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ABSTRACT 

Korvin, G., 1982. Axiomatic characterization of the general mixture rule. Geoexplora. 
tion, 19: 267.-276. 

The paper is addressed to the following problem, frequently occurring in geophysics, 
rock physics and solid state physics. 

Suppose we are given a composite material of volume V consisting of two phases of the 
respective volume fractions P, Q; P + Q = V, and suppose these constituents are uniformly 
distributed within the total volume. Suppose g is some physically measurable property 
that assumes the values g, and g,, respectively, for the two constituents, and a value 2 for 
the composite. Suppose, further, that the value of 2 is unambiguously determined by the 
volume fractions P, Q and the specific properties g,, g, : 

Z = Wg,, g,> J’, Q) 

It is shown that, if a set of physically plausible conditions are met, the only possible 
functional form of M(g,, g,, P, Q) is the “general mixture rule”: 

M(g,, g,, P, Q) = [a .& + (1 -- @‘)gfl”’ 

for some real t, t # 0, or: 

M(g,, g,, P, Q) = g, * .%l- ‘I’ 

where * is porosity, defined as @ = P/(P + Q). 
Examples are given where some of the conditions are violated, indicating that the 

physical property of the composite cannot be expressed by simple mixture rules. 

In applied geophysics, rock physics and solid state physics we are frequent- 
ly faced with the following problem: 

Suppose we are given a composite material of volume V consisting of N 
phases of the respective volume fractions Vi, VI + V, + . . . + V, = V, and sup- 
pose all these constituents are uniformly distributed within the total volume. 
Suppose g is some physically measurable property that assumes the value gi 
for the i-th constituent, and some value g for the composite material. In many 
cases, the value of gonly depends on the volume fractions Vi and individual 
parameters gi : 

&?= Mk,, g2, . . ., gN, VI, v2, . . -t vN) 
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In what follows it will be shown that in case of two-component materials (as 
e.g. porous rocks) a simple set of physically plausible axioms can be given 
that completely determine the functional form of eq. (1). Namely, by in- 
troducing porosity as 

Q,= v1 -,l-a= 
V2 

VI + v* VI + v2 
(2) 

it will be shown that if a set of conditions are satisfied, eq. (1) can be written 
as: 

2’ [Qg’, + (1 -@)g$]llt 

where t, t # 0, is some arbitrary real value in (--, -), or: 

(3) 

gEgF g;-Q (4) 

which is of course, by 1’HBspital’s rule the limit of expression (3) for t + 0. 
The paper is a sequel of Korvin (1978), where some important properties 

of the generalized mean values of eq. (3) are pointed out and specific refer- 
ences to geophysical-physical applications are given. 

The main reason for my returning once more to this problem is that since 
1978 I have succeeded in completing the set of axioms proposed in my 
previous paper by a further condition so that the conditions to be given below 
will already unambiguously determine the expressions (3) and (4). Also, I 
have collected a few examples where some of the conditions are violated in- 
dicating that the physical property of the composite cannot be expressed by 
simple formulae like (3) and (4). 

I hope these results will be useful in deciding, in any given case, whether 
formulae like Wyllie’s “time-average equation” (Wyllie et al., 1956): 

(5) 

Meese and Walther’s (1967) “vugular carbonate formula” 

v= fl v,l-@ (6) 

and many other similar expressions, proposed in the theory of elasticity 
(Shermergor, 1977), for the sound speed and effective attenuation in an 
alternating sequence of sand shale layers (Tegland, 1970; Mateker, 1971), or 
for the estimation of thermal- and electric conductivity of fluid-filled sedi- 
mentary rocks (Beck, 1976; Rzhevsky and Novik, 1971; SchGn, 1971; Wood- 
side and Messmer, 1961; Grant and West, 1965; Pearce et al., 1973; etc.) 
should be considered as approximate “empirical rules” or they do have a 
sound physical meaning. 

Since the mathematics to be applied heavily relies on the theory of func- 
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tional equations, detailed proofs would be outside the scope of the paper. In- 
terested readers are referred to the monographs Aczel(l961) and Hardy et 
al. (1934). 

Consider a composite material consisting of a volume fraction P of some 
material of physical property g,, and of a fraction Q of another material of 
physical property g,. Denote the measured physical property of the compos- 
ite by g= M(g,, g,, P, Q). Suppose the function M(g,, g,, P, Q) satisfies the 
following set of conditions: 

Cond. 1: reflexivity 

M(g,, gl, P, Q) = gl for all P, Q (P + Q > 0) Va) 

Cond. 2: idempotency (Fuchs, 1950) 

M(g,, g2, P, Q) = gl for all P > 0 P’b) 

M(g,, g,, 0, Q) = gz for d Q > 0 (7c) 

Cond. 3: homogeneity (of 0-th order) with respect to the volume fractions. 
The physical property gof the composite does not depend on the actual 
values of the volume fractions, only on their ratio: 

Wg,, g,, P, Q) = Wg,, g,, XP, A&) G’d) 

for all P, Q, h such that P + Q > 0, h > 0 

Cond. 4: internity. The property g measured on the composite lies between 
the specific values g,, g, of the constituents; if g, < g,, say, then for P + Q > 0 

M(g,v g2,1, 0) G M@,, g2, P, Q) G Wg,, gz, 0, 1) Ue) 

Cond. 5: bi-symmetry (this concept is due to Aczel, 1946). Given two 
composites, the first consisting of P, resp. Q1 parts of materials of g, resp. g, 
properties, the second of P, resp. Q2 parts of materials of G, resp. G, prop- 
erties, the following two expressions for the measured property g of the 
four-component aggregate must be equal: 

WWg,, gz. P,, &I); WG,, G2, P,, Qz); PI + &I; P2 + 92) = MW(g,, G,, P,, Pz); 

M(g,, (32, &I, Qz);P1 +P,; Q1 + 92) (7f) 

Cond. 6: monotonicity with respect to the volume fractions. 

Ifg, < g2, say, P + Q1 > 0, Qz > Q1 then 

Wg,, gz, P, Q,) < JW,, g,, P, Q2) (753 

Cond. 7: monotonicity with respect to the physical properties. 

IfP+Q>O,g,<g,then 
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M&r, g,, P, 9) < Mg,, g,, P, Q) t7h) 

Cond. 8: homogeneity (of first order) with respect to the physical prop- 
erties . 

Mb,, &, P, Q) = AM@_,, g,, P, Q) 

for all P, Q, h such that P + Q > 0, h > 0 (W 

Some of the above conditions (7a, 7b, 7c, 7e) have already been introduced 
- in a slightly different form - in a previous work (Korvin and Lux, 1971). 
Conditions (7a)-( 7h) are all contained in Korvin (1978), while condition 
(7i), stating the simple fact that the property of the composite is measured in 
the same physical units as those of the individual constituents, is new. In- 
terestingly, this apparently slight addendum to the set of conditions will 
have a crucial role in unambiguously fixing the functional form of M(g,, g,, 

P, Q). 
According to the theorem of Finetti, Kitagawa and Aczkl (Aczel, 1961) 

any function M(g,, g,, P, Q) satisfying the conditions l-7 (i.e., eqs. 7a-7i) 
can be described in the general form: 

2 = M(g,, g,, I’, Q) = f’ pf’gl;:;! 1 (8) 

i.e., by eq. 2 as: 

2 = f’ [@ f(g1) + (1 - @) f&2)1 

where f is some arbitrary, continuous, strictly monotone function (f is the so- 
called Kolmogorov-Nagumo function corresponding to the given mean 

M(g,, g,, P, &I). 
It should be noted that the Kolmogorov-Nagumo function f corresponding 

to M(g,, g,, P, Q) is only determined up to constant factors. If we introduce 
the notation: 

7?zf(gI, g2, Q’, l--9) = f 1 [@f(g1) + (l-@)f(g2)1 

we have the following theorem of Jessen (Hardy et al., 1934): 
In order that: 

(9) 

W&l, g2, @> 1-Q) =w* kl, g29 @, 1-J) 

for all g,, g2 and @e[O, 11 it is necessary and sufficient that: 

G=a@+b 

where a and b are constant and a # 0. 

(10) 

(11) 

We introduce a further notation: 
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M,(g,, g2, a., l-f@) =ixxt kl, g2, a, l-(a) = md + (1 -- wlll’t, 

g1, g2 > 0, t f 0 (12) 

MO (g1, g2, Q’, 1-a) = -8 d-@, g,, g2 > 0 (13) 

The following important characterization of the means M, is due to 
Nagumo, Finetti and Jessen (Finetti, 1931; Hardy et al., 1934). 

Suppose that G(x) is continuous in the open interval (0, -) and that: 

W,(hg1, AL?,, a’, 14) = ~~,bh, 672, @‘, 1-J 

for all positive A, g,, g, and for all a, @e [0, 11. 
Then: 

(14) 

rn,(g,, g2, Q’, I-@) = M&l, g2, a’, l-a,) 

for some real t. 

(15) 

The expression M,(g,, g,, Cp, 1-Q) is sometimes called the generalized 
weighted mean of t-th order of g, and g, (Beckenbach and Bellman, 1961). 

On strength of the above-stated three theorems the basic result of the 
present paper can be summarized as follows. 

If the expression M(g,, g,, P, Q) defining the effective physical parameter 
gof a two-phase composite satisfies the conditions l-8 (i.e. eqs. 7a-7i), 

P + Q > 0, g,, gz > 0, 
then M(g,, g,, P, Q) = M,(g,, g,, a., 1-Q) for some real t, i.e.: 

?= M(g,, g,, P, Q) = Hd + (1-Wdl 1/f (t f 0) 

or: z= g;” gi-’ 

In case of sound speeds in fluid-filled sedimentary rocks the above general 
rule contains, in particular, the following widely used velocity formulae: 
- for t = -2 approximate Wood equation (Watermann and Truell, 1961; 

Korvin, 1977,1978); 
- for t = -1 time-average equation (Wyllie et al., 1956); 
- for t = 0 “vugular carbonate” formula (of Meese and Walther, 1967); 
- for t = 1 average velocity formula (Berry, 1959). 

Tegland’s (1970) method of sand-shale ratio-determination also assumes 
a t = -1 time average equation, while Mateker’s (1971) effective attenuation 
factor in an alternating sequence of (thick) sand-shale layers is a linear 
(weighted) combination (i.e., t = 1) of the specific attenuations. In case of 
electric or thermal conductivities the meaning of the t = -1 and t = +l rules 
should be clear. It can be shown that the t = 0 rule, i.e.: 

l--Q, o=u;” u2 (16) 

is the limiting case for @ << 1 and u2/u1 = 1 of the well-known Maxwell 
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formula: 

;= 
2 u2 + u1 + 2 cp (u* - u1) 

2 u2 + u’1- @ (u.1 --(T*) 
(17) 

describing the case when a small fraction @ << 1 of a homogeneous medium 
of conductivity uZ is filled by small-sized, randomly distributed spheres of 
conductivity u1 (Maxwell, 1892; Grant and West, 1965). For the derivation 
of eq. (16) from eq. (17) see Beck (1976), Korvin (1978), Woodside and 
Messmer (1961). Another application of a t = 0 type law is due to Aleksan- 
drov and Aisenberg (1966) who express the effective elastic constants of 
composite materials as: 

logK= Z UilogKi 

1 

(ui = volume fractions) (13) 
logM= c UilogMj 

Another kind of mean value formula is given in Korvin (1978), where it is 
shown that the velocity-porosity dependence for the PAGE sandstone data 
of Meese and Walther (1967) can be approximated by a t = -0.65 rule. 

From the point of view of geophysical-physical applications the follow- 
ing property of the generalized mean M, could be important: 

If g, and g, are positive, Cp # 0, + # 1 and g, f g2 then M, (gl, g,, @, l*) 
is a strictly monotone function of t in (-, -). 

(The assertion easily follows from Jensen’s inequality, cf. Beckenbach and 
Bellman, 1961, 5 1.16.) 
For the above-quoted velocity rules, e.g., this theorem implies that: 

U Wood < VWyllie < UMeese-Walther < Vaverage 

Finally, a few particular cases will be pointed out where some of the condi- 
tions l-8 are violated so that no simple mixture rules of the form (3) or (4) 
could be expected. 

First, observe that reflexivity (7a), idempotency (7b, 7c) and bi-symmetry 
(7f) together imply interchangability or symmetry in the sense that: 

for P + Q > 0 M(&, g2, P, Q) = Mk?,, a, Q, 4 (19) 

Indeed, by applying in turn idempotency, bi-symmetry and then reflexiv- 
ity, we have: 

M(gz, glv Q, PI = M[M(g,, gz, 0, Q);W,, g,, P, 0); Q, PI = M[M(g,, g,, 0, P); 

M&z, gz, Q, 0); P, Ql = M&l, gz, P, Q) 

As an example that the roles of the two constituents cannot be always 
interchanged recall Maxwell’s rule (eq. 17) provided Q is not sufficiently 
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small or there is a substantial conductivity contrast. Another, generally non- 
symmetric, case is connected to the Takayanagi model of the elasticity of 
compounds (Takayanagi et al., 1965; Baresova, 1969), here, e.g. the Young 
modulus is expressed as: 

1 a _=-_. +22- 

E b E,+(l--b)E, Ez 
(20) 

(21) 

where ab = VI, the volume fraction of the first constituent, a and b give the 
relative amounts of the elements connected in series and parallel, respective- 
1Y. 

From among the conditions assuring the validity of the mixture rules (3)- 
(4), intemity (eq. 7e) deserves a special attention. It is well-known, that for 
high-porosity (@ > 0.6) marine sediments the velocity of sound waves might 
be less than that measured in water (Hamilton, 1956; Officer, 1958; Shum- 
way, 1960; Levin, 1962), so that any kind of mixture rules are necessarily of 
an approximate nature, restricted to low- and medium-porosity consolidated 
rocks. A more drastic violation of the internity condition (7e) is encountered 
in liquid-gas mixtures where, for example, sound speed is about 1440- 
1480 m s-’ in water and about 340 m s-’ in air, but in air-water mixtures it 
falls to about 20 m s-l, Since even very small concentrations of gas dramatical- 
ly reduce the sound speed, we have reason to suppose that M(g,, g,, @, l+), 
where <lit is gas ~oncen~ation, is a discontinuous function of cfr for @ + +0 
(McWilliams and Douglas, 1969; Kiefer, 1977). 

Another example for the violation of condition (7e) is provided by the 
absorption measurements at sufficiently low frequencies. While Tegland 
(1970) reports a linearly varying absorption factor for seismic wavelengths 
and sufficiently thick sand-shale sequences, the ultrasonic absorption in ag- 
gregates is generally higher than in any of the individual constituents (Shum- 
way, 1960; Bradley and Fort, 1966). 

A recent model experiment of Neumann and Schiel (1977) suggests an in- 
teresting counter-example where the homogeneity condition (7d) is not met. 
Their finding, that in highly heterogeneous materials the logarithmic ampli- 
tude fluctuation of the sound waves is not simply propo~ion~ to the path 
travelled, implies - due to the intimate relationship between the Nikolaev 
(1973) turbidity factor and the absorption coefficient, see Korvin (1972) 
- that in such materials the absorption coefficient possibly depends on 
specimen dimension, i.e. on the actual values of the volume fractions as well. 
I do not know of any cases in petrophysics where the scaling law (‘i’i) were 
not valid. 

In many cases the main reason that some of the conditions 1-8 are not met 
is that the effective property 2 of the composite cannot be expressed in terms 
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of the individual properties g,, g, and the volume fractions V1, V2 alone. An 
example for this has already been provided by the Takayanagi model of com- 

posite elasticity (eqs. 20, 21), as another simple example, recall the original 
form of Wood’s (1955) equation for the sound speed in two-component 
media: 

2 = ___~_ --__ 1 

c [@PI + (I--@)P21 [@K’ + (1-wG’l 
(22) 

where pi, Mi are the respective densities and compressibilities. 
Finally, it should be noted, that the value of t to be used for the computa- 

tion of the mean M, is not determined by the conditions l-8 (eqs. 7a-7i). 
In any actual case the appropriate t should be determined by computer 
search, as indicated in Korvin (1978). 

A notable exception is suggested by the following theorem (AC&~, 1961, 
5 5 3.1.3. and 5.3.1.): 
If we suppose that f(x) is a continuous, monotone function in (--, -) and 
the mean 

mfh gz, @, 1-Q) = f l [@f&1) + (I-@) f(&)l 

is translatable in the sense that 

312f(& + 7, gz + 7, a’, I-@,) =%f(g,, g2, @, 1-Q) + 3- 

for all real r, then 

f = x, or f = eyx (y # 0, y arbitrary real) 

apart from the constant factors (of eq. 11). 

(23) 

(24) 

This theorem implies that if we supplement the set of conditions by a 
further one: 
Cond. 9: translatability (“Verschiebbarkeit”) with respect to the physical 
properties : 

Wg, + 7, gz + 7, P, Q) = Wg,, g,, P, Q) + 7 Vh) 

there is one and only one mean satisfying all the conditions l-9 (i.e. eqs. 
7a-7h), viz.: 

M(g,, g,, P, Q) = Ml@,, g,, @P, I-+) = +‘g, + (l-@)gz (25) 
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