therefore

...
I (t) =

u(t)/
(
VIt

2
max,I

)
+ Add3. Finally, it can be observed that

the third derivative of (1a) contains
...
I (t), therefore

....
G(t) =

−KxgiG(t)u(t)/
(
VIt

2
max,I

)
+Add4. It is important to note

that neither u(t) nor
....
G(t) occurs in the “additional terms”

{Add1, Add2, Add3, Add4}.
If the designer wishes to use a model-based controller

he/she has to take the burden of the calculation of the
additional terms for which precise knowledge of the model
parameters and at least the estimated state variables are

needed. Instead of that the FPI-based adaptive controller is
satisfied with the rough and simple affine model in (2) as

u(t) ≈ −
VIt

2
max,I

....
G(t)

KxgiG0
+ β , (2)

in which instead of G(t) a constant value G0 = 12mM ·L−1

is written, and instead of the time- and delay-dependent
additional term a constant value β = 10−3 pM ·kg−1 ·min−1

was written. This model even does not require a precise
estimation of the parameters Kxgi, VI , and tmax,I . However,
it requires the real-time measurement of G(t), and on this
basis, the numerical estimation of

....
G(t).

TABLE I
THE VARIABLES AND PARAMETERS OF THE DDE MODEL

Physical Quantity Value
Glucose concentration in plasma G

[
mM · L−1

]
, variable

Insulin concentration in plasma I
[
pM · L−1

]
variable

Insulin mass in the accessible
subcutaneous depo S1

[
pM · kg−1

] variable

Insulin mass in the not accessible
subcutaneous depo S2

[
pM · kg−1

] variable

The subcutaneous insulin delivery
rate (control input) u

[
pM ·min−1 · kg−1

] variable

The rate of glucose uptake
by tissues Kxgi

[
L · pM−1 ·min−1

] 3.11× 10−5

The net balance between hepatic glucose output
and insulin-independent zero-order glucose
tissue uptake Tgh

[
mM · kg−1 ·min−1

] 0.003

The apparent distribution volume
for glucose VG

[
L · kg−1

] 0.187

The apparent first-order disappearance rate
constant for insulin Kxi

[
min−1

] 1.211× 10−2

The maximal rate of second-phase insulin
release TiGmax

[
pM · kg−1 ·min−1

] 1.573

The apparent distribution volume
for insulin VI

[
L · kg−1

] 0.25

The time-to-maximum
insulin absorption tmax,I [min]

55

The apparent delay with which the pancreas
varies secondary insulin release in response to
varying plasma glucose concentrations τg [min]

24.0

The glycemia at which the insulin release
is half of its maximal rate G⋆

[
mM · L−1

] 9.0

The progressivity with which the pancreas
reacts to circulating glucose concentrations
γ [nondimensional]

3.205

If we prescribe a kinematic tracking strategy that deter-
mines a “desired”

....
G

Des
(t) value so that guarantees the

G(t) → Gref convergence as t → ∞ if it is precisely
realized, the control task was successfully solved. For this
purpose we can introduce a nominal trajectory GN (t) as it
was done in [21] as given in (3) with a constant parameter
τtrack > 0

GN (t) = Gref + (Gini −Gref ) exp

(
−(t− tini)

τtrack

)
, (3)



the various derivatives of GN (t) can be easily computed. By
the use of a constant Λ > 0 value for the tracking error we
can prescribe that let be e(t) =

[
GN (t)−G(t)

]
the tracking

error, and

(
Λ +

d

dt

)4

e(t) ≡ 0 , (4)

–here G(t) is the realized glucose concentration–, that yields
the kinematic tracking strategy

....
G

Des
(t) =

....
G

N
(t) + Λ4e(t) + 4Λ3ė(t) + 6Λ2ë(t) + 4Λ

...
e (t) .

(5)

The solution of (5) is a polynomial function of t multiplied
with an exponentially damping term that guarantees that the
tracking error will converge to 0. The task of the adaptive
controller is the realization of this strategy as precisely as
possible. In the next section the adaptive controller’s basic
idea is outlined.

III. THE FPI-BASED ADAPTIVE CONTROLLER

The idea of this controller is the use of the approximate
model (2) for the calculation of the necessary control signal
u(t) to realize (5). This corresponds to the use of an
experimentally, real -time observable response function that
yields the realized 4th time-derivative as a function of the
input of the approximate affine model. Since

....
G(t) can be in-

stantaneously set by the controller, this function only slowly
drifts since it depends on the actual state variables and their
derivatives that lower order than 4:

....
G(t) = Φ(

....
G inp(t)).

Since our model was very imprecise
....
G(t) ̸=

....
G inp(t), so in

the place of
....
G

Def
(t) an iterative sequence is so written that

in each digital control step only one step of this iteration can
be realized (Fig. 1). If the iteration is well set

....
G

Def
(t) →....

G
Def
⋆ that yields

....
G

Des
= Φ(

....
G⋆). (As the state variables

drift,
....
G⋆ also slowly drifts.) If the convergence of the

sequence is fast enough, the single iterative step during one
digital control cycle may provide good results.

For the creation of the necessary sequence Banach’s Fixed
Point Theorem [23] is used that states that in a linear,
normed, complete metric space the contractive Ψ maps in
the form {. . . xn+1 = Ψ(xn), . . .} create Cauchy sequences
that due to the completeness of the space converge to a limit
point in the space x⋆ so that it is the uniquely determined
fixed point of this function as x⋆ = Ψ(x⋆). That is in the
first step the control task was transformed into a fixed point
problem the appropriate map of which in the second step
was made contractive, and finally the problem was solved via
iteration. This method has very old antecedents (e.g. [24]–
[27]), for instance the proof of the Picard-Lindelöf theorem
(e.g. [28]) was based on the basis of similar considerations.

For instance, a real differentiable function Φ(x) is con-
tractive, if ∃0 ≤ K < 1 so that |Φ′(x)| ≤ K. In [29] for the
iteration described in Fig. 1 the function in (6) was used

....
q Def

n+1 =
(
Kc +

....
q Def

n

)
·

·
[
1 +Bc tanh

(
Ac

(
Ψ(

....
q Def

n )−
....
q Des

n+1

))]
−Kc ,

(6)

having only three adaptive control parameters Kc, Ac, Bc.
For making it convergent this mapping must be made con-
tractive in the vicinity of the fixed point. The derivative of
this function in

....
G⋆ is

d
....
G

Def
n+1

d
....
G

Def
n

∣∣∣∣∣....
G ⋆

= 1 +Bc
d tanh(x)

dx

∣∣∣∣
0

Ac
dΨ(r)

dr

∣∣∣∣....
G ⋆

. (7)

Fig. 1. The structure of the “Fixed Point Transformation-based Adaptive
Controller” – modification of the figure in [22]

To achieve contractivity it is expedient to use a big Kc >>
|
....
G

Def | control parameter, Bc = ±1, and a small positive

parameter Ac to achieve that −1 <
d
....
G

Def
n+1

d
....
G Def

n

∣∣∣∣....
G ⋆

= 1 −

ε < 1 in which ε is a small positive number. The method
has the practical value that for achieving convergence not
very precise setting of these parameters is needed. The speed
of convergence, consequently the tracking precision of the
controller slightly depends on these parameters, too. It worths
noting that this controller also feeds back the observed fourth
time-derivative as e.g. in the control of Classical Mechanical
systems the Acceleration Feedback Controllers (e.g. [31]–
[33]) feeds back the 2nd derivaives, but in a different manner.
Though this signal may be very noisy, the success of these
controllers anticipates that the noise problems can be tackled
in the case of the fixed point iteration-based controllers.

For the observation of
....
G the following “heuristic poly-

nomial differentiator” was applied: in each control cycle the
last 2N + 1 measured values of Ĝ observed in the discrete
time grid was mapped to the integer grid-points {−N,−N+
1, . . . , 0, . . . , N} as {G̃(−N), . . . , G̃(N)}, then an order 4
polynomial was fitted to these values by minimizing the

approximation error
∑N

k=−N

(∑4
ℓ=0 cℓk

ℓ − G̃(k)
)2

. This
method heuristically considers the variation of the signal
that is “more hectic” than that of the order 4 polynomial
as “noise” and filters it out. Then the derivatives of the
polynomial were analytically calculated by the use of the
rule

(
kℓ
)′

= ℓk(ℓ−1). Finally, by the use of the chain rule
of differentiation these derivatives were mapped back to the
actual time-grid. Though this method realizes some noise



filtering, too, we do not state that its filtering effect is “strong
enough” for compensating the effects of the measurement
noises in our particular case. However, this method simply
can be combined with other, traditional and well applica-
ble noise filtering methods. As in [21], the noise filtering
remained an open question that needs further investigations.

IV. SIMULATION RESULTS

The simulations have carried out by using JuliaTM v1.1.0.
and PyPlot package was applied to generate the diagrams.

In the simulations the following fine details were applied.
For considering the range Gini ∈ [2, 13] mM · L−1 various
Λ0 parameters were used in (5) according to the rule as
follows (in Julia code):

if G<=5.0
Lambda=Lambda0*(0.5+(1.0-0.5)*(G-2.0)/
(5.0-2.0))/tau_track
else
Lambda=Lambda0*(1.0+(2.0-1.0)*(G-5.0)/
(12.0-5.0))/tau_track
end

The time resolution of the digital controller was δt = 5min
(it means the duration of the digital control cycle during
which the control signal u is constant); the time-resolution of
the Euler integration applied during each control cycle was
δδt = δt/50; as in [21], for the construction the nominal
trajectory τtrack = 100min was used in (3). The adaptive
control parameters were set as Ac = 255L ·min4 ·mM−1,
Kc = 10−4 mM ·L−1 ·min−4, Bc = −1. The control signal
u1 obtained from the affine model (2) was maximized ac-
cording to the rule u = umax tanh(u1/umax) with umax =
0.18 pM ·min−1 · kg−1. When negative control signal was
calculated, it was truncated at 0 due to phenomenological
considerations, and the adaptivity of the control was switched
off in the lack of available signal variation. (It is switched
on again, as the truncation is over.) The initial state variables
were Iini = Tgh/(VGKxgiGini), S1ini = S2ini = 0.

Figures 2, 3, and 4 reveal the state varaibles, the 4th
derivatives of G(t) and the control signal u(t) for a very
high initial glucose concentration Gini = 16.0mM · L−1

and Λ0 = 2.5min−1 that was found “ideal” in the sense
that it did not cause too much truncation at 0 and satu-
ration at umax in u(t). Approximately during 2 hours the
gulcose concentration was lessened under the critical level
of 11.0mM ·L−1, and after about 8 hours it was stabilized
around Gref . The adaptivity worked well, the “desired” and
the “realized” 4th derivatives slowly converged to each other
and considerably differred from the “deformed” ones.
Figures 5, 6, and 7 testify that even a considerable increase
in Λ0 from 2.5 to 4.0min−1 does not have too significant
effects: truncations appear at u = 0, and the built-in satura-
tion at umax is approached several times. Consequently in
certain intervals the adaptive deformation was switched off.
Figures 8 and 9 belong to the “ideal” Λ0 = 2.5min−1

and a very low initial glucose concentration level Gini =
2.0mM · L−1. The “reference value” was stabilized about

Fig. 2. The state variables for Gini = 16.0mM · L−1 and Λ0 =
2.5min−1

Fig. 3. The
....
G derivatives for Gini = 16.0mM · L−1 and Λ0 =

2.5min−1

Fig. 4. The control signal u(t) for Gini = 16.0mM · L−1 and Λ0 =
4.0min−1

after 6 hours. Figure 10 shows that the drastic increase in
Λ0 again causes truncations and saturations in u(t), limits
the length of the adaptive sessions, however, its effect is not
critical.

V. CONCLUSIONS

In this paper a Fixed Point Iteration-based adaptive solu-
tion was suggested to adaptively control the insulin ingress
rate in treating the illness Diabetes Mellitus. In this study,
we did not consider the usage of continuous glycemic



Fig. 5. The state variables for Gini = 16.0mM · L−1 and Λ0 =
4.0min−1

Fig. 6. The
....
G derivatives for Gini = 16.0mM · L−1 and Λ0 =

4.0min−1

Fig. 7. The control signal u(t) for Gini = 16.0mM · L−1 and Λ0 =
4.0min−1

measurement system. It was only assumed that the blood
glucose level is directly accessible for the sake of simplicity,
since our goal was to prove the controller device concept.
In contrast to the precise model-based control that uses state
observation technique this simple approach utilizes only a
very simple affine model of the controlled phenomenon.
Instead calculating the necessary information from the model
a simple order 4 polynomial differentiator is applied to solve
the control task which has 4 relative order. The operation of

Fig. 8. The state variables for Gini = 2.0mM · L−1 and Λ0 =
2.5min−1

Fig. 9. The control signal u(t) for Gini = 2.0mM · L−1 and Λ0 =
2.5min−1

Fig. 10. The state variables for Gini = 2.0mM · L−1 and Λ0 =
4.0min−1

this controller was numerically investigated in integer steps
in the range of the initial glucose concentration Gini ∈
[2, 16]mM · L−1. The simulation results are comparable
with that published in [21]. In the further work we wish
to investigated and tackle the problem of the observation
noises.
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