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the most popular solutions. While it is a fundamentally static concept, the consideration 
of a sequential extension of the underlying dominance correspondence gave rise to a 
selection of non-empty generalizations. Among these, the payoff-equivalence minimal 
dominant set and the myopic stable set are defined by a similar set of conditions. We 
identify some problems with the payoff-equivalence minimal dominant set and propose 
an appropriate reformulation called the minimal dominant set. We show that replacing 
asymptotic external stability by sequential weak dominance leaves the myopic stable set 
unaffected. The myopic stable set is therefore equivalent to the minimal dominant set.
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1. Introduction

The core is one of the most popular solution concepts in cooperative game theory. It introduces a coalitional notion of 
stability not unlike the Nash equilibrium: once such a proposal is made, it is not abandoned. The similarities go further: 
neither of these concepts tell us how such agreements are reached. Suppose the game starts with an arbitrary proposal: 
how to move from this proposal to an acceptable, equilibrium allocation?

To our knowledge Stearns (1968) was the first to look at this problem by considering a recontracting process where 
myopic deviations by coalitions are considered as improvements. Green (1974), Neuefeind (1974), and Wu (1977) present 
results that such improvements almost surely or approximately reach the core. The results of Arnold and Schwalbe (2002)
extend even to NTU-games. More recently, Roth and Vande Vate (1990), Diamantoudi et al. (2004), Klaus and Klijn (2007)
and Chen et al. (2016) show for matching markets and Sengupta and Sengupta (1994, 1996), Kóczy and Lauwers (2004), 
and Kóczy (2006) show for coalitional games that the core can actually be reached. The latter results prove the existence of 
an upper bound on the number of steps needed. This bound has since been drastically lowered (Yang, 2010, 2011; Béal et 
al., 2012, 2013a,b).
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It is natural to ask where do these coalitional improvements lead in case the core is (possibly) empty. Sengupta and 
Sengupta (1994) define the set of viable proposals, Kóczy and Lauwers (2007) the payoff-equivalence minimal dominant set1

and most recently Demuynck et al. (2019) the myopic stable set. All these concepts rely on notions of sequential dominance 
and belong to the family of stochastic solutions (Packel, 1981) with appropriate restrictions on the permitted transitions.

We identify a problem in the definition of the payoff-equivalence minimal dominant set; under the current definition 
Theorem 4 of Kóczy and Lauwers (2007) does not hold. The problem is caused by the incorporation of payoff-equivalent 
outcomes in the dominance correspondence. We argue that payoff equivalence should be dropped, which leads to the notion 
of the minimal dominant set. We go on to show that the minimal dominant set and the myopic stable set are equivalent, 
where for the latter concept it does not matter whether strict or weak dominance is used in the definition. It then follows 
from Yang (2020) that both concepts are included in the set of viable proposals.

Accordingly, the structure of the paper is as follows. First, we introduce the basic terminology and notation together 
with both the payoff-equivalent minimal dominant set and the minimal dominant set. Then we introduce the myopic stable 
set and its variant based on weak dominance called the weak dominance myopic stable set. We present our main result 
showing the equivalence of the minimal dominant set, the myopic stable set, and the weak dominance myopic stable set. 
Finally, for the class of proper simple games, we present a general result of payoff equivalence of the payoff-equivalent 
minimal dominant set, the minimal dominant set, and the myopic stable set.

2. The payoff-equivalence minimal dominant set

A characteristic function form game is defined by a pair (N, v), where N is a set of players with cardinality n and a 
characteristic function v : 2N → R that assigns to each coalition C ⊆ N a number v(C) ∈ R, called the worth of C , with the 
usual convention that v(∅) = 0. The collection of non-empty coalitions is denoted by N . A coalition structure is a partition 
P = {C1, . . . , Cm} of N . It describes how the grand coalition is divided into non-overlapping subcoalitions. The collection of 
all coalition structures, that is, the collection of partitions of N , is denoted by �. For a coalition C ∈ N , let 〈C〉 denote the 
partition into singleton coalitions. Formally, we have that 〈C〉 = {{i} | i ∈ C}.

For a coalition structure P ∈ � and a coalition D ∈ N , the partners’ set P (D, P) of D in P is the union of those coalitions 
in P that have a non-empty intersection with D , the residual players R(D, P) are the players in the partners’ set outside D
and the outsiders O (D, P) are all the players outside the partners’ set, so more formally we have

P (D,P) =
⋃

C∈P, C∩D 
=∅
C, (2.1a)

R(D,P) = P (D,P) \ D, (2.1b)

O (D,P) = N \ P (D,P). (2.1c)

The collection of coalitions to which the outsiders belong is given by

O(D,P) = {O ∈ P | O ∩ D = ∅}.
For coalition function form games, we define the set of outcomes X as the set of coalition structures � together with all 
individually rational payoff vectors that can be obtained by allocating the worths among the members of the respective 
coalitions:

X =
{

(P, u) ∈ � ×RN | ∀i ∈ N, ui ≥ v({i}) and, ∀C ∈ P,
∑
i∈C

ui = v(C)

}
.

Given an outcome x ∈ X , we denote by P(x) the projection to its first component, that is, the coalition structure, and by 
u(x) the projection to its second component, that is, the payoff vector. We can thus write x = (P(x), u(x)). The set X is 
non-empty since it always contains the outcome x where N is partitioned into singletons, so P(x) = 〈N〉, and each player 
i ∈ N receives the payoff v({i}).

Kóczy and Lauwers (2007) define the notion of outsider-independent dominance, to which we will refer as weak domi-
nance in this paper.

Definition 2.1. An outcome y ∈ X weakly dominates an outcome x ∈ X by deviating coalition D if

• P(y) = {D} ∪ 〈R(D, P(x))〉 ∪O(D, P(x)),

and

1 Kóczy and Lauwers (2007) use the terminology minimal dominant set, but following the later literature we reserve this term for a different concept.
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• for every i ∈ D , ui(y) ≥ ui(x) and there exists i ∈ D such that ui(y) > ui(x),
• for every i ∈ O (D, P(x)), ui(y) = ui(x).

After a coalition D deviates, the residual players fall apart into singletons, whereas the outsiders stay in their original 
coalitions. Utilities of outsiders are not affected, whereas the utilities of the deviating players all weakly improve and at 
least one deviating player strictly improves. Since y ∈ X , it follows from Definition 2.1 that 

∑
i∈D ui(y) = v(D) and, for 

every i ∈ R(D, P(x)), ui(y) = v({i}). The treatment of residual players corresponds to the γ -model of Hart and Kurz (1983). 
The property that outsiders are not affected by a coalitional deviation is also referred to as coalitional sovereignty in Konishi 
and Ray (2003), Ray and Vohra (2014, 2015), and Herings et al. (2017).

One of the most prominent set-valued solution concepts for coalition function form games is the coalition structure core 
as defined in Aumann and Drèze (1974).

Definition 2.2. The coalition structure core (CSC) of (N, v) is the set of outcomes x ∈ X such that, for every coalition C ∈N ,∑
i∈C

ui(x) ≥ v(C).

In words, the coalition structure core gives to the members of each coalition at least the payoff they can obtain by forming 
that coalition. It is easy to provide examples where the coalition structure core is empty.

Let some outcome x ∈ X be given. The set of all outcomes that weakly dominate x together with outcome x itself is 
denoted by g(x), so

g(x) = {x} ∪ {y ∈ X | there is D ∈ N such that y weakly dominates x by D}.
We define the two-fold composition of g by g2(x) = {z ∈ X | ∃y ∈ g(x) such that z ∈ g(y)}. By induction, we define the k-
fold iteration gk(x) as the subset of X that contains all outcomes obtained by a composition of dominance correspondences 
of length k ∈ N, that is, gk(x) = {z ∈ X | ∃y ∈ gk−1(x) such that z ∈ g(y)}. Observe that for every k, � ∈ N if k ≤ �, then 
gk(x) ⊆ g�(x). We define the set of all outcomes that can be reached from x by a finite number of dominations by gN(x), 
so

gN(x) = ⋃
k∈Ngk(x).

The outcomes x, y ∈ X are payoff equivalent if u(x) = u(y). The notion of payoff equivalence partitions the set of outcomes 
into equivalence classes. We denote the equivalence class containing x by [x]. Kóczy and Lauwers (2007) say that the 
outcome y ∈ X is accessible from the outcome x ∈ X if y ∈ gN(x) or y is payoff equivalent to x. The set of outcomes that 
are accessible from x in the sense of Kóczy and Lauwers (2007) can therefore be written as

g̃N(x) = gN(x) ∪ [x].
The correspondence g̃N may fail to be transitive. As we are considering outcomes accessible from accessible outcomes it is 
natural to consider its transitive version:

g̃(x) = g(x) ∪ [x].
We define its two-fold composition by g̃2(x) = {z ∈ X | ∃y ∈ g̃(x) such that z ∈ g̃(y)}. By induction, we define the k-fold 
iteration g̃k(x) as the subset of X that contains all outcomes obtained by a composition of dominance correspondences 
of length k ∈ N, that is, g̃k(x) = {z ∈ X | ∃y ∈ g̃k−1(x) such that z ∈ g̃(y)}. Observe that for every k, � ∈ N if k ≤ �, then 
g̃k(x) ⊆ g̃�(x). We define the set of all outcomes that can be reached from x by a finite number of dominations and payoff 
equivalences by g̃N(x), so

g̃N(x) = ⋃
k∈N g̃k(x).

It is easily seen that

g̃N(x) ⊇ g̃N(x) = gN(x) ∪ [x].
In this paper, we say that the outcome y ∈ X is accessible from the outcome x ∈ X if y ∈ g̃N(x).

Definition 2.3. Let (N, v) be a coalition function form game. The set �̃ ⊆ X is a payoff-equivalence minimal dominant set 
(PEMDS) if it satisfies the following three conditions:

1. Closure: For every x ∈ �̃, g̃N(x) ⊆ �̃.
2. Accessibility: For every x /∈ �̃, g̃N(x) ∩ �̃ 
= ∅.
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3. Minimality: There is no set �̃′ � �̃ that satisfies Conditions 1 and 2.

We argue next that multiple payoff-equivalence minimal dominant sets cannot co-exist. The argument relies heavily on 
the transitivity of g̃N .

Theorem 2.4. A coalition function form game (N, v) can have at most one PEMDS.

Proof. Let �̃1 and �̃2 both be a PEMDS of (N, v). We argue that �̃1 ∩ �̃2 satisfies Closure and Accessibility, which by 
Minimality implies that �̃1 = �̃2. Notice that Accessibility of �̃1 ∩ �̃2 implies that �̃1 ∩ �̃2 
= ∅.

To show Closure for �̃1 ∩ �̃2, let x ∈ �̃1 ∩ �̃2 and y ∈ g̃N(x). Then given that x ∈ �̃1 and �̃1 satisfies Closure, it must be 
that y ∈ �̃1. Also given that x ∈ �̃2 and �̃2 satisfies Closure, it must be that y ∈ �̃2. This implies that y ∈ �̃1 ∩ �̃2 as was 
to be shown.

For Accessibility, take any x /∈ �̃1 ∩ �̃2. There are three cases to consider.
Case 1. x ∈ �̃1 \ �̃2. Then, by Accessibility of �̃2, there is y ∈ �̃2 such that y ∈ g̃N(x). By Closure of �̃1, we have that 

y ∈ �̃1. This means that y ∈ �̃1 ∩ �̃2, which is what we needed to show.
Case 2. x ∈ �̃2 \ �̃1. The proof is symmetric to Case 1 with �̃1 and �̃2 interchanged.
Case 3. x ∈ X \ (�̃1 ∪ �̃2). We know, by Accessibility of �̃1, that there is y ∈ �̃1 such that y ∈ gN(x). If y ∈ �̃2, we are 

done. If not, then we know from Case 1 that there is z ∈ �̃1 ∩ �̃2 such that z ∈ g̃N(y). It follows from transitivity of g̃N

that z ∈ g̃N(x). �
Kóczy and Lauwers (2007) also assert existence of a PEMDS for a coalition function form game (N, v). Unfortunately, 

Kóczy and Lauwers (2007) do not use Accessibility consistently, for most of the paper the correspondence gN is used 
interchangeably with g̃N . Most notably Theorem 4 of Kóczy and Lauwers (2007) is false. The problematic assertion is that 
there exists a natural number τ ∈ N such that for all outcomes x, y ∈ X we have that y ∈ g̃N(x) if and only if y ∈ gτ (x).

The following is a counterexample.

Example 2.5. Consider a game with N = {1,2} and v(C) = |C | for all C ⊆ N and the outcome x where P(x) = {N} and 
u(x) = (1, 1). This is an element of the coalition structure core CSC and therefore g(x) = gN(x) = {x}. On the other hand the 
outcome y where P(y) = 〈N〉 and u(y) = u(x) is payoff equivalent to x and is therefore, by definition, accessible. Contrary 
to the assertion of the aforementioned Theorem, we have that y ∈ g̃N(x) ⊆ g̃N(x), whereas y /∈ gN(x).

3. The minimal dominant set

It is clear that payoff equivalence causes problems, while it turns out that it is completely superfluous and can be 
eliminated. In this section we drop pay-off equivalence from the dominance correspondence. Other papers in the literature 
studying the payoff-equivalence minimal dominant set have done so as well, see for instance Yang (2011, 2020). This makes 
also sense from a conceptual point of view. For a new coalition to form, at least one of the coalition members should 
improve, which is not the case under payoff equivalence.

Definition 3.1. Let (N, v) be a coalition function form game. The set � ⊆ X is a minimal dominant set (MDS) if it satisfies the 
following three conditions:

1. Closure: For every x ∈ �, gN(x) ⊆ �.
2. Sequential weak dominance: For every x /∈ �, gN(x) ∩ � 
= ∅.
3. Minimality: There is no set �′ �� that satisfies Conditions 1 and 2.

Definition 3.1 is obtained from Definition 2.3 by replacing the correspondence g̃N by gN . The only difference between 
these correspondences is the absence of payoff equivalence in the latter, so for every x ∈ X it holds that gN(x) ⊆ g̃N(x).

The proof of Theorem 4 of Kóczy and Lauwers (2007) relies on a construction where the set of outcomes is partitioned 
into similarity classes. Similarity classes are closed and convex sets of outcomes determined by the coalitional deviations 
they are subject to. Notably, two distinct payoff-equivalent outcomes belong to different similarity classes and their pay-
off equivalence is not taken into account at all. As a result, if we replace Accessibility with Sequential weak dominance, 
Theorem 4 of Kóczy and Lauwers (2007) holds.

Theorem 3.2. Let (N, v) be a game. Then there exists a natural number τ ∈ N such that for all outcomes x, y ∈ X we have that 
y ∈ gN(x) if and only if y ∈ gτ (x).

While this result presents no explicit bounds, Yang (2011) shows that elements of the MDS can be reached in a number 
of steps that is quadratic in n.

Next, we can proceed as in Kóczy and Lauwers (2007) to show the following result.
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Theorem 3.3. A coalition function form game (N, v) has a unique MDS. If the coalition structure core of the game is non-empty, then 
it is equal to the MDS.

It follows from a counterexample in Bhattacharya and Ziad (2006) that Theorem 3.3 cannot be extended to the non-
transferable utility case; Kóczy (2018, p. 99) conjectures the same for partition function form games.

What is the effect of the removal of payoff equivalence on the solution concept? Note that for a generic coalition function 
form game (N, v), if P, Q ∈ � are different partitions of N , so P 
=Q, then 

∑
C∈P v(C) 
= ∑

C∈Q v(C).

Theorem 3.4. Let (N, v) be a coalition function form game such that, for every P, Q ∈ � such that P 
= Q, 
∑

C∈P v(C) 
=∑
C∈Q v(C). Then � is an MDS of (N, v) if and only if it is a PEMDS of (N, v).

Proof. The assumption of Theorem 3.4 implies that payoff equivalences cannot occur. Therefore, it holds that gN = g̃N . �
Theorem 3.4 establishes that for generic coalition function form games, the PEMDS coincides with the MDS.
Apart from the generic case where multiple partitions with the same total payoff do not exist, there is another interesting 

class of coalition function form games where the predictions of PEMDS and MDS coincide, that is, coalition function form 
games with a non-empty coalition structure core.

Theorem 3.5. Let (N, v) be a coalition function form game with a non-empty coalition structure core. Then the PEMDS of (N, v) is 
equal to the coalition structure core.

Proof. We argue first that any element of the coalition structure core belongs to a PEMDS. Assume that �̃ is a PEMDS. 
Let x ∈ CSC. It holds that gN(x) = {x}. For every y ∈ [x], it holds that y belongs to CSC, so gN(y) = {y} and therefore 
g̃N(x) = [x].

Suppose x /∈ �̃. Then, we have g̃N(x) ∩ �̃ = [x] ∩ �̃ 
= ∅. Closure of �̃ now implies [x] ⊆ �̃, contradicting x /∈ �̃. Conse-
quently, it holds that x ∈ �̃.

We argue that CSC satisfies Closure and Accessibility, which by Minimality implies that �̃ = CSC. We already showed 
that for every x ∈ CSC we have g̃N(x) = [x]. This shows Closure.

By Theorem 3.3, it holds that the MDS of (N, v) is equal to CSC, so CSC satisfies Sequential weak dominance and 
therefore Accessibility. �

It follows from Theorems 3.3 and 3.5 that the MDS and the PEMDS coincide for coalition function form games with a 
non-empty coalition structure core.

We now present an example where the MDS is a proper subset of the PEMDS.

Example 3.6. Let (N, v) be the three-player simple majority game, so N = {1, 2, 3} and v({1, 2}) = v({1, 3}) = v({2, 3}) =
v(N) = 1, whereas the worth of any other coalition is equal to zero. It holds that CSC = ∅. Let M = {{1, 2}, {1, 3}, {2, 3}} be 
the set of minimal winning coalitions. Consider the set F ⊆ X defined by

F = {x ∈ X | P(x) ∩M 
= ∅},
so in payoff terms the set F is given by the facets of the unit simplex. It is easily verified that F satisfies Closure with 
respect to gN and Accessibility. Moreover, for every x ∈ F , it holds that gN(x) = F , so there is no proper subset of F that 
satisfies Closure with respect to gN and Accessibility. It follows that the MDS of (N, v) is equal to F . The prediction of the 
MDS is that a minimal winning coalition forms and one player becomes a singleton. It is excluded that the grand coalition 
forms.

The set F is not a PEMDS, since outcomes which are payoff equivalent to outcomes in F may not belong to F themselves. 
For instance, for every x ∈ F it holds that y ∈ X defined by P(y) = {N} and u(y) = u(x) is payoff equivalent to x, but is not 
part of F . We define the set F̃ ⊆ X by

F̃ = F ∪ {x ∈ X | P(x) = {N} and there exists i ∈ N such that ui(x) = 0}
= {x ∈ X | P(x) ∩ (M∪ {N}) 
= ∅ and there exists i ∈ N such that ui(x) = 0}.

It is easily verified that the PEMDS of (N, v) is given by F̃ .

Example 3.6 presents an example where the PEMDS is different from the MDS, but the same when projected to the space 
of payoffs. This turns out to be a general feature of so-called proper simple games as we will formally state in Theorem 6.1. 
It is natural to ask if the property holds in general: should we ignore partitions and focus on the payoff vectors only, do we 
have equivalence? The next example answers this question in the negative.
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Fig. 1. An illustration of Example 3.7. Arrows indicate weak dominances, dashed lines payoff equivalence. Not all weak dominances are displayed.

Example 3.7. Consider the following 5-player example. Coalitions {1,2} , {1,3}, and {2,3} have a worth of 1; so does coalition 
{4,5}. The grand coalition {1,2,3,4,5} has a worth of 2.

The MDS equals the union of the facets of the simplex on players {1,2,3}, with one of the two-player subsets forming 
as a coalition, plus an arbitrary payoff division of the worth of 1 of coalition {4,5}. The grand coalition does not have a 
profitable deviation from this, so is not part of the MDS. On the other hand, it is part of a PEMDS �̃ by payoff equivalence. 
Now at least one of the coalitions {1,2} , {1,3}, or {2,3} can deviate, and players 4 and 5 become singletons. Now the 
grand coalition can deviate with a payoff vector different from any payoff vector in the MDS. One can show that the PEMDS 
contains much more of the outcomes although not all – with one trivial example indicated in Fig. 1.

4. The myopic stable set

Demuynck et al. (2019) introduce the solution concept of the myopic stable set for general social environments. They 
then use the concept to study specific social environments coming from applications like coalition function form games, 
matching models, networks, and non-cooperative games. We now explain how the solution concept is defined when applied 
to coalition function form games.

Definition 4.1. An outcome y ∈ X dominates an outcome x ∈ X by deviating coalition D if

• P(y) = {D} ∪ 〈R(D, P(x))〉 ∪O(D, P(x)),

and

• for every i ∈ D , ui(y) > ui(x),
• for every i ∈ O (D, P(x)), ui(y) = ui(x).

The only difference between Definitions 2.1 and 4.1 is that the condition that at least one member of the deviating 
coalition strictly improves has been replaced by the requirement that all members of the deviating coalition strictly improve.

Let some outcome x ∈ X be given. The subset of X consisting of all outcomes that dominate x together with outcome x
itself is denoted by f (x), so

f (x) = {x} ∪ {y ∈ X | there is D ∈ N such that y dominates x by D}.
As before, we define the two-fold composition of f by f 2(x) = {z ∈ X |∃y ∈ f (x) such that z ∈ f (y)}. By induction, we 
define the k-fold iteration f k(x) as the subset of X that contains all outcomes obtained by a composition of dominance 
correspondences of length k ∈ N, that is, f k(x) = {z ∈ X |∃y ∈ f k−1(x) such that z ∈ f (y)}. Observe that for every k, � ∈ N if 
k ≤ �, then f k(x) ⊆ f �(x). We define the set of all outcomes that can be reached from x by a finite number of dominations 
by f N(x), so f N(x) = ⋃

k∈N f k(x).
An outcome y is said to asymptotically dominate the outcome x if starting from x, it is possible to get arbitrarily close to 

y in a finite number of dominations. We define the metric d on X by setting for every x, y ∈ X ,

d(x, y) = 1{P(x) 
=P(y)} + ‖u(x) − u(y)‖∞,

where 1 is the indicator function and ‖ · ‖∞ is the infinity norm.
Notice that payoff-equivalent outcomes with different underlying partitions are not near due to the first term of the 

metric.
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Definition 4.2. An outcome y ∈ X asymptotically dominates an outcome x ∈ X if for every ε > 0 there exists a number k ∈ N

and an outcome z ∈ f k(x) such that d(y, z) < ε.

We denote by f ∞(x) the set of all outcomes in X that asymptotically dominate x. Formally, we have

f ∞(x) = {y ∈ X |∀ε > 0, ∃k ∈N, ∃z ∈ f k(x) : d(y, z) < ε}.
It is easy to see that the set f ∞(x) coincides with the closure of the set f N(x).

We are now ready to define the myopic stable set, abbreviated as MSS.

Definition 4.3. Let (N, v) be a coalition function form game. The set M ⊆ X is a myopic stable set (MSS) if it is closed and 
satisfies the following three conditions:

1. Deterrence of external deviations: For every x ∈ M , f (x) ⊆ M .
2. Asymptotic external stability: For every x /∈ M , f ∞(x) ∩ M 
= ∅.
3. Minimality: There is no closed set M ′ � M that satisfies Conditions 1 and 2.

Let M be an MSS. Deterrence of external deviations requires that no coalition can profitably deviate to an outcome 
outside M . Asymptotic external stability requires that any outcome outside M is asymptotically dominated by an outcome 
in M . Hence, from any outcome outside of M it is possible to get arbitrary close to an outcome in M by a finite number of 
dominations. Observe that an empty set would necessarily violate external stability, so any MSS is non-empty. Minimality 
imposes that there is no smaller closed set of outcomes that satisfies Deterrence of external deviations and Asymptotic 
external stability.

Apart from the use of the dominance correspondence instead of the weak dominance correspondence, there are three 
differences between the MSS and the MDS. The requirement of Closure for MDS has been replaced by Deterrence of external 
deviations in MSS. Since “for every x ∈ M , f (x) ⊆ M” implies “for every x ∈ M , f N(x) ⊆ M ,” this difference reduces to the 
use of the dominance correspondence instead of the weak dominance correspondence. The second difference is that the 
requirement of Sequential weak dominance in MDS is based on the finitely iterated dominance correspondence, whereas 
Asymptotic external stability in MSS is based on the asymptotic dominance correspondence. Finally, the MSS is a closed set 
by definition.

Demuynck et al. (2019) show the following result.

Theorem 4.4. A coalition function form game (N, v) has a unique MSS. If the coalition structure core of the game is non-empty, then 
it is equal to the MSS.

As a consequence of Theorems 3.3, 3.5, and 4.4, we conclude that the MDS, the PEMDS, and the MSS coincide whenever 
CSC 
= ∅. Example 3.6 shows that in general MDS and PEMDS are not the same. We next argue that in Example 3.6, the MSS 
coincides with the MDS.

Example 4.5. As in Example 3.6, let (N, v) be the three-player simple majority game, so N = {1, 2, 3} and v({1, 2}) =
v({1, 3}) = v({2, 3}) = v(N) = 1, whereas the worth of any other coalition is equal to zero. Recall that M = {{1, 2}, {1, 3},
{2, 3}} is the set of minimal winning coalitions. It follows from Theorem 4.5 in Demuynck et al. (2019) that the MSS is equal 
to the set

F = {x ∈ X | P(x) ∩M 
= ∅},
so the MSS coincides with the MDS.

The equivalence of the MSS and the MDS holds in general; this is the topic of the next section.

5. Equivalence

Before showing the relation between the MSS and MDS, we first introduce another concept, the weak dominance MSS, 
which results from replacing the dominance correspondence in the MSS by the weak dominance correspondence.

Definition 5.1. Let (N, v) be a coalition function form game. The set W ⊆ X is a weak dominance myopic stable set (weak 
dominance MSS) if it is closed and satisfies the following three conditions:

1. Deterrence of weak external deviations: For every x ∈ W , g(x) ⊆ W .
2. Asymptotic weak external stability: For every x /∈ W , g∞(x) ∩ W 
= ∅.
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3. Minimality: There is no closed set W ′ � W that satisfies Conditions 1 and 2.

The weak dominance MSS has also been studied in Demuynck et al. (2019) and it is explained there how most results 
established for the MSS carry over to the weak dominance MSS for general social environments.

We show next that the concepts of MSS and weak dominance MSS are equivalent when applied to coalition function 
form games.

To do so, we need two lemmas first. The first one makes clear that Asymptotic external stability, Asymptotic weak 
external stability, and Sequential weak dominance are equivalent.

Lemma 5.2. Let (N, v) be a coalition function form game. For every x ∈ X it holds that f ∞(x) = g∞(x) = gN(x).

Proof. Let x ∈ X .
Lemma 9 in Kóczy and Lauwers (2007) states that gN(x) is a closed set, so g∞(x) = gN(x).
Since f (x) ⊆ g(x), it follows immediately that f ∞(x) ⊆ g∞(x) = gN(x).
To show the reverse inclusion, let some y ∈ gN(x) and ε > 0 be given. We have to show that there exists � ∈ N and 

z ∈ f �(x) such that d(y, z) < ε.
Since y ∈ gN(x) there exists a sequence of outcomes (x0, . . . , x�) such that x0 = x, for every k = 1, . . . , �, xk ∈ g(xk−1), and 

x� = y. For k = 1, . . . , �, let Dk be the deviating coalition that changes the outcome from xk−1 to xk and Pk = P (Dk, P(xk−1))

be the partners’ set of Dk in P(xk−1). We also define Rk = Pk \ Dk and O k = N \ Pk as the set of residual players and 
outsiders, respectively. We have that

ui(xk) = v({i}), i ∈ Rk,

ui(xk) = ui(xk−1), i ∈ O k.

We define W k ⊂ Dk to be the, possibly empty, proper subset of Dk consisting of players that only weakly improve when 
moving from outcome xk−1 to outcome xk , so for every i ∈ W k it holds that ui(xk−1) = ui(xk). We define

δ = min
k∈{1,...,�}

min
i∈Dk\W k

ui(xk) − ui(xk−1),

ε′ = min{δ, ε},
so δ is the smallest improvement of any of the strictly improving players involved in any move along the sequence. It holds 
that δ > 0 and therefore that ε′ > 0. For k ∈ {0, . . . , �}, define

νk = n2k

n2�+1
.

We define e(W k) = 0 if W k = ∅ and e(W k) = 1 otherwise. We use the sequence (x0, x1, . . . , x�) of outcomes to define a 
new sequence (̃x0, ̃x1, . . . , ̃x�) of outcomes by setting ̃x0 = x0 and, for every k ∈ {1, . . . , �},

P (̃xk) = P(xk),

ui (̃xk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ui(xk) + ε′νk

|Dk\W k|
|W k| , i ∈ W k,

ui(xk) − ε′νke(W k), i ∈ Dk \ W k,

ui(xk) = v({i}), i ∈ Rk,

ui (̃xk−1), i ∈ O k.

Some of these definitions need some explanation. Notice first that the first line does not entail a division by zero, since if 
i ∈ W k , then W k 
= ∅. The payoff for the outsiders in O k is the only one that directly depends on x̃k−1 since that payoff 
cannot be modified by the deviation. It is also different from ui(xk−1) as it may have been modified by previous deviations, 
when, for example, i ∈ W k−1 ∩ O k .

Compared to the sequence (x0, x1, . . . , x�), the sequence (̃x0, ̃x1, . . . , ̃x�) is such that each strictly improving player in 
Dk \ W k donates an amount ε′νk/|W k| to each of the players in W k whenever the latter set is non-empty. It is also 
important to observe that the fraction νk is an n2 multiple of νk−1 and that ν� = 1/n.

We show first by induction that, for every k ∈ {0, . . . , �}, x̃k ∈ X . Obviously, it holds that x̃0 = x0 ∈ X . Assume that, for 
some k ∈ {1, . . . , �}, ̃xk−1 ∈ X . We show that ̃xk ∈ X . It holds that

ui (̃xk) > ui(xk) ≥ v({i}), i ∈ W k,

ui (̃xk) ≥ ui(xk−1) + δ − ε′νk > ui(xk−1) + δ − ε′ ≥ ui(xk−1) ≥ v({i}), i ∈ Dk \ W k,

ui (̃xk) = v({i}), i ∈ Rk,

ui (̃xk) = ui (̃xk−1) ≥ v({i}), i ∈ O k,
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where the very last inequality follows from the induction hypothesis. Moreover, for every C ∈ P(xk), it holds that either 
C = Dk and W k = ∅, so∑

i∈C

ui (̃xk) =
∑
i∈Dk

ui(xk) = v(C),

or C = Dk and W k 
= ∅, so

∑
i∈C

ui (̃xk) =
∑

i∈W k

(
ui(xk) + ε′νk

|Dk \ W k|
|W k|

)
+

∑
i∈Dk\W k

(
ui(xk) − ε′νk

)
=

∑
i∈Dk

ui(xk) = v(C),

or C = {i′} with i′ ∈ Rk and∑
i∈C

ui (̃xk) = ui′ (̃xk) = ui′(xk) = v({i′}) = v(C),

or C ⊆ O k , so C ∈P (̃xk−1), and∑
i∈C

ui (̃xk) =
∑
i∈C

ui (̃xk−1) = v(C),

where the last equality makes use of the induction hypothesis. We have now completed the proof of the fact that for every 
k ∈ {0, . . . , �}, ̃xk ∈ X .

We show next by induction that, for every k ∈ {0, . . . , �}, for every i ∈ N ,

|ui (̃xk) − ui(xk)| ≤ ε′νk(n − 1).

Obviously, for every i ∈ N , it holds that |ui (̃x0) − ui(x0)| = 0 ≤ ε′ν0(n − 1). Assume that, for some k ∈ {1, . . . , �}, for every 
i ∈ N , |ui (̃xk−1) − ui(xk−1)| ≤ ε′νk−1(n − 1). We show that, for every i ∈ N , |ui (̃xk) − ui(xk)| ≤ ε′νk(n − 1). If i ∈ W k , then 
W k 
= ∅, and the statement follows from the observation that

0 ≤ ui (̃xk) − ui(xk) = ε′νk
|Dk\W k|

|W k| ≤ ε′νk(n − 1).

If i ∈ Dk \ W k , then we have that

0 ≥ ui (̃xk) − ui(xk) ≥ −ε′νk ≥ −ε′νk(n − 1).

If i ∈ Rk , then |ui (̃xk) − ui(xk)| = 0. If i ∈ O k , then it holds that

|ui (̃xk) − ui(xk)| = |ui (̃xk−1) − ui(xk−1)| ≤ ε′νk−1(n − 1) < ε′νk(n − 1),

where the first inequality makes use of the induction hypothesis and the last inequality of the fact that νk−1 < νk .
Let some k ∈ {1, . . . , �} and some i ∈ Dk be given. We show that ui (̃xk) > ui (̃xk−1). If i ∈ W k , then it holds that

ui (̃xk) = ui(xk) + ε′νk
|Dk \ W k|

|W k|
= ui(xk−1) + ε′νk

|Dk \ W k|
|W k|

≥ ui (̃xk−1) − ε′νk−1(n − 1) + ε′νk
1

n − 1

> ui (̃xk−1),

where the strict inequality uses that νk = n2νk−1. If i ∈ Dk \ W k , then it holds that

ui (̃xk) ≥ ui(xk) − ε′νk

≥ ui(xk−1) + δ − ε′νk

≥ ui (̃xk−1) − ε′νk−1(n − 1) + δ − ε′n2νk−1

> ui (̃xk−1),

where the strict inequality uses the facts that δ ≥ ε′ and
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(n2 + (n − 1))νk−1 < 2n2νk−1 ≤ 2νk ≤ 1.

Combining the statements proven so far, it follows that ̃x� ∈ f �(x0).
The proof is completed by observing that d(̃x�, x�) < ε since P (̃x�) =P(x�) and, for every i ∈ N ,

|ui (̃x�) − ui(x�)| ≤ ε′ν�(n − 1) < ε′ ≤ ε. �
In the proof of Theorem 4.4 in Demuynck et al. (2019) it has been shown that any element in CSC belonging to gN(x) is 

contained in f ∞(x). The same proof technique is used in the proof of Lemma 4.2 to extend this result and show that this 
does not only apply to coalition structure core elements, but holds in general.

Example A.6 of the online supplement of Demuynck et al. (2019) considers a coalition function form game such that 
N = {1, 2, 3}, v({1, 2}) = 1, and v({2, 3}) = 1. All other coalitions have a worth of 0. Thus, player 2 can choose between 
player 1 and player 3 to form a two-person coalition generating a surplus equal to one. It holds that CSC consists of 
only two states, y and y′ , with equal payoffs, u(y) = u(y′) = (0, 1, 0), and coalitional structures P(y) = {{1, 2}, {3}} and 
P(y′) = {{1}, {2, 3}}.

Consider an initial state x0 ∈ X such that P(x0) = {{1}, {2}, {3}} and u(x0) = (0, 0, 0). It can be shown that any element 
x1 of f N(x0) is such that either P(x1) = {{1, 2}, {3}} and u(x1) = (ε, 1 − ε, 0) for some ε ∈ (0, 1) or P(x1) = {{1}, {2, 3}}
and u(x1) = (0, 1 − ε, ε) for some ε ∈ (0, 1). In particular, it holds that f N(x0) does not contain an element of CSC. On 
the contrary, it is immediately verified that both coalition structure core elements belong to g(x0). It therefore holds that 
f N(x0) is not closed. The example shows that f N(x0) is a proper subset of gN(x0). It is therefore impossible to extend 
Lemma 5.2 and obtain an equivalence with f N(x) as well.

Theorem 5.3. A coalition function form game (N, v) has a unique weak dominance MSS. It coincides with the MSS.

Proof. Let Y ⊆ X be any closed set of outcomes that satisfies Deterrence of external deviations and Asymptotic external 
stability. We show that it satisfies Deterrence of weak external deviations and Asymptotic weak external stability. The latter 
property follows immediately from Lemma 5.2.

Suppose there is y ∈ Y such that g(y) \ Y 
= ∅. Let z ∈ g(y) \ Y and D ∈ N be such that z weakly dominates y by D . Let 
j ∈ D be such that u j(z) > u j(y). If ui(z) > ui(y) for every i ∈ D , then z ∈ f (y) \ Y , contradicting that Y satisfies Deterrence 
of external deviations. It follows that there is at least one i ∈ D such that ui(z) = ui(y).

Since Y is closed and z /∈ Y , there is ε > 0 such that, for every y ∈ Y , d(y, z) > ε. Moreover, ε can be taken sufficiently 
small to satisfy ε < z j − y j . We define ̃z ∈ X by

z̃ j = z j − ε,

z̃i = zi + ε/(|D| − 1), i ∈ D \ { j},
z̃i = zi, i ∈ N \ D.

It is easily verified that z̃ ∈ f (y). Since d(z, ̃z) = ε, it holds that z̃ /∈ Y . We have obtained a contradiction with the fact 
that Y satisfies Deterrence of external deviations. Consequently, it holds for every y ∈ Y that g(y) ⊆ Y , that is Y satisfies 
Deterrence of weak external deviations.

Since any closed set of outcomes that satisfies Deterrence of external deviations and Asymptotic external stability also 
satisfies Deterrence of weak external deviations and Asymptotic weak external stability, we have that the weak dominance 
MSS coincides with the MSS and is therefore unique by Theorem 4.4. �

After having shown the equivalence of the MSS and the weak dominance MSS, we turn to the relationship between the 
MSS and the MDS.

Theorem 5.4. The MSS and the MDS of a coalition function form game (N, v) coincide.

Proof. We show that the three conditions of Definitions 3.1 and 5.1 are equivalent and that the MDS is a closed set, after 
which the result follows from Theorem 5.3.

Consider some set Y ⊆ X . The statement “for every x ∈ Y , g(x) ⊆ Y ” implies the statement “for every x ∈ Y , gN(x) ⊆ Y .” 
Conversely, we have that for every x ∈ Y , “gN(x) ⊆ Y ” implies “g1(x) = g(x) ⊆ Y .” Therefore, Closure and the Deterrence of 
weak external deviations are equivalent.

By Lemma 5.2 Asymptotic external stability is equivalent to Sequential weak dominance, therefore g∞(x) ∩ Y 
= ∅ is 
equivalent to gN(x) ∩ Y 
= ∅.

At last, Theorem 19 in Kóczy and Lauwers (2007) states that the MDS can be written as a finite union of sets of outcomes 
called similarity classes. Each similarity class is defined by a finite number of linear weak inequalities and is therefore closed. 
This implies that the MDS is closed. The MDS is the smallest set satisfying Closure and Sequential weak dominance, but 
then it is also the smallest closed set satisfying these properties. This completes the proof. �
76



P.J.J. Herings and L.Á. Kóczy Games and Economic Behavior 127 (2021) 67–79
6. Payoff equivalence for proper simple games

The result of Theorems 5.3 and 5.4 imply that MDS, MSS, and weak dominance MSS coincide for all coalition function 
form games. Moreover, they also coincidence with the PEMDS for important cases like generic coalition function form games 
(Theorem 3.4) and coalition function form games with a non-empty coalition structure core (Theorem 3.5). Example 3.6
shows that the coincidence with PEMDS is not true in terms of outcomes for the three-player simple majority game, but is 
so in terms of payoffs. We conclude by generalizing the latter insight to the entire class of proper simple games.

Proper simple games are coalition function form games (N, v) such that v(N) = 1, for every C ∈ N it holds that v(C) ∈
{0, 1}, and v(C) = 1 implies v(N \C) = 0. Moreover, for C, D ∈N such that C ⊆ D , v(C) = 1 implies v(D) = 1. The collection 
of winning coalitions of a proper simple game (N, v) is denoted by W = {C ∈ N | v(C) = 1}. A veto player is a player that 
belongs to every winning coalition. The set of veto players is given by C∗ = ∩C∈WC . The coalition structure core of a proper 
simple game is non-empty if and only if there are veto players, so C∗ 
= ∅.

Let (N, v) be a proper simple game. We define the sets of outcomes F and F̃ by

F =
{

CSC, if CSC 
= ∅,

{x ∈ X | P(x) ∩ (W \ {N}) 
= ∅, ∀C ∈ P(x) \W, |C | = 1}, if CSC = ∅,

F̃ =
{

CSC, if CSC 
= ∅,

{x ∈ X | P(x) ∩W 
= ∅, ∃i ∈ N such that ui(x) = 0}, if CSC = ∅.

It is easily verified that the definitions of F and F̃ are appropriate generalizations of the sets as defined in Example 3.6. In 
case CSC = ∅, the difference between F and F̃ is that outcomes where the grand coalition forms are included in the latter, 
as well as outcomes where non-winning coalitions need not be singletons. In payoff terms, there is no difference between 
F and F̃ . For instance, the requirement for F̃ that at least one player gets a payoff of zero in case CSC = ∅ is also satisfied 
for F , since if x ∈ F then P(x) includes a winning coalition different from the grand coalition and the remaining coalitions 
in P(x) are required to be singletons. Any singleton coalition has a worth of zero, since otherwise the corresponding player 
would be a veto player, which is excluded when CSC = ∅.

The next result shows that for proper simple games the MDS and the MSS is equal to the set F and the PEMDS to the 
set F̃ , from which payoff equivalence easily follows.

Theorem 6.1. Let (N, v) be a proper simple game. The MDS and the MSS of (N, v) are equal to F . The PEMDS of (N, v) is equal to ̃F . 
The set of payoffs supported by the PEMDS, the MDS and the MSS coincide.

Proof. Assume first that CSC 
= ∅. By Theorems 3.3, 3.5, and 4.4, the MDS, PEMDS and MSS are all equal to CSC.
Assume next that CSC 
= ∅. By Theorem 4.5 in Demuynck et al. (2019) it holds that the MSS is equal to the set F . It now 

follows from Theorem 5.4 that the MDS is equal to the set F .
We finally turn to the PEMDS. We show that the set F̃ is a closed cycle, that is, for every x ∈ F̃ , it holds that g̃N(x) = F̃ . 

We also argue that F̃ satisfies Accessibility. It then follows easily that the PEMDS is equal to F̃ .
The proof of Theorem 4.5 in Demuynck et al. (2019) establishes that, for every x ∈ F , f ∞(x) = F , and, for every x ∈ X \ F , 

f ∞(x) ∩ F 
= ∅. By Lemma 5.2 we then obtain that,

∀x ∈ F , gN(x) = F , (6.1)

∀x ∈ X \ F , gN(x) ∩ F 
= ∅. (6.2)

Since F ⊂ F̃ , it follows from (6.2) that F̃ satisfies Accessibility. To prove that F̃ is a closed cycle, we proceed in two steps.
Step 1. For every x ∈ F̃ , g̃N(x) ⊇ F̃ .
Let some x, y ∈ F̃ be given. We distinguish four cases.
Case 1. x, y ∈ F .

It holds that y ∈ gN(x) ⊆ g̃N(x).
Case 2. x ∈ F , y ∈ F̃ \ F .

It holds that either P(y) = {N} or P(y) contains a winning coalition C ⊂ N and a coalition with at least two players that 
is not winning. In the former case, let i ∈ N be such that ui(y) = 0 and define the outcome y′ ∈ X by P(y′) = {N \ {i}, {i}}
and u(y′) = u(y). To demonstrate that y′ is indeed an outcome, we show that N \ {i} is a winning coalition. Suppose N \ {i}
is not a winning coalition. Then no subset of N \ {i} is a winning coalition, so every winning coalition involves player i. 
But then i is a veto player and the coalition structure core of (N, v) is non-empty, a contradiction. Consequently, N \ {i}
is a winning coalition. In the latter case, define the outcome y′ ∈ X by P(y′) = {C} ∪ 〈N \ C〉 and u(y′) = u(y). Since the 
complement of a winning coalition is not winning, it is obvious that y′ is an outcome. In both cases, it follows that y′ ∈ [y], 
so y ∈ g̃(y′). Since x, y′ ∈ F , we have by (6.1) that y′ ∈ gN(x). We conclude that y ∈ g̃N(x).

Case 3. x ∈ F̃ \ F , y ∈ F .
By the same argument as in Case 2, there is x′ ∈ F such that x′ ∈ [x], so x′ ∈ g̃(x). Since x′, y ∈ F , we have by (6.1) that 
y ∈ gN(x). We conclude that y ∈ g̃N(x).

Case 4. x ∈ F̃ \ F , y ∈ F̃ \ F .
77



P.J.J. Herings and L.Á. Kóczy Games and Economic Behavior 127 (2021) 67–79
By the same argument as in Case 2, there is x′ ∈ F such that x′ ∈ [x] and there is y′ ∈ F such that y′ ∈ [y]. Since x′, y′ ∈ F , 
we have by (6.1) that y′ ∈ gN(x′). Since x′ ∈ g̃(x), y′ ∈ gN(x′) and y ∈ g̃(y′), we conclude that y ∈ g̃N(x).

Step 2. For every x ∈ F̃ , g̃N(x) ⊆ F̃ .
It is sufficient to show that, for every x ∈ F̃ , g̃(x) ⊆ F̃ . Let some x ∈ F̃ and some y ∈ g̃(x) be given. We distinguish four 

cases.
Case 1. x ∈ F , y ∈ g(x).

It holds that y ∈ gN(x) = F , where the equality follows from (6.1).
Case 2. x ∈ F , y ∈ [x].

Since P(x) ∩ (W \ N) 
= ∅, there exists i ∈ N such that ui(x) = 0 and P(y) must contain a winning coalition. It follows that 
y ∈ F̃ .

Case 3. x ∈ F̃ \ F , y ∈ g(x).
It holds that either P(x) = {N} or P(x) contains a winning coalition C ⊂ N and a coalition with at least two players that 
is not winning. In the former case, y = x ∈ F̃ \ F or there is D ∈ N such that y weakly dominates x by D . The definition 
of weak dominance implies that D is a proper subset of N , so P(y) = {D} ∪ 〈N \ D〉 and therefore y ∈ F . In the latter 
case y = x ∈ F̃ \ F or there is D ∈ W such that y weakly dominates x by D , so D ∈ P(y) ∩ W . By the definition of weak 
dominance it follows that C \ D 
= ∅, so ui(y) = 0 for every i ∈ C \ D . We have that y ∈ F̃ .

Case 4. x ∈ F̃ \ F , y ∈ [x].
It clearly holds that P(y) ∩W 
= ∅ and there exists i ∈ N such that ui(y) = 0, so y ∈ F̃ . �
7. Conclusion

Since the coalition structure core of a coalition function form game may be empty, the literature has proposed non-empty 
generalizations like the payoff-equivalence minimal dominant set in Kóczy and Lauwers (2007) and the myopic stable set 
in Demuynck et al. (2019). An attractive feature of the myopic stable set is that it coincides with the coalition structure 
core whenever the coalition structure core is non-empty and provides a unique non-empty prediction otherwise. Kóczy 
and Lauwers (2007) make the same assertion for the payoff-equivalence minimal dominant set. Unfortunately, we identify 
some problems in the original definition of the payoff-equivalence minimal dominant set, correct them, and also suggest 
the minimal dominant set as an alternative. The minimal dominant set is shown to coincide with the coalition structure 
core whenever the coalition structure core is non-empty and provide a unique non-empty prediction otherwise. Both the 
myopic stable set and the minimal dominant set admit a dynamic interpretation in terms of coalitions that deviate with 
some probability whenever they can improve the utility of their members.

The minimal dominant set is a minimal set satisfying Closure and Sequential weak dominance. The myopic stable set is 
a minimal closed set satisfying Deterrence of external deviations and Asymptotic external stability. Contrary to the minimal 
dominant set, the myopic stable set requires every member of a deviating coalition to improve strictly. Otherwise, it can 
be shown that there is no substantial difference between Closure and Deterrence of external deviations. Sequential weak 
dominance requires that from any outcome outside the minimal dominant set it is possible to attain an outcome in the 
minimal dominant set by a finite number of weak dominations, whereas asymptotic external stability requires that from 
any outcome outside the myopic stable set it is possible to get arbitrary close to an outcome in the myopic stable set by a 
finite number of dominations. Finally, a myopic stable set is closed by definition, whereas no such requirement is made for 
the minimal dominant set.

The main result of the paper is that despite the subtle differences in the definition, the minimal dominant set is equiv-
alent to the myopic stable set. We also argue that for important classes of coalition function form games, both concepts 
coincide with the payoff-equivalence minimal dominant set. For instance, this is the case for generic coalition function form 
games, coalition function form games with a non-empty coalition structure core, and, when as far as payoffs are concerned, 
proper simple games.

References

Arnold, T., Schwalbe, U., 2002. Dynamic coalition formation and the core. J. Econ. Behav. Organ. 49, 363–380.
Aumann, R.J., Drèze, J.H., 1974. Cooperative games with coalition structures. Int. J. Game Theory 3, 217–237.
Béal, S., Rémila, É., Solal, P., 2012. On the number of blocks required to access the core. Discrete Appl. Math. 160, 925–932.
Béal, S., Rémila, É., Solal, P., 2013a. Accessibility and stability of the coalition structure core. Math. Methods Oper. Res. 78, 187–202.
Béal, S., Rémila, É., Solal, P., 2013b. An optimal bound to access the core in TU-games. Games Econ. Behav. 80, 1–9.
Bhattacharya, A., Ziad, A., 2006. The core as the set of eventually stable outcomes: a note. Games Econ. Behav. 54, 25–30.
Chen, B., Fujishige, S., Yang, Z., 2016. Random decentralized market processes for stable job matchings with competitive salaries. J. Econ. Theory 165, 25–36.
Demuynck, T., Herings, P.J.J., Saulle, R.D., Seel, C., 2019. The myopic stable set for social environments. Econometrica 87, 111–138.
Diamantoudi, E., Miyagawa, E., Xue, L., 2004. Random paths to stability in the roommate problem. Games Econ. Behav. 48, 18–28.
Green, J.R., 1974. The stability of Edgeworth’s recontracting process. Econometrica 42, 21–34.
Hart, S., Kurz, M., 1983. Endogenous formation of coalitions. Econometrica 51, 1047–1064.
Herings, P.J.J., Mauleon, A., Vannetelbosch, V., 2017. Stable sets in matching problems with coalitional sovereignty and path dominance. J. Math. Econ. 71, 

14–19.
Klaus, B., Klijn, F., 2007. Paths to stability for matching markets with couples. Games Econ. Behav. 58, 154–171.
Kóczy, L.Á., 2006. The core can be accessed with a bounded number of blocks. J. Math. Econ. 43, 56–64.
Kóczy, L.Á., 2018. Partition Function Form Games. Theory and Decision Library C, vol. 48. Springer International Publishing. 312 p.
78

http://refhub.elsevier.com/S0899-8256(21)00020-8/bibA1260C4A2C95E63CB8B14809C7141525s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibB93765FCB4EF3997F649B178D1294A5Cs1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib8FD28E34116CF29B72FAFF3F6B90B558s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibB4178666A9EFC44BC49823E4D911C2C7s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibC153A0EFC359D6AC3DC1F56484FC53F0s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibC64142BB37BE29A4BF42B71F6437A668s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibE601D9DBC3CAE833F8B43B7DFC43B4E9s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibF57C0D281CD37E2D80FE5F2B74684ECAs1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibEE449F20AA4727F3E833AE58576D0FF4s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib7DE4310A780C387960F41A8CA38456B7s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib23112992CFE366BCF05FEDA862B6E228s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibE8DFA3BE654D6C58D3E11565396CE718s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibE8DFA3BE654D6C58D3E11565396CE718s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib22A95BD000DC8DE3B6EAFCF6193EDBE6s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibF59BCBE294D572E93B76E01FA539A8C6s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibFCAE89BBA8216B5DAE106BC6010D544Cs1


P.J.J. Herings and L.Á. Kóczy Games and Economic Behavior 127 (2021) 67–79
Kóczy, L.Á., Lauwers, L., 2004. The coalition structure core is accessible. Games Econ. Behav. 48, 86–93.
Kóczy, L.Á., Lauwers, L., 2007. The minimal dominant set is a non-empty core-extension. Games Econ. Behav. 61, 277–298.
Konishi, H., Ray, D., 2003. Coalition formation as a dynamic process. J. Econ. Theory 110, 1–41.
Neuefeind, W., 1974. A stochastic bargaining process for n-person games. J. Math. Econ. 1, 175–191.
Packel, E.W., 1981. A stochastic solution concept for n-person games. Math. Oper. Res. 6, 349–362.
Ray, D., Vohra, R., 2014. Coalition formation. In: Young, H.P., Zamir, S. (Eds.), Handbook of Game Theory with Economic Applications 4. North Holland, 

pp. 239–326 (chap. 5).
Ray, D., Vohra, R., 2015. The farsighted stable set. Econometrica 83, 977–1011.
Roth, A.E., Vande Vate, J.H., 1990. Random paths to stability in two-sided matching. Econometrica 58, 1475–1480.
Sengupta, A., Sengupta, K., 1994. Viable proposals. Int. Econ. Rev. 35, 347–359.
Sengupta, A., Sengupta, K., 1996. A property of the core. Games Econ. Behav. 12, 266–273.
Stearns, R.E., 1968. Convergent transfer schemes for n-person games. Trans. Am. Math. Soc. 134, 449–459.
Wu, L.S.Y., 1977. A dynamic theory for the class of games with nonempty cores. SIAM J. Appl. Math. 32, 328–338.
Yang, Y.Y., 2010. On the accessibility of the core. Games Econ. Behav. 69, 194–199.
Yang, Y.Y., 2011. Accessible outcomes versus absorbing outcomes. Math. Soc. Sci. 62, 65–70.
Yang, Y.Y., 2020. On the characterizations of viable proposals. Theory Decis. 89, 453–469.
79

http://refhub.elsevier.com/S0899-8256(21)00020-8/bib2F9B66FE289240D1467C71BE885CD56As1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibF0C6D5B47C884D3FDAA42DA125D4AB8Fs1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib861F93CCB7FD04224DC36F3229FC4075s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib0B6964909638B6A965EF69DA2E7589A1s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibA73EE80D9204575D0E1C746D115A4AF5s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib2184A58A409E2C1A13FE6847D66DBD5Cs1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib2184A58A409E2C1A13FE6847D66DBD5Cs1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib2497788BCF47C398D17DA347F5B9A3CBs1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib64E3593209603785374DF296F1B4E64Ds1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib90CE9B0D46FBB1E5AD833D1EEEE8F2D6s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib4A568C850D5BF4F3DB31B14424AC2653s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib2E793EC787F4A2405726955F69AC43EDs1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib35BB2F40E86296AF6160A7D95FCFAC14s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibEC279364D39B8CE2D77A43E9EDE0AE4Ds1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bib631BF5B9A1EA68718F33A4365C270759s1
http://refhub.elsevier.com/S0899-8256(21)00020-8/bibDDC3FFFA727FC978212294A7346E62CAs1

	The equivalence of the minimal dominant set and the myopic stable set for coalition function form games
	1 Introduction
	2 The payoff-equivalence minimal dominant set
	3 The minimal dominant set
	4 The myopic stable set
	5 Equivalence
	6 Payoff equivalence for proper simple games
	7 Conclusion
	References


