
un
co

rr
ec

te
d

pr
oo

f

Arab J Sci Eng
DOI 10.1007/s13369-016-2138-y

REVIEW ARTICLE – EARTH SCIENCES

Permeability from Microscopy: Review of a Dream

Gabor Korvin1

Received: 21 January 2016 / Accepted: 5 April 2016
© King Fahd University of Petroleum & Minerals 2016

Abstract The Kozeny–Carman and Timur-type equations1

connecting porosity and permeability contain rock-textural2

constants such as tortuosity and specific surface area. Some-3

times these are combined in single factors as Kozeny constant4

or flow zone index. The partial differential equations of flow5

in triple-porosity rocks contain transfer factors, interporos-6

ity flow shape factors between different kinds of pores, as7

well as their individual storativities. Without knowing these8

constants, no meaningful permeability prediction or flow9

simulation is possible. The paper reviews the main ideas of10

how to find such rock-textural properties directly from the11

microscopic image.12

Keywords Porosity · Permeability · Tortuosity · Specific13

surface area · Flow zone index · Kozeny–Carman equation ·14

Timur equation · Monte Carlo15

1 Introduction16

This Review is about the dream of every petrophysicists to17

find the rock-textural constants occurring in permeability the-18

ory (specific surface area, tortuosity, flow zone index, transfer19

factors) directly from the always available, informative and20

digitally treatable optical or SEM rock images. After gen-21

eral questions (thresholding, method of moments, scaling of22

tortuosity) I shall discuss in details the different approaches23

proposed in the last five decades for finding rock-textural24

constants, and ultimately permeability, directly from the rock25
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image. Two basic approaches, based on the Kozeny–Carman 26

(KC) [1] and the Timur’s [2,3] equations, will be dealt with. 27

A separate part (Sect. 5) of the Review is devoted to triple 28

porosity, and to the autocorrelation function (ACF) technique 29

of permeability prediction from rock image (Sect. 6). Be- 30

cause of the nature of the topic, mathematics will be fully 31

described and some theorems of probabilistic geometry will 32

be heuristically proved. Wherever appropriate, Monte Carlo 33

algorithms will be recommended and described for estimat- 34

ing otherwise intractable quantities. 35

1.1 Caveat 36

The Review only covers permeability estimation from pla- 37

nar microscopic rock images through the KC or Timur-type 38

equations, even though the pore space extends to the 3D space 39

and not confined to the image’s plane. Also, the reservoir 40

properties of sedimentary rocks are anisotropic, with their 41

permeability often being much greater in directions parallel 42

to their bedding than in other directions. The solution to these 43

two problems had been at first to use a series of closeby paral- 44

lel images, as well as using parallel sections of the rock cut in 45

different directions. These experiments have led to the excit- 46

ing and promising recent development, Digital Rock Physics 47

(DRP) [4,5], what is outside the scope of this paper. In DRP, 48

one reconstructs the 3D pore space of a small (<1 cm3) 49

rock cutting by computerized X-ray tomography, digitizes 50

the pore space and then numerically simulates the relevant 51

physical process to get the macroscopic rock properties such 52

as electric resistivity and Archie’s exponents, permeability, 53

elastic moduli, etc. Readers interested in DRP applications 54

for permeability are referred to [4–12], ([7] is one of the few 55

studies which seriously addresses the statistical relevance of 56

the obtained quantities!). 57
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Another aspect deliberately neglected in the review is how58

to find the various kinds of fractal dimensions of the pore59

space (or of the pore contours in 2D) from microscopy. This,60

and the fractal models of permeability were discussed in great61

detail in my book and related papers [13–15].62

2 Basic Concepts63

2.1 The Role of Thresholding64

The success of any porosity or permeability estimation from65

a microscopic rock image depends on the reliability of the se-66

lected thresholding algorithm, the output of which is a binary67

image whose state 0 (zero bit) will indicate the so-called fore-68

ground objects (pores), while state 1 (bit 1) will denote the69

“background” material (in case of rocks grains and cement).70

There is no need to describe here the different algorithms71

in any depth, because the excellent review of thresholding72

by Sezgin and Sankur [16] is readily available. They discuss73

and compare more than 40 of the most popular techniques74

and rank them with respect to their merits, based on several75

criteria, such as error of misclassification, edge mismatch,76

nonuniformity, relative foreground area error, shape distor-77

tion, etc. In geological applications, one of the most popular78

thresholding method is still Otsu’s [17] clustering algorithm,79

applied to the gray-value histogram, or one of its more recent80

modifications [18] for dual- or triple-porosity rocks. Otsu’s81

algorithm is included in the FIJI biological image processing82

software [19].83

If the possible grey values of the pixels are84

g = 0, 1, . . ., Gmax (Gmax is generally 255), N is the total85

number of pixels in the image, denote by N (i) the number of86

pixels with grey value i . Then p(i) = N (i)
N

is the relative fre-87

quency of grey values and P(g), their cumulative probability88

function, is P(g) =
∑g

i=0 p(i). If T is a threshold, one can89

define the probabilities of the foreground and background ar-90

eas as P f (T ) =
∑T

i=1 p(i); Pb(T ) =
∑Gmax

i=T +1 p(i), as well91

as the average of the pixel values in the foreground or back-92

ground and their scatter, for example m f (T ) =
∑T

i=1 i p(i)93

and σ 2
f (T ) =

∑T
i=1

[

i − m f (T )
]2

p(i). Otsu [17] used a94

typical “clustering philosophy” in selecting the threshold by95

maximizing the scatter between background and foreground:96

Topt = arg max

{

P(T )[1 − P(T )]
[

m f (T ) − mb(T )
]2

P(T )σ 2
f (T ) + [1 − P(T )]σ 2

b (T )

}

97

(1)98

For dual-porosity carbonates, the algorithm should be slightly99

modified, as a third domain must be included for microporos-100

ity [18,20]. Figure 1 shows results of [20] on two carbonate101

samples.102

Fig. 1 a Gray scale histogram of Indiana limestone (from Bedford,
Indiana, USA, 19 % laboratory porosity). Dotted line is the threshold
which resulted in (13 ± 1) % image porosity (from [20]). b Gray scale
histogram of pink dolomite (from Edward Plateau, Texas, 29 % labora-
tory porosity). Dotted line is the threshold which resulted in (30 ± 2)
% image porosity (from [20])

There are some recent developments since the Review 103

[16], such as [21] where a sliding window entropy filtering 104

is used for nonlinear pore boundary enhancement following 105

binary thresholding. 106

2.2 Pore Shape Analysis Using Moments 107

The moments of order (p, q) for any object A having the 108

gray value function g(x, y) is given by 109

m p,q =
∫ ∫

A

x p yq g(x, y)dxdy (2) 110

where the integral is over the area of the object [22]. For a 111

binary image (after thresholding) one has 112
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g(x, y) = F(x, y) =
{

1 if (x, y) ∈ �

0 if (x, y) /∈ �
(3)113

(where � is the “foreground,” i.e., the total set of pores in114

the microscopic image of the rock) that is the moments are115

defined as116

m p,q =
∫ ∫

A

x p yq F(x, y)dxdy (4)117

Special cases of Eq. (4) are [23,24]:118

area of the object:119

A = m0,0 =
∫ ∫

A

F(x, y)dxdy (5)120

center of gravity (xc, yc) of the object:121

xc =
m1,0

m0,0
; yc =

x0,1

x0,0
(6)122

If the object is closely elliptical in shape (see Fig. 2), the123

second-order moments124

m2,0 =
∫ ∫

A

x2 F(x, y)dxdy;125

m0,2 =
∫ ∫

A

y2 F(x, y)dxdy;126

m1,1 =
∫ ∫

A

xyF(x, y)dxdy127

are also needed to characterize the size, shape, and direction128

of the best-fitting ellipse, as follows:129

semimajor axis of the ellipse:130

a =

⎛

⎜

⎝

m2,0 + m0,2 +
[

(

m2,0 − m0,2
)2 + 4m1,1

]1/2

0.5m0,0

⎞

⎟

⎠

1/2

(8)131

semiminor axis of the ellipse:132

b =

⎛

⎜

⎝

m2,0 + m0,2 −
[

(

m2,0 − m0,2
)2 + 4m1,1

]1/2

0.5m0,0

⎞

⎟

⎠

1/2

(9)133

tilt angle of the ellipse:134

Φ =
1

2
tan−1

(

2m1,1

m2,0 − m0,2

)

, (10)135

Fig. 2 Parameters of the ellipse defined by a set of pixels (from [23])

where Φ is the angle between the x axis and the semimajor 136

axis, and the principal value of the tan−1 function is selected 137

in a way to insure −π
2 ≤ tan−1 x ≤ π

2 . 138

eccentricity of the ellipse: 139

ε =
√

a2 − b2

a
=

(

m2,0 − m0,2
)2 − 4m2

1,1
(

m2,0 + m0,2
)2 (11) 140

Obviously, 0 < ε < 1, it is zero for a round object, ∼1 for 141

an elongated object. The eccentricity ε or aspect ratio b/a 142

can be used to distinguish between different pore types in 143

triple-porosity (e.g., carbonate) rocks. 144

2.3 Poisson-Distributed Pores 145

Consider an optical image of total area Aim (in mm2) repre- 146

senting a section of a porous rock, assume that the pores are of 147

random area A1, A2, A3, . . ., and they are two-dimensionally 148

Poisson-distributed with density λ. We shall call λ the pore 149

density (in 1/mm2 units), and it is the expected number of 150

pores in a unit area. Denote by Φ the porosity of the im- 151

age, let 〈A〉 denote the average (“expected”) area of single 152

pore. Then we have the following simple relation between 153

expected porosity 〈Φ〉, pore density λ (1/mm2) and average 154

pore area 〈A〉 (mm2): 155

〈Φ〉 ≈ λ 〈A〉 (12) 156

Proof Because of the Poisson distribution, the probability 157

that the image area Aim contains exactly N pores is 158

pN = e−λAim
(λAim)N

N !
, N = 0, 1, 2, . . . (13) 159
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By Eq. (13) the expected number of pores in the total image160

is161

〈N 〉 == λAim (14)162

On the other hand, on any single image porosity is defined163

as pore area divided by total area (for a planar or 2D rock164

surface). In a typical case, when the number of pores is close165

to the expected value N ≈ λAimwe have166

Φ =
∑N

i=1 Ai

Aim
≈

∑λAim
i=1 Ai

Aim
= λ

∑λAim
i=1 AN

λAim
, (15)167

which, taking expectations on both sides, proves Eq. (12).168

(We note that the definition of porosity as � =
∑λAim

i=1 Ai

Aim
169

only holds if the pores are non-overlapping).170

Equation (12), that is 〈Φ〉 = λ 〈A〉 gives an independent171

way to express permeability in any empirical permeability172

versus porosity relation in terms of pore density and average173

pore area. For example, in the celebrated flow zone index174

(FZI) equation [25,26]:175

k = 1014 (FZI)2
(

Φ3

(1 − Φ)2

)

, (16)176

where k is in md; FZI in µm; Φ fraction, one can use λ 〈A〉177

as proxy instead of expected porosity 〈Φ〉. This might come178

useful if we do not have an image-analyzing software and179

only visually observe a large number of pores on the mi-180

crograph. If we can visually determine the smallest value181

a = Amin, the most frequent value (mode) b = Amode, and182

the largest value c = Amax of the pore areas at a glance,183

and want a quick-look estimate of the mean pore area and184

its variance without much computation, we can assume that185

pore areas follow a triangular distribution with probability186

density function187

f (A; a, b, c, d) =
(

2

c − a

)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if A < a
x−a
b−a

if a ≤ A < b
c−x
c−b

if b ≤ A < c

0 if c ≤ A

,188

and with known mean value and variance (see [80] p. 80):189

E(X) = a+b+c
3

Var(X) = a2+b2+c2−ab−ac−bc
18

190

3 Kozeny–Carman Equations 191

3.1 Concepts of Specific Surface Area 192

By the Kozeny–Carman (“KC”) equation, (Carman, [1]) the 193

permeability of a porous sedimentary rock is given by 194

k =
1

b
Φ3 1

S2
spec

1

τ 2 (17) 195

where b is a shape factor of order one, Φ ∈ [0, 1] is porosity, 196

Sspec is specific surface area defined as total surface area per 197

unit bulk volume, τ is tortuosity. Combining 1
bτ 2 to a single 198

constant C , the KC law is expressed as 199

k = C
Φ3

S2
spec

(18) 200

In sedimentology, there are three different concepts of spe- 201

cific surface area [2,3], namely 202

Sspec = surface area per unit bulk volume of the rock; 203

S0 = surface area per unit volume of solid material; Sp = 204

surface area per unit volume of pore space. 205

The three measures of specific surface area are interre- 206

lated. For an arrangement of spherical grains of the same 207

radius r we have: 208

Theorem 1 For any arrangement of porosity Φ consisting 209

of spherical grains of the same radius r one has 210

Sspec = (1 − Φ)S0; Sspec = ΦSp; Sp =
1 − Φ

Φ
S0 (19) 211

Proof Take a unit bulk volume of the rock, (1 − Φ) part of it 212

consists of solid material which contains n = (1 − Φ): 4r3π
3 213

grains, that is the total surface in unit bulk volume is 214

Sspec = n · 4r2π =
3(1 − Φ)

r
(20) 215

A unit grain volume contains N = 1 : 4r3π
3 grains, which 216

have a total surface area 217

S0 = N · 4r2π =
3

r
, (21) 218

and from Eqs. (20, 21) one has Sspec = (1 − Φ)S0 as stated. 219

Now, take a bulk volume Vb of rock in such a way that its 220

pore space occupies a unit total volume, that is VbΦ = 1, 221

whence Vb = 1
Φ

. The total surface associated with this unit 222

pore volume is Sp = Vb Sspec = Sspec
Φ

, that is Sspec = ΦSp as 223

stated. The third equation in Eq. (19) follows from the first 224

two. 225
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Fig. 3 Tangential (a), flattened (b), concavo-convex (c) and sutured (d) intergranular (sutured) contacts as seen in thin section (from [27])

Note The simple relations (Eq. 19) between the three kinds226

of specific surface areas are only true for tangential contacts227

between the grains, as shown in Fig. 3.228

In terms of the different concepts of specific surface area,229

the KC equation can be put in three forms (which are equiv-230

alent only for grains of equal size in tangential contact):231

k = C
Φ3

S2
spec

(22a)232

k = C
Φ3

(1 − Φ)2 S2
0

(22b)233

k = C
Φ

S2
p

(22c)234

where C = 1
bτ 2 . The estimation of τ (tortuosity) from digital235

rock images will be discussed in Sect. 3.3.236

3.2 The Use of BET Surface Areas in the237

Kozeny–Carman Equation238

If we want to estimate permeability by using BET-derived239

specific surface areas in the KC equation (as in [28,29]), we240

write the KC equation in the form241

k = C ·
Φ3

(

1 − Φ2
)

S2
s

(23)242

where Ss is grain-related specific surface area, defined as243

surface area per unit grain volume. Ss(in µm−1 units) is com-244

puted from the measured BET specific grain surface Sg (in245

m2/g units) as246

Ss = Sgρg (24)247

In Eq. (23) the factor C is the Kozeny factor (which depends248

on tortuosity and on the cross-sectional shape of the tubes).249

It can be estimated from porosity via a simple model [28] of250

a linear 3D system of interpenetrating circular tubes, as251

Table 1 Kozeny factor C by
Eq. (25) from [28]

Φ% c

0 0.17

20 0.21

40 0.24

60 0.27

80 0.33

100 0.50

C =
[

4 cos

{

1

3
arccos

(

Φ ·
64

π2 − 1

)

+
4

3
π

}

+ 4

]−1

(25) 252

(see Table 1, from [28]) (Table 1). 253

3.3 Tortuosity Estimation for the KC Equation 254

3.3.1 Scaling of Tortuosity 255

We first show with a simple scaling argument that the hy- 256

draulic tortuosity in 2D sections of granular porous sedi- 257

mentary rocks is an increasing function of sample size. Let 258

L be the vertical size of the section considered (assuming 259

that hydraulic flow goes from top to bottom); Φ porosity (in 260

fraction); τ tortuosity (defined as the expected ratio of hy- 261

draulic path length to Euclidean length between 2 randomly 262

selected points, always τ ≥ 1); r0, P0, A0 characteristic size, 263

characteristic perimeter, characteristic area of the grains (in 264

the 2D section); Z average number of pores adjacent to a 265

grain (in the 2D section). We shall denote by DP/A the expo- 266

nent in the celebrated Mandelbrot’s perimeter-area scaling 267

law [13,30,31] applied to the ensemble of the grains in the 268

microscopic 2D section: 269

P = P0

(√
A

r0

)DP/A

(26) 270

Theorem 2 The average hydraulic path of a flow from top 271

to bottom is given by the equation 272
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〈

Lhydr

L

〉

= τ = Φ +
(1 − Φ)

Z

(

P0

r0

)

(√
A

ro

)DP/A

(27)273

Note that for Φ = 1 we have τ = 1; for Φ = 0 there are274

no pores at all, that is Z = 0 and consequently τ = ∞ as it275

should be. (The divergence of tortuosity in low-porosity, low276

permeability clay-bearing sandstone was noted in [13,14].)277

Equation (27) is proven by a heuristic scaling argument.278

Along a randomly selected top-to-bottom vertical line of279

length L by the De-Lesse principle [32] a total length ΦL280

of the line would go through pore space. Across these parts281

of the line, the flow goes along straight line segments. The282

remaining (1 − Φ) L length of the vertical line is filled by283

grains, the fluid path would cross (1−Φ)L
r0

grains if it could284

flow along a straight vertical line. But it cannot proceed285

straight, but every time the flow reaches a grain it changes286

direction and continues in a “throat” following the curvature287

of the grain’s perimeter. By the definition of the grain/pore288

coordination number Z, the periphery P of a grain is adja-289

cent to Z other grains, so that every individual “detour” adds290

a length
(

P
Z

)

to the hydraulic path. This detour is, by Man-291

delbrot’s Eq. (26) equal to
(

P
Z

)

= P0
Z

(√
A

r0

)DP/A

. As there292

are (1−Φ)L
r0

such detours, the total hydraulic length from top293

to bottom is Lhydr = ΦL + (1−Φ)L
Z

(

P0
r0

) (√
A

r0

)DP/A

, what294

is the same as Eq. (27) to be proved.295

As Eq. (27) is a new result, it should be compared with296

other theoretical models of tortuosity, where there is explicit297

or implicit dependence on porosity. In the Lattice Gas (LG)298

model of Koponen et al. [33], τ = 0.8(1 − Φ) + 1; in the299

percolation model [34] of the same group τ = 1+a
(1−Φ)

(Φ−Φc)
m300

(a and m are fitting parameters). Comiti and Renaud [35]301

assumed cube-shaped grains and obtained τ = 1 + P ln
( 1

�

)

302

(P a fitting parameter). Yu’s [36] well-cited 2D model is303

based on square-shaped grains and yields the scaling law304

τ =
(

L
λmin

)DT −1
where the tortuosity dimension is DT =305

1 + ln τav

ln L
λav

[the porosity dependence enters through the term306

“τav” which is a complicated function of porosity ([36], Eq.307

(2))].308

3.3.2 Estimation of Hydraulic Tortuosity from Binarized309

Rock Image310

The pores in a 2D micrograph almost never form a connected311

percolating path from one side to opposite side of the image,312

even in good-permeability reservoir sandstones such as the313

one shown in Fig. 4.314

This is due to the fact that the pore space is embedded in the315

3D Euclidean space and a percolating path would “jump out”316

several times from the image’s plane if there is an obstacle317

Fig. 4 2D pore contours, from [37]. a Berea sandstone reproduced
from [38]; b Massilon sandstone from [39]

(a grain), continue its path in pore space below or above 318

the grain, then return again to the original plane where its 319

endpoints P and Q are. As we are working with a 2D image, 320

the best we can do is to estimate the length of the projection 321

of the real 3D path onto the 2D plane where the endpoints of 322

the path are, or move the pores on the image plane without 323

rotation until they touch and form a continuous path. We 324

assume that for reservoir rocks this will give a reasonable 325

estimate for tortuosity. 326

3.3.2.1. Use of the Method of Moments 327

Some image processing programs such as Kilian’s [40] 328

software (based on Teague’s, [23], method of moments dis- 329

cussed in Sect. 2.2) can compute for every pore (of number 330

i) the length li of its major axis and estimate the angle 331

ϑi , (−90◦ ≤ ϑi ≤ 90◦) what this axis makes with the hori- 332

zontal reference direction X . (See Fig. 2; Eqs. 8, 10). 333

Take two points, P, Q randomly and far from each other in 334

the rectangle XY = {(x .y)|0 ≤ x ≤ Xmax; 0 ≤ y ≤ Ymax}. 335

Consider the 2D projection of a typical hydraulic path from 336

P to Q consisting of line segments. In most cases, the pro- 337

jected line segment would coincide with the longer axis li = 338

2ai of some pore in the XY plane. The broken line con- 339

sisting of the segments li is the “skeleton” of a chain of 340

touching pores, which are either in the XY plane or imme- 341

diately below or above it in a thin slab S of thickness ∆: 342

S =
{

(x, y, z)|(x, y) ∈ XY ;−∆
2 ≤ z ≤ ∆

2

}

. Because of the 343

local homogeneity of the rock sample, we assume that (i) the 344

probability distributions of the major axis lengths {li } and of 345

their directions {ϑi } are the same on the XY rectangle as in the 346

slab S. We also assume that (ii) {li } and {ϑi } are both inde- 347

pendent random variables and {li },{ϑi } are also independent 348

of each other and that (iii) 〈ϑi 〉 = 0, 〈sin ϑi 〉 = 0 (where an- 349

gular brackets mean expected value), as well as that (iv) for 350

i �= j we have
〈

cos ϑi cos ϑ j

〉

= 〈cos ϑ〉2. “Expected value,” 351

in this context means expected value over all statistically 352

equivalent possible random realizations of the microscopic 353

image. 354
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We define a random tortuosity τ as follows. Let n = 1,355

and construct a random chain of n pores starting from a fixed356

point P . We select pores randomly from among the actual357

pores figuring on the XY section, move them without rotation358

and any change in their shape into positions where they touch359

each other and form a continuous hydraulic path from P to360

some random endpoint what we call Q. A particular pore in361

the chain has a major axis of length li and of direction angle362

ϑi , that is the X- resp. Y-projections of the major axis are363

ξi = li cos ϑi , ηi = li sin ϑi , i = 1, 2, . . . , n. The tortuosity364

of this particular hydraulic path is365

τ =
∑n

i=1 li
√

(∑

li cos ϑi

)2 +
(∑

li sin ϑi

)2
. (28)366

If n is large, and we assume ergodicity, the expected (average)367

tortuosity over all possible chains consisting of n pores is the368

same as the expectation over all realizations. We get:369

〈τ 〉 =

〈

∑n
i=1 li

√

(∑

li cos ϑi

)2 +
(∑

li sin ϑi

)2

〉

(29)370

If for all pores on the image the length of their major axis l371

and its direction ϑ are known, Eqs. (28, 29) can be used to372

compute tortuosity by Monte Carlo (as it will be suggested in373

3.3.2.3). A very simple and efficient approximate estimation374

of 〈τ 〉 can be given as follows, using the notation l = 〈li 〉and375

making use of the assumptions (i) to (iv). Because of assump-376

tion (ii) the variables {li } and {ϑi } are independent, and the377

expected value of the fraction is well approximated by its378

expected numerator divided by the expected denominator:379

〈τ 〉 =

〈

∑n
i=1 li

√

(∑

li cos ϑi

)2 +
(∑

li sin ϑi

)2

〉

≈
〈∑n

i=1 li
〉

√

〈

(∑

li cos ϑi

)2 +
(∑

li sin ϑi

)2
〉

≈
nl

√

∑

i

(

cos ϑ2
i + sin ϑ2

i

)

+
∑

i �= j

〈

cos ϑi cos ϑ j

〉

+
∑

i �= j

〈

sin ϑi sin ϑ j

〉

≈
nl

l
√

n + n(n − 1) 〈cos ϑ〉2

≈
1

〈cos ϑ〉
(30)

380

where we used assumptions (ii), (iii) and (iv) and took the381

limit n → ∞. The approximate rule what we obtained (valid382

for n = 1), that is383

〈τ 〉 ≈
1

〈cos ϑ〉
, (31) 384

can be expressed in words as: the average tortuosity is the 385

reciprocal of the average direction cosine of the major axes 386

of the pores on the 2D microscopic image. 387

3.3.2.2. Numerical Check of Eq. (31) 388

As a numerical check, I measured the major-axis lengths 389

and their directions (with respect to the X axis) of the thirty- 390

three (33) pores in a Berea sandstone micrograph shown in 391

Fig. 4 (from [38]). 392

Figure 5 shows the 33 pores, their major-axis lengths li , 393

and direction angles ϑi . The results are compiled in Table 2. 394

Note that the li and sin ϑi values are not needed for the com- 395

putation of 〈cos ϑ〉, I only listed them as they will be used in 396

the Monte Carlo estimation of 〈τ 〉 based on Eq. (28). The ob- 397

tained average tortuosity 〈τ 〉 ≈ 1
〈cos ϑ〉 = 1.6 is close to the 398

median value of tortuosity reported in [41] for Berea sand- 399

stone (see Table 3). 400

In words. Eq. (31) tells that we should take all the N pores 401

in the image, compute their direction (that is the angle ϑ be- 402

tween their major axis and the X -axis), compute the average 403

of the direction cosines 〈cos ϑ〉 = 1
N

∑N
k=1 cos ϑi and then 404

the average tortuosity will be given by 〈τ 〉 ≈ 1
〈cos ϑ〉 . Equa- 405

tion (31) correctly expresses that always 〈τ 〉 ≥ 1, and it also 406

predicts that tortuosity can be different in the 3 mutually per- 407

pendicular directions X, Y, Z , which is in accordance with 408

recent experimental findings (see Table 3 reproduced from 409

[41]) on anisotropic permeability, and is along the lines of 410

the TCT (tensorial connectivity-tortuosity) concept of Zhang 411

et al. [42]. In this case, of course, permeability, which is ex- 412

pressed by the Kozeny–Carman equation ([43], p. 104) as 413

414

k =
1

b
Φ3 1

S2
spec

1

τ 2 (32) 415
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Fig. 5 Berea sandstone
micrograph, major-axis lengths
and directions (the micrograph
is from [38]

becomes a direction-dependent tensorial quantity, because416

the presence of the 〈cos ϑ〉 factor in the tortuosity equation417

(31) makes it dependent on the direction of the X axis.418

3.3.2.3. Monte Carlo Calculation of Tortuosity419

The algorithm for the Monte Carlo calculation of tortu-420

osity using Eqs. (28, 29) is straightforward. Suppose we421

consider hydraulic paths traversing n pores, where n ≫ 1422

might be larger than the number of pores in the image. De-423

note by N the number of pores in the image, let M ≫ 1 be424

a large integer. Select n pores randomly out of the altogether425

N pores of the image, with possible repetitions, for example426

by calling n times a random number generator (RND) rou-427

tine that each time returns a different uniform random value428

0 ≤ x < 1. Divide the unit interval to N disjoint parts of429

equal length430

Pi =
[

i − 1

N
,

i

N

)

, i = 1, 2, . . . , N ;
N
⋃

i=1

Pi = [0, 1)431

(33)432

If the randomly generated x value lies in the subinter-433

val Pi , then in the sum (Eq. 28) we select the i th values of434

li , cos ϑi , sin ϑi . After this, for the given experiment tortuos- 435

ity is computed by Eq. (28) as τ =
∑n

i=1 li
√

(
∑

li cos ϑi)
2+(

∑

li sin ϑi)
2
. 436

To get the expected value of tortuosity, we repeat this exper- 437

iment M ≫ 1 times, and define 〈τ 〉as the average, 〈τ 〉 = 438

1
M

∑M
k=1 τk where τk is the tortuosity in the kth random ex- 439

periment. If necessary, the SD (standard deviation) and other 440

statistics of τ can also be computed. 441

As an example for the MC computation of Eq. (28) for 442

the Berea sandstone (Fig. 5; Table 2), I selected n = 10, 443

and the data for N = 33 pores. In the first experiment, the 444

random number generator returned pore numbers 20, 28, 2, 445

21, 30, 4, 31, 25, 31,16 (note that #31 occurs twice) and 446

Eq. (28) yields τ =
∑n

i=1 li
√

(
∑

li cos ϑi)
2+(

∑

li sin ϑi)
2

= 1339
651.1306 = 447

2.056 (a reasonable value!). Repeating this, say M = 20 or 448

30 times, and taking the average, a good approximation of 449

〈τ 〉 = 1
M

∑M
k=1 τk would be obtained. 450

4 Timur’s Equation and Timur-Type Equations 451

In a classic paper, Chevron Petrophysicist Aytekin (“Turk”) 452

Timur [2,3] attempted to express the permeability of 155 453
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Table 2 Determination of the average tortuosity for Berea sandstone
from Fig. 5, using Eq. 31

# li micron ϑi (◦), angle from
horizontal axis

cos ϑi sin ϑi

1 50 41 0.75 0.71

2 50 −62 0.47 −0.88

3 388 −5 0.996 −0.09

4 75 5 0.996 0.09

5 94 −30 0.87 −0.5

6 63 −27 0.89 −0.045

7 69 16 0.96 0.28

8 75 50 0.64 0.77

9 69 30 0.87 0.5

10 50 21 0.93 0.36

11 144 −80 0.17 −0.98

12 81 5 0.996 0.09

13 75 87 0.05 0.999

14 119 2 0.999 0.03

15 56 20 0.94 0.34

16 75 −50 0.64 −0.77

17 125 20 0.94 0.34

18 75 51 0.63 0.78

19 69 18 0.95 0.30

20 144 −85 0.087 −0.996

21 63 −40 0.77 0.64

22 119 78 0.21 0.978

23 125 61 0.48 0.875

24 119 88 0.03 0.999

25 200 72 0.31 0.95

26 75 90 0 1

27 131 −8 0.99 −0.14

28 50 −25 0.91 −0.42

29 175 30 0.87 0.5

30 44 −90 0 −1

31 319 −8 0.99 −0.14

32 156 80 0.17 0.98

33 69 80 0.17 0.98

Ave 〈li 〉 = 107μ 〈ϑ〉 = 8.8o 〈cos ϑ〉 =
0.62648
Tortuosity estimate
by Eq. 31: 〈τ 〉 ≈

1
〈cos ϑ〉 = 1.6

sandstone samples from 3 oilfields in North America in the454

empirical form k = axb where “x” was an expression de-455

pendent on both porosity Φ and irreducible water saturation456

Swi . For “x” he selected the following five different expres-457

sions figuring in the routine permeability equations current458

in those days:459

Table 3 Experimentally found tortuosities in 3 main directions, for
Berea sandstone, at atmospheric pressure (from [41])

Direction τmin τmedian τmax

X 1.5 1.795 2.34

Y 1.54 1.79 2.46

Z 1.49 1.74 2.40

(a)

x =
Φ6

S2
wi

. (34a) 460

(This term comes from an equation k = 6.25 × 10−4 Φ6

S2
wi

461

used by Sclumberger Co., [44]) 462

(b)

x =
Φ3

S2
wi

(34b) 463

(Same as the KC Eq. 22, but Sspecis substituted by Swi ) 464

(c)

x =
Φ3

(1 − Φ)2 S2
wi

(34c) 465

(Same as the KC Eq. 22, but S0 is substituted by Swi ) 466

(d)

x =
Φ

S2
wi

(34d) 467

(Same as the KC Eq. 22, but Spis substituted by Swi ) 468

(e)

x =
Φ4.4

S2
wi

(34e) 469

(An equation found by Timur from an assumed general 470

relation k = α Φβ

S
γ
wi

, by optimizing the α, β, γ fitting pa- 471

rameters.) 472

Timur [2,3] obtained the best fit with measured data using Eq. 473

(34e), and today (see e.g., the compilation of permeability 474

equations in [45]) the following formula is called “Timur 475

equation” in Petroleum Industry 476

k = 0.136
Φ4.4

S2
wi

(35) 477

(k in mD, Φ in %, Swi in %). 478
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There have been many other attempts to express perme-479

ability in terms of irreducible water saturation Swi , the most480

famous equations are (from [45]):481

k =

(

100
Φ2.25

Swi

)2

, (36)482

(k in mD, Φ in fraction, Swi in fraction—the so-called Wyllie483

and Rose 1st equation [46]);484

k =
(

100
Φ2 (1 − Swi )

Swi

)2

, (37)485

(k in mD, Φ in fraction, Swi in fraction—the so-called Wyllie486

and Rose 2nd equation [46]);487

x =
CΦ3

S2
wi

, (38)488

(k in mD, Φ in fraction, Swi in fraction, C is a constant, for489

oil C = 250, for gas C = 80—this is the so-called Morris490

and Biggs equation [47]).491

Some further Timur-type equations (from [48]) are:492

k = 62.5
Φ6

S2
wi

, Tixier equation [49] (39)493

k = 4.90
Φ4 (1 − Swi )

2

S4
wi

, Coates Equation [50]. (40)494

The main difference between Timur-type and KC equa-495

tions is that in the Timur-type equations irreducible water sat-496

uration Swi (what is strictly speaking a non-geometric quan-497

tity) is used instead of specific surface area. By Darcy’s Law,498

the physical dimension of permeability is length-squared499

([m2]), but this correct dimension only appears in the KC500

equation, because all three kinds of specific surface areas501

Sspec, S0, Sp have the dimension area/volume = [1/m] in502

Eqs. (19). In the Timur-type equations Swi is dimensionless,503

leading to a dimensionless permeability. Leaving this ques-504

tion apart (assuming that the constant factor in the Timur-type505

equations takes care of the missing dimensions), we turn to506

the main topic of the Review, and discuss how to predict irre-507

ducible water saturation from the microscopic rock image.508

4.1 Monte Carlo Prediction of Swi from Microscopic509

Rock Images510

There is a general consensus [48] that irreducible water is511

distributed on the wetted areas of the grain surface (directly512

on the grain surface, or inside the grain-lining clay layer),513

that is we can assume that Swi = cSp where Sp is surface514

area per unit volume of pore space, and c is a constant. This515

Fig. 6 Illustrating the proof of Eq. (41) (after [51])

assumption excludes such parts of the grain surface (seen in 516

Fig. 3b–d) which have no direct contact with water and thus 517

cannot contribute either to permeability, or to the irreducible 518

water content. 519

We propose a new, Monte Carlo algorithm to find Swi , 520

based on the following theorem. 521

Theorem 3 Select in the image of an isotropic porous rock 522

two randomly placed points A and B a distance r apart, where 523

r is small, r ≪ 1. Then the probability that A and B are in 524

different media (i.e., one is in a pore, the other in a grain) is 525

given by 526

Pr(A&B are in di f f erent media) = Sp

r

2
, (41) 527

where Pr(X) is the probability of the event X. The proof is 528

purely geometric and follows an idea of Debye et al. [51], 529

using the geometry in Fig. 6. 530

Consider a finite volume of rock, with total pore surface 531

area Sarea(Π), total pore volume V (Π), where Π is the total 532

pore space. Let Γ be the total space occupied by grains. 533

Suppose A is in Π , B in Γ and AB = r ≪ 1. Let the 534

segment AB move in such a way that it follows the pore 535

surface S while keeping A and B always in different media. 536

Then point A must always be some distance h < r away from 537

the surface S. If the distance of A from S is between h and 538

h + dh, the total pore volume where A can be is Sarea(Π)dh. 539

For any fixed position of A, the direction of the AB segment 540

must be within a certain solid angle to assure that it crosses 541

S. Using the equation for the surface area of the spherical 542

cap, the probability that the AB radial segment intersects S 543

is Sarea(Π)dh
V (Π)

· 2πr(r−h)

4πr2 = Sp · 2πr(r−h)

4πr2 and the probability 544

that A and B are in different media is 545

Pr(A&B are in different media) = 2Sp

r
∫

0

r − h

2r
dh =

Spr

2
, 546
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Table 4 Table 4 (after [56])

Dimension of fracture sets Size of matrix blocks l f m l f v lvm for the case of Fig. 7

One-dimensional A l f m = A/6 l f v = lx lvm = a/6

Two-dimensional A, B l f m = AB
4(A+B)

l f v = lx +ly

2 lvm = ab
4(a+b)

Three-dimensional A, B, C l f m = 3ABC/10
AB+BC+C A

l f v = lx +ly+ly

3 lvm = 3abc/10
ab+bc+ca

All variables are defined in Figs. 7, 8 and 9. In the 5th column a, b, c are spacings between small fractures in the x, y, z directions, respectively

as stated. (The factor “1/2” arises because A and B are inter-547

changeable).548

Using Theorem 3, the specific surface Sp can be estimated549

by Monte Carlo (MC) as follows: Suppose the four corners of550

the rock image are, clockwise, at (0, Y ); (X, Y ); (X, 0); (0, 0);551

let rmax be a small positive value. Select a large integer num-552

ber N (1000 or larger), this will be the number of experiments553

for a given AB distance AB = r ≤ rmax. If the subroutine554

RND returns at each subsequent call different and indepen-555

dent random numbers uniformly distributed in [0, 1), the MC556

algorithm proceeds as follows:557

1. Select r ∈ [0, rmax) randomly as558

r = RND · rmax (42)559

2. Define the four corner points P1 (x1, y1) , . . . , P4 (x4, y4)560

which are placed by a distance r inside from the image’s561

boundary (for example: P2 = (X − r, Y − r).562

3. Place the point A =
(

Ax , Ay

)

randomly inside the rec-563

tangle P1 P2 P3 P4 as:564

Ax = x3 + RND · (x4 − x3)565

Ay = y3 + RND · (y1 − y3) (43)566

4. Place the point B =
(

Bx , By

)

inside the larger rectangle567

(0, Y ); (X, Y ); (X, 0); (0, 0) at a distance r from A in a568

random direction from it, as:569

Bx = Ax + r cos(RND · 2π)570

By = Ay + r sin(RND · 2π) (44)571

(Note that the point B =
(

Bx , By

)

will remain inside572

the image.)573

5. The placement of points A and B, that is the computation574

of Eqs. (43, 44) should be made with pixel precision.575

6. Call the experiment “successful” if A and B do not lie576

in the same medium, that is if one of them is in grain,577

the other in pore.578

7. Repeat the experiment (from steps 3 to 6) N times for579

the same value of r and count how many times have you580

got “success,” that is A&B were in different media.581

8. Estimate the probability Pr(A&B are in different media) 582

subject to the condition AB = r as 583

Pr (A&B are different| AB = r) =
Nsuccess

N
(45) 584

9. Repeat this (from Step 1 to 8) with about 10 different 585

small r values. Using the theoretical equation (41) one 586

expects a linear relation 587

Pr( A&B are in different media| AB = r) = Sp

r

2
(19)

588

589

that is, from the Probability versus r plot the specific 590

pore surface can be determined from the slope of this 591

line. 592

4.2 How to Use Timur’s Model? 593

For a review of Timur’s equation ([2,3]) see [48] (that also 594

lists further similar equations such as Tixier [49], Wyllie 595

and Rose [46] to estimate permeability from measured irre- 596

ducible water saturation Swi or vice versa). In Timur’s equa- 597

tion permeability k and Swi are connected as k = 0.136Φ4.4

S2
wi

598

(Eq. 35) where k is in md, Φ is in %, Swi is irreducible wa- 599

ter saturation in percentage of the pore volume. The main 600

problem in applying this equation to a microscopic rock im- 601

age is that Swi is not known. Physically, one can express 602

Swi as Swi = 100 · Pt ·(pixsize)·δ
At ·(pixsize)

2 = 100 · Ptδ

Atpixsize
(Eq. 45), 603

where Pt is total perimeter (of all types of void spaces on 604

the image) in pixel-size unit, At is total area (of all types 605

of void spaces on the image) in pixel-area unit, pixsize is 606

pixel size, δ is thickness of the non-removable water which 607

is adsorbed on the grain surfaces. Of course, δ depends on 608

grain surface roughness, on the wettability of the miner- 609

als and on the chemical composition of the water, and can 610

range from the diameter of a single water molecule (2.75 611

Ǻ = 0.275 nm) to a few thousands of nanometers. A re- 612

cent measured value for the thickness of nanoscale adsorbed 613

brine film on silica surface ([52]) is reported between 249 614

and 265 nm. Taking the average value δ = 257 nm, and a 615

pixel size pixsize = 20 µm = 20,000 nm, then—for a typ- 616
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ical micrograph—we get Swi = 100 · Ptδ

Atpixsize
. If the total617

porosity is �, by Timur’s Eq. (35): k = 0.136�4.4

S2
wi

.618

Of course, we cannot know for sure that in the given rock619

one really has δ = 257 nm = 0.257 µm, though the or-620

der of magnitude of this value seems reasonable because621

Adams et al. (Table 4 in [53]) reported similar RMS sur-622

face roughness for sand grains (0.269 µm) and the thickness623

of adsorbed water should be around the same as the RMS624

surface roughness (as noted in [52]). A more reasonable per-625

meability is obtained if one assumes that the thickness of626

adsorbed water is the same as the peak-to-valley roughness627

of the grain contours, which was found experimentally ([53])628

1.89 µm = 1890 nm for sand grains. Assuming for δ the629

value δ = 2000 nm = 2 µm we get
Swi = 100 · Ptδ

Atpixsize ;630

and using Timur’s Eq. (35): k = 0.136�4.4

S2
wi

.631

By SEM microscopy, the actual value of grain surface632

roughness can be estimated. If no measured δ-value is known,633

I recommend to apply Timur’s method with δ = 2000 nm =634

2 µm as default.635

Another reasonable approach would be to consider δ as636

a fitting parameter, and determine it from an image where637

the permeability of the sample k is already known from an638

independent laboratory measurement, using the equation639

k = 0.136�4.4
/

[

100 ·
Pt

At

δ

pixsize

]2

. (46)640

Then for other images (of the same lithology) the δ-value641

obtained from Eq. 46 could be used.642

4.3 The Timur Equation Approach, Using BET Surface643

Areas644

Timur’s equation can be used to estimate permeability k from645

measured irreducible water saturation Swi (or vice versa, to646

estimate Swi from k). In Timur’s equation permeability k and647

Swi are connected as k = 0.136Φ4.4

S2
wi

(35), where k is in md, Φ648

is in %, Swi is irreducible water saturation in % of the pore649

volume. The main problem in applying this equation is how650

to find Swi . We can express Swi (in %) as651

Swi = 100 · Sp · δ, (47)652

where Sp is the specific surface per unit pore volume, and653

δ is thickness of the non-removable water adsorbed on the654

pore walls.655

For the application of Eqs. (35) and (47), in addition to656

the value of δ and Φ, we also need the value of Sp, that is657

the specific surface per pore volume. Suppose that according658

to the BET (Brunauer–Emmett–Teller, [54]) gas adsorption659

measurement the specific grain surface is Sg in m2/g units. 660

Then by easy algebra, we can get Sp (in µm−1 units) as: 661

Sp = Sg

(

1 − Φ

Φ

)

ρg (48) 662

(see [29]), where the grain density is ρg = 2.71 g/cm3 for 663

calcite, ρg = 2.62 g/cm3 for quartz. 664

A different approach is also possible. That would be to 665

consider the thickness δ in Eqs. (35, 47) as a fitting parame- 666

ter, and determine it from cases where both the BET specific 667

surface Sg and the permeability of the sample k are known 668

from independent laboratory measurements. Then for other 669

rock samples (of the same formation and lithology), this fit- 670

ting δ-value could be used in Eq. (47). 671

5 Some Aspects of Triple Porosity 672

In this section, I propose a new technique, based on mi- 673

croscopy, on how to estimate the transfer factors between 674

pore–pore, pore–fracture, fracture–fracture, vug-fracture, etc. 675

needed for the equations of hydraulic flow in triple-porosity 676

carbonates. As a first step of an ongoing research to gen- 677

eralize the Lorenz curve and Lorenz coefficient (see, e.g., 678

[80]) for heterogeneity estimation in triple-porosity rocks, 679

in Sect. 5.5, I shall generalize the concept of storativity for 680

triple-porosity carbonates. 681

5.1 Neighbor Statistics from Image 682

Denote by P, F, V the respective sets of the three differ- 683

ent types of void such as pore, fracture, and vug which can 684

be distinguished on the microscopic image based on the ob- 685

ject’s eccentricity, aspect ratio or some other criteria. Define 686

a threshold distance k ≥ 0 in pixel units and call two objects 687

A and B neighbors if their distance satisfies dist(A, B) ≤ k. 688

Write a program to find the number of the following neigh- 689

bors in the image (where # means “number of”) 690

Npp = # {p1 ∈ P, p2 ∈ P|dist(p1, p2) ≤ k} (49a) 691

Nvv = # {v1 ∈ V, v2 ∈ V |dist(v1, v2) ≤ k} (49b) 692

N f f = # { f1 ∈ F, f2 ∈ F |dist( f1, f2) ≤ k} (49c) 693

Npv = # {p ∈ P, v ∈ V |dist(p, v) ≤ k} (49d) 694

Np f = # {p ∈ P, f ∈ F |dist(p, f ) ≤ k} (49e) 695

Nv f = # {v ∈ V, f ∈ F |dist(v, f ) ≤ k} (49f) 696

Note the symmetry, e.g., Np f = N f p. 697

Let Nneighbors = Npp + Nvv + N f f + N f v + Np f + Nv f , 698

then one can define the normalized fractions of different kinds 699

of neighbors as 700
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Fig. 7 Triple-porosity rock model where the vugs are connected to fractures through the rock matrix (from [56])

Fig. 8 Triple-porosity rock model where the vugs are connected to main fractures through smaller fractures (from [56])

N∗
f f = NP P

Nneighbors
...

N∗
v f = NV F

Nneighbors

(51 a–f)701

702

If there are too many objects in the image then, by the703

De Lesse principle [32,52] and assuming isotropy, one can704

estimate the relative fractions of different kinds of neighbors705

(instead of from the whole image) along a reasonable number, 706

say 50 or 100, of random horizontal or vertical lines. 707

5.2 The Transfer Factors λm f , λv f , λmv in the Flow 708

Equations 709

The following ideas of [56–59] can be used to generalize the 710

Warren–Root [60] dual-porosity flow model to triple poros- 711

ity. Letting the subscripts f, v, m refer to fracture, vug and 712
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Fig. 9 Triple-porosity rock model where some isolated vugs are connected to fractures through the rock matrix, some are intersected by fractures
(from [56])

matrix, respectively, these models assume (1) radial flow into713

the reservoir of uniform thickness where only fractures feed714

the well; (2) spatially/temporally constant rock properties;715

(3) isothermal single-phase compressible fluid with constant716

viscosity.717

The three basic Darcy equations for flow are, in cylindrical718

geometry:719

Flow through the large fractures:720

k f

μ

1

r

(

r
∂ P f

∂r

)

− ΦmCm

∂ Pm

∂t
− ΦvCV

∂ Pv

∂t
= Φ f C f

∂ PF

∂t
721

(52)722

Flow interacting with vugs:723

ΦvCV

∂ Pv

∂t
=

α f vkv

μ

(

P f − Pv

)

+
αvmkm

μ
(Pm − Pv)724

(53)725

Flow interacting with matrix:726

ΦmCm

∂ Pm

∂t
=

α f mkm

μ

(

P f − Pm

)

+
αvmkm

μ
(Pv − Pm)727

(54)728

In Eqs. (52–54), the coefficients α f v, α f m, αvm are called729

interporosity flow shape factors, k f , kv, km are the three dif-730

ferent permeabilities (assuming isotropy and single-phase731

flow).732

5.3 Interporosity Flow Shape Factors and Their 733

Determination 734

Consider three distinct cases for the relative position of vugs 735

and fractures (Figs. 7–9 and Table 4, from [56]). 736

Determination of the inter-porosity flow shape factors from 737

the image: 738

α f m =
A f m

l f m

(55) 739

where A f m is the total fracture/matrix connection area per 740

unit volume of the rock
(

m2/m3
)

, l f m is a characteristic dis- 741

tance (See Table 4). As always done in integral geometry and 742

stereology, A f m is estimated from the 2D microscopic image 743

as total length of the fracture/matrix common boundary per 744

unit area of the rock
(

m/m2
)

. The precision of measuring 745

the “common boundary” on the image depends on the way 746

of thresholding, on the pixel size, on the resolution of the 747

microscope and even on the dye used, and apparently has not 748

been studied as yet. 749

Similarly 750

α f v =
A f v

l f v

(56) 751

where A f v is the total fracture/vug connection area per unit 752

volume of the rock
(

m2/m3
)

, l f v is a characteristic distance 753
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(See Table 4);754

αvm =
Avm

lvm

(57)755

where Avm is the vug/matrix connection area per unit volume756

of the rock
(

m2/m3
)

, lvm is is a characteristic distance (see757

Table 4).758

5.4 Flow Equations in Dimensionless Coordinates759

Introducing dimensionless pressure, dimensionless radial dis-760

tance and dimensionless time [59] as:761

rD =
r

rW

; (58)762

tD =
t

μr2
w

(

� f C f + �vCv + �mCm

)

/k f

(59)763

PD (rD; tD) =
2πk f h

μq
(Pi − P(r, t)) ; (60)764

(where rw is well radius; h reservoir thickness; q flow rate),765

the flow equations (52–54) reduce to766

ω f

∂ PD f

∂tD

−
1

rD

∂

∂rD

(

rD

∂ PD f

∂rD

)

767

− λ f v

(

PDv − PD f

)

− λ f m

(

PDm − PD f

)

= 0768

(61)769

ωv

∂ PDv

∂tD

+ λ f v

(

PDv − PD f

)

+ λvm (PDv − PDm) = 0770

(62)771

ωm

∂ PDm

∂tD

+ λ f m

(

PDm − PD f

)

+ λvm (PDm − PDv) = 0772

(63)773

The inter-porosity transfer parameters λ f v, λ f m, λvm and774

the previously discussed inter-porosity flow shape factors775

α f v, α f m, αvm are related as [59]:776

λ f m =
α f mr2

wkm

k f

; (64a)777

λ f v =
α f vr2

wkv

k f

; (64b)778

λvm =
αvmr2

wkm

k f

(64c)779

5.5 Storativity in Triple-Porosity Rocks780

In the previous Eqs. (61–63), the coefficients ω are called781

storativities. (Recall, that in hydrogeology, storativity is the782

amount of water that an aquifer yields to wells due to the783

compression of the aquifer.) In triple-porosity rocks, three784

kinds of storativity should be defined, they add together to 1:785

ω f =
Φ f C f

ΦmCm + Φ f C f + ΦvCv

(65a) 786

ωv =
ΦvCv

ΦmCm + Φ f C f + ΦvCv

(65b) 787

ωm =
ΦmCm

ΦmCm + Φ f C f + ΦvCv

(65c) 788

where the indices f, v, m refer to fracture, vug and matrix 789

porosity. Cm, Cv, C f are the compressibilities of the forma- 790

tion containing only one special type of pore. Here 791

�m,�v,� f , with �m + �v + � f = 1 (66) 792

are the three kind of porosities. By the De Lesse principle 793

[32,52], the three porosities �m, Φv, Φ f can be estimated 794

from microscopy if we have some tools of image process- 795

ing distinguishing between these different objects (such as 796

the eccentricity or aspect ratio of the pore shape, some other 797

ideas are pursued in our recent study [21]). If the three com- 798

pressibilities are known, then ωm, ωv, ω f can be computed 799

from Φm, Φv, Φ f and Cm, Cv, C f . If the compressibilities 800

are not given, one has to assume Cm = Cv = C f and then 801

storativities become the same as the porosities. 802

6 ACF (Autocorrelation Function)-Based 803

Techniques for Permeability 804

6.1 ACF of a Binary Image 805

The binary image (what we get after thresholding) was rep- 806

resented earlier as 807

F(x, y) =
{

1 if (x, y) ∈ Π

0 if (x, y) /∈ Π
(67) 808

where � denotes the “foreground,” i.e., the total set of pores 809

in the microscopic image of the rock. In mathematical terms, 810

F(x, y) is the characteristic function of the pores. Assume 811

that F(x, y) is a translation invariant and isotropic random 812

field [69,70]. Denoting by Φ the overall porosity, because 813

of translation invariance a randomly selected point (x, y) is 814

with probability Φ in pore, with probability 1−Φ in the rock 815

matrix. Denoting with angular brackets 〈· · · 〉 expected values 816

over different realizations of the random field, the mean and 817

variance of F(x, y) are 818

〈F(x, y)〉 = Φ · 1 + (1 − Φ) · 0 = Φ (68) 819

〈

[F(x, y) − Φ]2
〉

=
〈

F2(x, y) − 2ΦF(x, y) + Φ2
〉

820

= Φ − Φ2 = Φ(1 − Φ) (69) 821

In case of translation and rotation invariance of F(x, y), 822

the normalized autocorrelation Function (ACF, first intro- 823
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duced to Earth Sciences by Scheidegger [61,62]) of F(x, y),824

defined as 〈[F(x,y)−Φ][F(x+ξ,y+η)−Φ]〉
〈

[F(x,y)−Φ]2〉 , only depends on the825

distance between (x, y) and (x + ξ, y + η) that is on ρ =826
√

ξ2 + η2, so that it can be written in the form827

〈[F(x, y) − Φ] · [F(x + ξ, y + η) − Φ]〉
〈

[F(x, y) − Φ]2〉828

=
〈[F(x, y) − Φ] · [F(x + ξ, y + η) − Φ]〉

Φ(1 − Φ)
829

= RF F (ρ). (70)830

Berryman and Blair [63] have made more precise the argu-831

ments of the classic paper of Debye et al. [51] (what we used832

previously to derive Eq. 41) and proved that the specific sur-833

face area of the pore boundaries can be estimated from the834

slope of the ACF at ρ = 0 as835

Sp = −4
d

dρ
R(ρ)

∣

∣

∣

∣

ρ=0
, (71)836

an equation which, when substituted into the Kozeny–Carman837

Eq. (17) (and assuming some reasonable default values for838

shape factor b and tortuosity τ), can be used to predict perme-839

ability from the autocorrelation analysis of the microscopic840

image. Similarly, if we have already established a calibra-841

tion Swi = λSp, we can also use Timur’s (or Timur-type)842

equations to predict permeability from the image’s ACF.843

If the characteristic function F(x, y) of the pore space has844

an exponential ACF with correlation distance ρ0, i.e., if845

R(ρ) = exp

[

−
ρ

ρ0

]

, (72)846

then Eq. 71 gives Sspec = 4
ρ0

and using this in the KC (Eq. 17)847

gives848

k = const · Φ3ρ2
0 (73)849

which is not only dimensionally correct (because permeabil-850

ity has the dimension distance2) but also seems physically851

reasonable, because on the right-hand side (RHS) the “ρ0” is852

of the order of pore size, i.e., it has a similarly huge dynamic853

range in sedimentary rocks as the permeability k itself has.854

Berryman and Blair’s paper [63] has attracted many follow-855

ups which attempted, with varying success, to predict perme-856

ability from microscopy. A notable, much cited paper on the857

tracks of [63] was Ioannidis et al. [64] and its very nice exper-858

imental verification 4 years later by a Colombian researcher859

[65].860

Ioannidis et al. [64] observed that the exponential ACF,861

R(ρ) = exp
[

− ρ
ρ0

]

, though frequently reported for ordinary862

black-and-white photographs, is not applicable for micro-863

scopic images of sedimentary rock, where a stretched ex-864

ponential function [66] better describes the experimentally 865

obtained ACF. Using the notation of [64], this ACF is 866

R(u) = exp
[

−
(u

λ

)n]

(74) 867

where λ is the correlation distance, n is a positive real expo- 868

nent. 869

The derivative of this ACF at u = 0 is d
du

R(u)

∣

∣

∣

u=0
= 870

− n
λn un−1

∣

∣

u=0 which, except for n = 1, cannot express the 871

specific surface area by means of Eq. (71) because for n < 1 872

the RHS is divergent, while for n > 1 the RHS is zero. To 873

avoid this difficulty, Ioannidis et al. [64] recommended to use 874

an average correlation distance 875

IS =
∞
∫

0

R(u)du =
∞
∫

0

exp
[

−
(u

λ

)n]

du (75) 876

With the substitution x =
(

u
λ

)n and recalling the definition 877

of the Gamma function Ŵ(z) =
∫∞

0 t z−1e−t dt we find 878

IS =
∞
∫

0

exp
[

−
(u

λ

)n]

du =
λ

n
Γ

(

1

n

)

(76) 879

(tabulated integral 3.478 in [67]). If for a given rock type n 880

is not varying in a wide range, in Eq. (76) the changes in the 881

expression 1
n
Γ
( 1

n

)

are not too significant and the scaling rule 882

k = const · Φ3ρ2
0 (Eq. 73) that was valid for the exponential 883

ACF, R(ρ) = exp
[

− ρ
ρ0

]

, would be, more generally 884

k ∝ Φα I β
s (77) 885

(see 64, Abstract), or: 886

ln k = a + b ln Φ + c ln IS, (78) 887

(64, Eq. 6; or 65, Eq. 2.) 888

A similar empirical equation to connect permeability with 889

image ACF was suggested by Coskun and Wardlaw [68], but 890

instead of the average correlation distance IS they used the 891

characteristic porel size (porel = “porosity element”). 892

Ioannidis et al. [64] used backscatter SEM images (about 893

60 images per sample) of thin sections from 15 Canadian 894

rock samples of different lithology, and found λ, n and IS 895

and the following fitting parameters to Eq. (78): a = 9.3252; 896

b = 5.750; c = 1.572 (see Table 5). The only cases when the 897

fit did not work satisfactorily were samples with low poros- 898

ity but high permeability (see Table 5, Gilwood sandstone 899

#7, Φ = 0.134, k = 412 mD, possible reason: existence of 900

small fractures not affecting porosity), or samples with high 901

porosity and low permeability (see Table 5, Viking sandstone 902
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Table 5 Data from [64], fitting parameters to Eq. 78: a = 9.3252; b = 5.750; c = 1.572

Lithology Sample Φ (optical) Φ (core) k (mD) λ (micron) n IS(micron)

Pekisko dolomite (256 images) 58A 0.204 0.197 728.0 49.36 0.734 59.85

45A 0.149 0.153 25.9 18.11 0.681 23.55

45B 0.130 0.129 28.0 23,30 0.704 29.34

35B 0.109 0.101 3.5 24.81 0.556 41.54

Montney dolomitic limestone (263 images) 9B 0.119 0.152 5.3 6.89 0.834 7.59

31B 0.125 0.129 1.8 6.41 0.750 7.63

30B 0.125 0.122 2.1 6.50 0.766 7.61

31A 0.109 0.102 0.5 5.25 0.736 6.35

Gilwood sandstone (227 images) 16 0.192 0.202 646.0 40.19 0.801 45.49

15A 0.168 0.173 114.0 28.49 0.689 36.62

7 0.129 0.134 412.0 38.69 0.840 42.41

4B 0.113 0.069 1.7 44.32 0.635 62.18

Viking sandstone (145 images) 4A 0.197 0.198 6.5 18.48 0.758 21.83

1 0.117 0.125 3.0 25.33 0.833 27.92

Fahler sandstone (30 images) 13F 0.077 0.113 4.4 12.21 0.729 14.89

#4A, Φ = 0.197, k = 6.5 mD, possible reason: diagenetic903

clay blocking the throats, see [14]).904

6.2 Permeability from Unbinarized Rock Image?905

To find the value of IS = λ
n
Γ
( 1

n

)

, one needs good estimates906

of the correlation distance λ and of the stretching exponent907

“n” in Eq. (74). To get λ and n, a precise estimation of the908

ACF, 〈[F(x,y)−Φ]·[F(x+ξ,y+η)−Φ]〉
Φ(1−Φ)

= R(ρ) is needed. A care-909

ful reading of [64,65] reveals that the biggest problem is the910

proper thresholding of the images, otherwise the small pore911

throats (which have an enormous significance in fluid flow)912

would be missed, and so could not contribute to the estimated913

ACF. As a final part of this Review, I propose a new way of914

using the original full-dynamic range image to compute the915

ACF. The estimation of porosity Φ is also not without prob-916

lems, and strongly depends on thresholding, but it has smaller917

significance on the estimated k than the errors in n and λ and918

consequently on the integral IS . Comparing the 2nd and 3rd919

columns of Table 5 (taken from [64]) shows that with care-920

ful measurements and good binarization, the optical porosity921

and core porosity do not deviate significantly.922

6.2.1 Permeability from Rock Image Using Simulated923

Probing by EM Waves924

To present the idea, we need to introduce the theory of fluc-925

tuations of waves propagating in isotropic, randomly het-926

erogeneous media, and the (transverse) correlation of these927

fluctuations. We shall follow the classic treatment of Chernov928

[69].929

6.2.1.1 Amplitude Fluctuations of Waves Propagating in Het- 930

erogeneous Media and their Transverse Correlation 931

Consider an acoustic or electromagnetic (EM) wave prop- 932

agating in a randomly heterogeneous medium [69–71], as- 933

sume that the propagation velocity in the medium is randomly 934

fluctuating around a constant value C0 as 935

C(x, y) =
C0

1 + δ(x, y)
(79) 936

where, in case of isotropy, 937

〈δ(x, y)〉 = 0;
〈

δ2(x, y)
〉

= δ2 ≪ 1; 938

RCC (r) = 〈C(x, y) · C(x + r cos ϕ, y + r sin ϕ)〉 939

= δ2 exp (−r/r0) , (80) 940

where r0 is the correlation distance of inhomogeneities. Ex- 941

pected values are taken over all realizations of the random 942

field δ(x, y). Then the mean transit time fluctuations
〈

(∆t)2〉and 943

mean logarithmic amplitude fluctuations

〈

(

∆ ln |A|
|A0|

)2
〉

grow 944

with distance L as 945

〈

(∆t)2
〉

=
L

C2
0

〈

δ2
〉

r0
√

π (81) 946

〈

(

∆ ln
|A|
|A0|

)2
〉

= gL (82) 947

It is assumed that the correlation length r0 is much larger 948

than the mean wavelength (case of geometrical optics). In 949

Eq. (82) the factor g is the so-called turbidity factor, and 950

it has such a complicated dependence on wavelength and 951
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on correlation length r0 [71,72, fortheacousticcase] that it952

cannot be used for the estimation of r0 from the measured953

amplitude fluctuations

〈

(

∆ ln |A|
|A0|

)2
〉

. I propose an alterna-954

tive way based on the important discovery of Chernov [69,955

pp.95–110], according to which the transverse (i.e., perpen-956

dicular to the direction of the wave propagation) ACF of the957

amplitudes (i.e., of the absolute amplitudes |A|, not loga-958

rithmic amplitudes as in Eq. 82) has the same correlation959

distance as the inhomogeneities of the medium where the960

wave propagates. As work hypothesis I assume that the am-961

plitudes of simulated EM waves propagating through the962

optical image of the medium will have a similar ACF to963

that of the medium itself, so that its transverse ACF can be964

used as a proxy instead of the ACF of the image. The trans-965

mitted wave can be computed by any numerical solver of966

the EM wave propagation, for example by the MAXWELL967

program [73–75]. The physical property (“dielectric con-968

stant”) controlling wave speed, reflection and transmission969

coefficients should be assigned to each pixel of the image,970

depending on the gray scale of the pixel values, using a971

linear or nonlinear (as e.g., “Pareto,” i.e., power function972

like) correspondence between gray scales and dielectric con-973

stants.974

6.3 Comparison of Two Approaches975

The ACF of the microscopic image can be computed in two976

different ways (from binarized, or from the original images).977

From the ACF then one must find λ and n, determine IS978

and find the fitting parameters a, b, c to express the perme-979

ability k measured on the given core, using Eq. (78). In the980

two approaches, the ACF is computed, in turn, (a) from the981

binary (1 = pore, 0 = rock matrix) image or (b) from the982

non-binarized full-dynamic range image. Computationally,983

the approach (b) is done by finding the correlation distance984

by transforming gray scales to dielectric constants, probing985

the image with simulated EM waves, and determining their986

transverse correlation. This is an ongoing research of the au-987

thor, with no experimental evidence as yet.988

7 Conclusions and Outlook989

The motivation of this Review has been my firm belief that the990

recent DRP (Digital Rock Physics) revolution [4–9] promis-991

ing to find macroscopic bulk properties from 3D microscanned992

images of small pieces of rock still has not made superfluous993

the search for simple rock models and techniques based on994

2D rock images. In a sense, this Review is sequel to [76],995

where a simple geometric rock model connected transfer996

and elastic properties in sedimentary rocks. (When writ-997

ing [76], I did all computations on a handheld calculator,998

while DRP problems solved with Lattice Boltzman Mod- 999

els need high-performance computers, [77].) The search for 1000

rock models, started in [76], is still ongoing in the direction of 1001

triple porosity. Another novel technique, sliding-window en- 1002

tropy filtering [21], that has been briefly mentioned, seems 1003

to have exciting properties to discriminate between differ- 1004

ent pore types in triple-porosity rocks, so that it might help 1005

in finding the neighborhood probabilities and transfer fac- 1006

tors described in Sect. 5. The powerful method of moments 1007

(Sect. 2.2) has only been referred to in connection with tor- 1008

tuosity (Sects. 3.3.2.1–3.3.2.3); I envisage it will also find 1009

future applications in triple-porosity studies because the ec- 1010

centricity and aspect ratio computed from the moments can 1011

distinguish between different pore types. The tortuosity es- 1012

timate, based on the method of moments and discussed in 1013

Sect. 3.3.2.1, leads to a direction-dependent (i.e., possibly 1014

anisotropic) permeability, as briefly mentioned (around the 1015

end of Sect. 3.3.2.2). Autocorrelation or the related semi- 1016

variogram techniques have already been generalized to the 1017

anisotropic case both in random wave theory and geostatis- 1018

tics [69,80], that is in principle they might be used to predict 1019

anisotropic permeability from an anisotropic image, but I 1020

could not find any published study on this. As discussed 1021

in 1022

Section 6.1, there are cases both in sandstones and car- 1023

bonates when permeability could not be predicted from mi- 1024

croscopy in any routine way (existence of small fractures not 1025

affecting porosity but increasing permeability, or diagenetic 1026

clay blocking the throats, see samples 7 and #4A in Table 5). 1027

In the most influential permeability study of the last two 1028

decades, Amaefule et al. [25] documented strong correlation 1029

between FZI (Flow Zone Indicator) and rock-textural prop- 1030

erties such as specific surface area and grain size distribution. 1031

These ideas have not been followed up yet as much as they 1032

deserve, and I still envisage that—in light of the revival of 1033

the Flow Unit concept as “GHE” (Global Hydraulic Element, 1034

[26])—the image analysis of micrographs will be included 1035

again in the toolbox of petrophysicists. 1036
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