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Tight bounds on the convergence rate of

generalized ratio consensus algorithms

Balázs Gerencsér, László Gerencsér

Abstract

The problems discussed in this paper are motivated by general ratio consensus algorithms, introduced by

Kempe, Dobra, and Gehrke (2003) in a simple form as the push-sum algorithm, later extended by Bénézit et al.

(2010) under the name weighted gossip algorithm. We consider a communication protocol described by a strictly

stationary, ergodic, sequentially primitive sequence of non-negative matrices, applied iteratively to a pair of fixed

initial vectors, the components of which are called values and weights defined at the nodes of a network. The

subject of ratio consensus problems is to study the asymptotic properties of ratios of values and weights at each

node, expecting convergence to the same limit for all nodes. The main results of the paper provide upper bounds for

the rate of the almost sure exponential convergence in terms of the spectral gap associated with the given sequence

of random matrices. It will be shown that these upper bounds are sharp. Our results complement previous results

of Picci and Taylor (2013) and Iutzeler, Ciblat and Hachem (2013).

I. INTRODUCTION

A. The setup and the ratio consensus algorithm

The problems discussed in this paper are motivated by the study of general ratio consensus algorithms,

introduced in [1] in a simple form as the push-sum algorithm, and later extended in [2] under the name

weighted gossip algorithm for solving a class of distributed computation problems. The algorithm is

designed to solve a consensus problem over a network of agents, based on asynchronous communication.

The objective of the consensus can be expressed in its simplest way as to achieve the average of certain

values given at each node. The original problem formulation and the algorithm has been adapted to model

a number of real-life situations such as platooning, sensor networks or smart grids, see [3], [4].

Various relaxations and extensions of the baseline model were proposed in the literature. A nice

application of the push-sum algorithm for computing the eigenvectors of a large symmetric matrix,

corresponding to the adjacency matrix of an undirected graph, was given in [5]. Another application

is distributed convex optimization, see [6]. A general class of solvable consensus problems for distributed

function computation was introduced in [7].

The basic setup for this class of methods is a communication network represented by a directed graph

G = (V,E), to each node i of which a pair of real numbers xi and wi ≥ 0 is associated, such that not all

of the wi-s are 0. They are often called the values and the weights. The problem is then to compute the

ratio
∑

i x
i/
∑

i w
i, at all nodes, using only local interactions allowed by G = (V,E) in an asynchronous

manner. In the special case when wi = 1 for all nodes the problem reduces to the average consensus

problem.

A convenient illustration of the above problem is the following: xi unit of some chemical is dissolved in

a solvent of wi ≥ 0 units leading to a solution with concentration xi/wi at node i. The problem equivalent
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to the one above is then to compute the concentration of the grand total, defined as
∑

i x
i/
∑

i w
i, using

only local transfers allowed by G = (V,E) in an asynchronous manner.

Let |V | = p and let x0 = x = (x1, . . . , xp)⊤ and w0 = w = (w1, . . . , wp)⊤ denote the vectors of initial

values and weights, respectively, at time 0, assuming w ≥ 0, w 6= 0. We update both the values and weights

successively as follows. Let xn−1 and wn−1 denote the p-vector of values and weights, respectively, at

time n−1. Select a directed edge fn = (i, j) ∈ E randomly, representing the communicating pair at time

n. Then the sender, node i, initiates a transactions by sending a fraction, say αji with 0 < αji < 1, of

his/her values and weights to the receiver, node j. It is initially assumed that the sequence of edges (fn)

is i.i.d., with the probability of choosing an edge f = (i, j) being denoted by qij .

In the context of the above illustration via elementary chemistry the algorithm is equivalent to mixing

a fraction of the solution at node i into the current solution at node j. It is then expected that in the limit

we get solutions with identical concentrations at each node.

The above algorithm, when setting αji = 1/2 for all edges, is the celebrated push-sum method. The

dynamics of the algorithm can be formally described by the equations

xn = Anxn−1 and wn = Anwn−1 (1)

for n ≥ 1, where An is a p × p random matrix obtained from the identity matrix by modifying its i-th

column as follows:

Aiin = 1− αji Ajin = αji Akin = 0 for k 6= i, j. (2)

The above problem can be modified by allowing packet losses, see [3]. When a packet loss occurs

along the edge from i to j, denoted by (j, i), the content of node j is not changed. Packet losses are

assumed to occur randomly and independently. The functionality of the network at time n is described

by a collection of indicators ρn(f), f ∈ E: ρn(f) = 1 if the edge f fails at time n, otherwise ρn(f) = 0.

The probability of failure along edge f is 0 ≤ rf < 1 at any time, so that P (ρn(f) = 1) = rf . With these

notations, assuming fn = (j, i), the matrix An will have the following structure with a single, possibly

non-zero off-diagonal element in the positions (j, i):































1 0 · · · 0

0 1 · · · 0
...

...
. . .

1− αji 0
. . .

(1− ρn(fn))αji 1
. . .

...

0 · · · 1































. (3)

We note in passing that the coordinates of vectors and the elements of matrices will be indicated by

superscripts, while their dependence on the discrete time n will be indicated by subscripts.

B. A generalized framework.

The above form of the push-sum or weighted gossip algorithm has a natural extension reflecting the

possibility of certain schedules in choosing the sequence of interacting pairs of agents, as in the case of

geographic gossip, randomized path averaging or one-way averaging, [3], [8], [2].
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In addition, we may consider a significantly broader class of matrices, allowing much more complex

network dynamics. Technically speaking, we consider a strictly stationary, ergodic sequence of p × p

random matrices with non-negative entries A1, A2, . . . . Let x, w ∈ Rp denote a pair of initial vectors,

such that w ≥ 0, w 6= 0. Our objective is to study the asymptotic properties of the ratios

e⊤i AnAn−1 · · ·A1x/e
⊤
i AnAn−1 · · ·A1w, i = 1, ..., p (4)

where ei is the unit vector with a single 1 in its i-th coordinate.

For a start we provide a brief summary of two classical results on products of strictly stationary,

ergodic sequences of random matrices, and recapitulate and extend a relevant application as Theorem 8.

The key results of this paper are stated as Theorems 12, 14, 16 and 19, extending previous results on

the almost sure exponential convergence in the context of ratio consensus such as given in [9] and [10],

in particular providing upper bounds for the almost sure exponential convergence rate in terms of spectral

gaps associated with stationary sequences of matrices. It will be shown that these upper bounds are sharp

in Theorem 21, thus solving an open problem formulated in the conclusion of one of the fundamental

papers [2] under very general conditions, quoting from their Conclusion:

”The next step of this work is to compute analytically the speed of convergence of Weighted Gossip.

In classical Gossip, double stochasticity would greatly simplify derivations, but this feature disappears in

Weighted Gossip, which makes the problem more difficult.”

The proofs are based on the careful analysis of random products Mn = AnAn−1 · · ·A1 for random

sequence of non-negative matrices using Oseledec’s theorem. The application of results in the theory of

products of random matrices in the context of consensus algorithms was previously initiated and elaborated

in [11] for the case of linear gossip algorithms with pairwise, bidirectional, symmetric communication.

While we rely partially on the same mathematical methodology, the range of communication protocols

that we consider is significantly broader, in particular we consider weighted gossip algorithms.

Our work complements and extends the result of [9] in which an upper bound for the rate (or the

exponent) of almost sure exponential convergence of a (sampled) weighted gossip algorithms was derived.

The paper is organized as follows: Sections II – VI are devoted to the description of the subject matter

and the main results of the paper with minimal technical details: starting with two sections presenting

a few preliminary technicalities, a section on normalized products, a section with the statements and

interpretations of the main results, followed by a brief section on push-sum algorithms. In the last two

sections of the main body of the paper we elaborate on the major mathematical details: in Section VII

we describe the essential fabric of the proofs of the main theorems, while in Section VIII an interlude on

the connection between spectral gap and Birkhoff’s contraction coefficient is added. A brief discussion

and conclusion wraps up the material of the main body of the paper. Relevant, but minor technical details

will be given in the Appendices. Altogether we intend to give a self-contained presentation of the subject

matter and of the background material.

II. TECHNICAL PRELIMINARIES

For the formulation of our results we recall two basic facts on the product of random matrices.

Proposition 1 (Fürstenberg and Kesten’s theorem, [12]). Let A1, A2, . . . , be a strictly stationary, ergodic

process of p×p random matrices over a complete probability space (Ω,F ,P) such that E log+ ‖A1‖ <∞.

Then the almost sure limit

λ1 = lim
n→∞

1

n
log ‖AnAn−1 · · ·A1‖ <∞ (5)
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exists and it is equal to

lim
n→∞

1

n
E log ‖AnAn−1 · · ·A1‖

= inf
n

1

n
E log ‖AnAn−1 · · ·A1‖. (6)

Note that we may have λ1 = −∞.

A more refined asymptotic characterization of AnAn−1 · · ·A1 is given by Oseledec’s theorem. To

appreciate the novelty and power of this theorem we make a brief elementary detour in the field of

Lyapunov exponents, see [13]. Let (An), n ≥ 1 be a fixed sequence of p × p matrices. For any x ∈ Rp

define the Lyapunov exponent of x with respect to (w.r.t.) (An) as

λ(x) := lim sup
n→∞

1

n
log |AnAn−1 · · ·A1x|.

Next, for any extended real number −∞ ≤ µ ≤ +∞ define the set

Lµ = {x ∈ Rp : λ(x) ≤ µ}. (7)

It is easily seen that Lµ is a linear subspace of Rp and for µ < µ′ we have Lµ ⊆ Lµ′ . It is also

readily seen that Lµ is continuous from the right: if x ∈ Lµj for a sequence of µj-s such that µj
tend to µ from above, then we have also x ∈ Lµ. Since there can be only a finite number of strictly

descending subspaces it follows that there is a finite number of possible values of the Lyapunov exponents,

+∞ ≥ µ1 > µ2 > . . . > µq ≥ −∞, such that

Rp = Lµ1 ) Lµ2 . . . ) Lµq ) {0} =: Lµq+1
, (8)

where Lµ is a piecewise constant function of µ with points of discontinuity exactly at µi. Thus for

µr−1 > µ ≥ µr we have Lµ = Lµr for 2 ≤ r ≤ q and for µq > µ we have Lµ = {0}. It follows that for

1 ≤ r ≤ q

x ∈ Lµr \ Lµr+1
implies λ(x) = µr. (9)

Let the dimension of Lµr be denoted by ir, with 1 ≤ r ≤ q+1 (with iq+1 = 0). Then the co-dimension of

Lµr relative to Lµr+1
is ir − ir+1, which can be interpreted as the multiplicity of the Lyapunov exponent

µr. Accordingly, we define the full spectrum of Lyapunov exponents λ1 ≥ λ2 ≥ . . . ≥ λp, allowing the

values ±∞, is obtained by setting for 1 ≤ i ≤ p

λi = µr if ir ≥ i > ir+1. (10)

If (An) = (An(ω)) is the realization of a strictly stationary ergodic process then the above observations

can be extended to the following fascinating result, stated first in [14], and restated and proved under

weaker condition in [15]:

Proposition 2 (Oseledec’s theorem). Assume that (An) is a strictly stationary ergodic process of p × p

matrices such that E log ‖A1‖+ <∞. Then there exists a subset Ω′ ⊂ Ω with P (Ω′) = 1 such that for all

ω ∈ Ω′ and for any x ∈ Rp the limit below exists:

λ(x) = lim
n→∞

1

n
log |AnAn−1 · · ·A1x|. (11)

Moreover the Lyapunov exponents λ1 ≥ λ2 ≥ . . . ≥ λp, possibly taking the value −∞, do not depend on

ω ∈ Ω′. Accordingly, µr and ir for 1 ≤ r ≤ q do not depend on ω ∈ Ω′ either. The mapping ω 7→ Lµr(ω)
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is measurable from Ω to the Grassmanian manifold of linear subspaces of dimension ir. In addition, the

following almost sure limit exists:

M∗ = lim
(

MT
nMn

)1/2n
. (12)

From the proof given in [15] it follows that taking a singular value decomposition of Mn := AnAn−1 · · ·A1

Mn = UnΣnVn, (13)

where Un, Vn are orthonormal matrices, and Σn is diagonal with entries σ1
n ≥ σ2

n... ≥ σpn ≥ 0, we have

λk = lim
n→∞

1

n
log σkn a.s. k = 1, ..., p. (14)

Therefore we have, with o(1) denoting a sequence of random variables tending to 0 a.s. (almost surely)

as n tends to ∞,

Σn = diag(e(λk+o(1))n). (15)

Surprisingly, the orthonormal matrices Vn will also converge a.s. in a restricted sense. Allowing the

possibility of multiplicity of Lyapunov-exponents consider a fixed µr and define Ir = {i : λi = µr},
and let SV Ir ·

n denote the subspace spanned by the rows of Vn with indices in Ir. Then we have a.s.

lim SV Ir·
n = SV Ir· for some random subspace SV Ir·. We note in passing that this technical result

immediately implies the existence of the a.s. limit in (12).

In particular, if λ1 > λ2, then for the first row of Vn, denoted by v1·n we have

lim v1·n = v1· (16)

a.s., for some random v1·. In fact, Ragunathan proved in Lemma 5 of [15] that for any ε > 0

v1·n − v1· = O(e−(λ1−λ2+o(1))n) a.s. (17)

Writing

Mn = u·1n v
1·σ1

n +

p
∑

k=2

u·kn v
k·σkn, (18)

it follows by straightforward calculations that

Mn = u·1n v
1·σ1

n +O(e(λ2+o(1))n). (19)

A rank-1 approximation for the product of an strictly stationary, ergodic sequence of column stochastic

matrices has been derived in Theorem 3, [16] using different techniques. A deterministic alternative, with

exponential rate of convergence, is implied by Proposition 1, [17].

A nice corollary of Oseledec’s theorem, obtained by a straightforward application of Fubini’s theorem,

is that for all x ∈ Rp, except for a set of Lebesgue-measure zero, we have

λ1 = lim
1

n
log |AnAn−1 · · ·A1x| a.s. (20)

In the special case when An = A for all n, arranging the eigenvalues of A, say νi, according to their

absolute values in non-increasing order, we have λi = log |νi|.
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III. SEQUENTIALLY PRIMITIVE NON-NEGATIVE MATRIX PROCESSES

In the next section we present the extension of a result of [18] on the asymptotic behavior of normalized

products

AnAn−1 · · ·A1x/1
TAnAn−1 · · ·A1x, (21)

where 1 is a p-vector all coordinates of which are 1. For the generalization of Theorem 1 of [18] the

extension of the notion of primitivity for a class of matrices and stochastic processes will be needed. For

a nice introduction and motivation on this topic see [19].

Let A = {A1, · · · , Am} be a finite family of p×p matrices with non-negative entries. We may then ask

if there is a product of these matrices (with repetitions permitted) which is strictly positive? The following

definition is essentially given in [19]:

Definition 3. A family A of nonnegative p× p-matrices is called primitive if there is at least one strictly

positive product of matrices of this family.

Let A0 := γ(A) denote the (0, 1) matrix having a 1 in a position exactly if in that position A has a

positive element. Define the set of matrices A0 = {γ(A) : A ∈ A}. Then, obviously, A is primitive if

and only if A0 is primitive. The definition and claim extends to infinite sets of matrices A.
We will now extend the definition to stationary processes of non-negative random matrices. A matrix

is called allowable, if it has no zero row or zero column. It is called row-allowable if it has no zero row.

Definition 4. A strictly stationary process of non-negative allowable random matrices (An), n ≥ 1, is

called (forward) sequentially primitive if Mτ = AτAτ−1 · · ·A1 is strictly positive for some finite stopping

time τ with probability 1 (w.p.1). For any n ≥ 1 we define the (forward) index of sequential primitivity

as

ψn = min{ψ ≥ 1 : An+ψ−1An+ψ−2 · · ·An > 0}. (22)

Since by assumption An is row-allowable we will have Mn > 0 with strict inequality for all n ≥ ψ1. It is

also clear that a stationary process of non-negative random matrices (An), n ≥ 1, is (forward) sequentially

primitive if and only if the stochastic process (A0
n), n ≥ 1, is (forward) sequentially primitive.

The definition extends to two-sided processes. In this case we may also define the concept of backward

sequential primitivity, and the index of backward sequential primitivity as

ρn = min{ρ ≥ 1 : AnAn−1 · · ·An−ρ+1 > 0}. (23)

Lemma 5. A two-sided strictly stationary sequence (An) is forward sequentially primitive if and only if it

is backward sequentially primitive. Moreover, the indices of forward and backward sequential primitivity,

ψn and ρn, have the same distributions.

The point in discussing both forward and backward primitivity will become clear in connection with

Theorems 14 and 16 below in which the natural assumption is that (An), n ≥ 1 is forward sequentially

primitive, and Eψ1 < ∞. However, in the proof we do need to ensure that for a two-sided extension of

(An) we have Eρ1 <∞.

Consider now the case of an i.i.d. sequence (An), n ≥ 1.

Remark 6. Let (An), n ≥ 1, be an i.i.d. sequence. Then it is sequentially primitive if and only if the set

below is primitive:

A0
= {C : P (γ(A1) = C) > 0}.

Obviously, the range of (γ(An)), n ≥ 1 is finite. This motivates the assumption in the lemma below.
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Lemma 7. Consider an i.i.d. sequence of non-negative, allowable p× p matrices (An), −∞ < n <∞
having a finite range A, which is primitive. Then ψn is finite w.p.1, and the tail-probabilities of ψn decay

geometrically, P (ψn > x) < c exp(−αx) with some c, α > 0. Analogous results hold for the indices of

backward sequential primitivity ρn.

The almost trivial proof will be given in Appendix I. The above lemma implies that Eψn < ∞, and

since ψn has the same distribution for all n, the sequence ψn is sub-linear, i.e. ψn = o(n) a.s. Obviously,

the same holds for the backward indices of sequential primitivity, i.e. ρn = o(n) a.s.

IV. NORMALIZED PRODUCTS OF NON-NEGATIVE RANDOM MATRICES

In this section we describe the extension of a nice result of [18], the proof of which inspired the proofs

of the main theorems of the present paper.

Let (An) be a sequence of allowable p × p matrices. Let x, w ∈ Rp be component-wise non-negative

vectors, written as x, w ≥ 0, the set of which will be denoted by R
p
+, such that x, w 6= 0. Define the

sequences

xn :=Mnx = AnAn−1 · · ·A1x, (24)

wn :=Mnw = AnAn−1 · · ·A1w. (25)

Obviously xn and wn are non-negative, and since the An-s are allowable and x, w 6= 0, we have xn, wn 6= 0.

Therefore we can define

x̄n = xn/(1
⊤xn), w̄n = wn/(1

⊤wn). (26)

The following result is a straightforward extension of [18]. In the theorem ‖x̄n−w̄n‖TV := 1
2

∑p
i=1 |x̄in−w̄in|

denotes the total variation distance of the probability vectors x̄n and w̄n.

Theorem 8. Assume that (An), n ≥ 1 is a strictly stationary, ergodic process of random p× p matrices

such that E log+ ‖A1‖ < ∞. In addition assume that An is non-negative and allowable for all n, and

assume that the process (An) is sequentially primitive. Then for all pairs (x, w) ∈ R
p
+ × R

p
+, except for

a set of Lebesgue-measure zero, it holds that

lim
n→∞

1

n
log ‖x̄n − w̄n‖TV = −(λ1 − λ2) a.s.,

where λ1 and λ2 are the first and second largest Lyapunov-exponents associated with (An). In addition,

for any fixed pair (x, w) ∈ R
p
+ ×R

p
+ with strictly positive components with no exception it holds that the

above limit exists a.s. and

lim
n→∞

1

n
log ‖x̄n − w̄n‖TV ≤ −(λ1 − λ2).

The proof of Theorem 8 is a straightforward extension of the proof of Theorem 1 in [18] and will

be given in Appendix II. We should note, however, that the proof given in [18] contains two non-trivial

deficiencies. These will be rectified by the lemmas below, the proofs of which will be given also in

Appendix II. The first lemma was implicitly stated in [18], with a minor flaw in the proof:

Lemma 9. Let the sequence of matrices (An) be as in Theorem 8. Then there exists a subset Ω′ ⊂ Ω with

P (Ω′) = 1 such that for all ω ∈ Ω′ it holds that any strictly positive vector x > 0, x ∈ Rp is contained

in x ∈ Lµ1 \ Lµ2 , see (8) – (10):

λ1 = lim
1

n
log |AnAn−1 · · ·A1x|. (27)
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The second result was tacitly used in [18], with no proof. Here the notion of exterior product of

vectors and matrices, denoted by x ∧w and A ∧B, resp., is used. Here x ∧w can be identified with the

anti-symmetric matrix xw⊤ − wx⊤, and (A ∧B)(x ∧ w) = Ax ∧Bw, see [20].

Lemma 10. Let (An) be a strictly stationary, ergodic process of p×p random matrices A1, A2, . . . , such

that E log+ ‖An‖ < ∞. Consider the exterior product space Rp ∧ Rp and the matrices An ∧ An acting

on it. Then for all pairs (x, w) ∈ Rp × Rp, except for a set of Lebesgues measure zero, the a.s. limit

lim
n→∞

1

n
log |((AnAn−1 · · ·A1) ∧ (AnAn−1 · · ·A1))(x ∧ w)|

exists and is equal to λ1 + λ2.

Motivated by Theorem 8 we consider the possibility of an extension of the results concerning the

push-sum or weighted gosspip algorithms under significantly more general conditions.

V. A GENERALIZED RATIO CONSENSUS

In this section we will formalize our main results on the convergence rate of a generalized ratio

consensus algorithm. The common setup for our results will be based on Theorem 8. However, this will

have to be complemented by a variety of additional conditions imposed on (An).

For the formulation of our technical results we will need to impose further conditions on the positive

elements of An, controlling the possibility of moving a random fraction (or share) of values and weights

during a transaction. Let us introduce the following notations for the minimal and maximal positive

elements of An:

αn := min
ij

{Aijn : Aijn > 0}, βn := max
ij

Aijn . (28)

Since βn is equivalent to ‖An‖, it follows immediately that E log+ βn <∞. A direct consequence of this

is that for any ε > 0 we have a.s. βn = O(eεn), i.e. βn is sub-exponential (see below). A twin pair of the

condition E log+ βn <∞ is the following:

Condition 11. Let (An) be a strictly stationary, ergodic process of random, p× p non-negative matrices.

We assume that E log− αn > −∞, where αn is the minimal positive element of An defined above.

A direct consequence of this condition is that E log+ 1
αn

< ∞, implying that 1
αn

is sub-exponential.

The above condition is obviously satisfied if (An) takes its values form a finite set, say A, w.p.1, which

is the case with the push-sum algorithm allowing packet loss.

Theorem 12. Assume that the conditions of Theorem 8 are satisfied, in addition the sequence (An) is

i.i.d., and λ1 − λ2 > 0. Furthermore, assume that the minimal positive elements of An satisfy Condition

11. Let ek denote the k-th unit vector for any k = 1, . . . , p. Take an arbitrary vector of initial values

x ∈ Rp, and a non-negative vector of initial weights w ∈ R
p
+ such that w 6= 0. Then ratio consensus takes

place and an explicit upper bound for the rate of convergence can be given as follows: for all i = 1, . . . , p

we have

lim sup
n→∞

1

n
log

∣

∣

∣

∣

e⊤i Mnx

e⊤i Mnw
− v1·x

v1·w

∣

∣

∣

∣

≤ −(λ1 − λ2) a.s. (29)

By Theorem 12 for all agents i the values xin/w
i
n will converge to the same limit πTx a.s., where π is

the random vector defined by π = v1·/v1·w, with at least the given rate. The limit is random, in contrast to

the case of classic push-sum or weighted gossip algorithms without packet loss. On the other hand, there

is ample empirical evidence that decreasing the probability of packet loss leads to higher concentration

of the distribution of πTx, around x̄, see [10].
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An extension of the above scenario is obtained if the communicating pairs of agents are chosen according

to some time-homogeneous random pattern, which may be different from an i.i.d. choice, see geographic

gossip, randomized path averaging or one-way averaging, [3], [8], [2]. Thus we come to consider the case

when (An) is a general, strictly stationary ergodic sequence (An). As for the additional conditions to be

imposed we consider two levels of complexity.

Condition 13. Let (An) be a strictly stationary, ergodic process of random, p× p non-negative matrices.

We say that (An) is bounded from below and from above, if there exist α, β > 0 such that, with the

notations of (28), we have a.s.

αn ≥ α > 0, βn ≤ β. (30)

Again, the above condition is obviously satisfied if the range of (An), denoted above by A, is finite.

Theorem 14. Assume that the conditions of Theorem 8 are satisfied, λ1 − λ2 > 0, and for the forward

index of sequential primitivity ψn we have Eψn <∞. Furthermore, assume that the positive elements of

An are bounded from below and from above in the sense of Condition 13. Then for any vector of initial

values x ∈ Rp, and any non-negative vector of initial weights w ∈ R
p
+ such that w 6= 0 ratio consensus

takes place, in fact (29) holds.

A further extension of the above result is obtained if the elements of An are not bounded from above

and from below, thus allowing for the possibility of moving a random fraction of values and weights. In

this case we need an extra technical condition ensuring some kind of mixing of the process (An).

Condition 15. A two-sided strictly stationary process (ξn) satisfies a q-th order M-mixing condition, with

q ≥ 1, if E|ξn|q <∞, and for any positive integer N we have, with some constant C > 0,

E

∣

∣

∣

N
∑

n=1

(ξn − Eξn)
∣

∣

∣

q

≤ CN q/2. (31)

Theorem 16. Assume that the conditions of Theorem 8 are satisfied, λ1 − λ2 > 0, and for the index

of forward sequential primitivity ψn we have Eψn < ∞. Furthermore, assume that an = logαn and

bn = log βn satisfy a q-th order M-mixing condition, given in Condition 15, with some q > 4. Then for

any vector of initial values x ∈ Rp, and any non-negative vector of initial weights w ∈ R
p
+ such that

w 6= 0 ratio consensus takes place, in fact (29) holds.

It may be of interest to consider an estimate of the average at any time n by taking a weighted average

of the respective values of xin and win. In this case Theorems 12, 14, 16 easily generalize to the following:

Corollary 17. Let q ∈ R
p
+, q 6= 0 be a non-negative weight vector. Assume that any of the sets of condtions

of Theorems 12, 14 or 16 is satisfied. Then for any vector of initial values x ∈ Rp, and any non-negative

vector of initial weights w ∈ R
p
+ such that w 6= 0 we have

lim sup
n→∞

1

n
log

∣

∣

∣

∣

q⊤Mnx

q⊤Mnw
− v1·x

v1·w

∣

∣

∣

∣

≤ −(λ1 − λ2) a.s. (32)

Proof of Corollary 17.. The claim is obtained by a direct and standard convexity argument, see [2]: for

any pair of vectors a, b ∈ Rp such that b > 0 we have

min
i

ai
bi

≤ q⊤a

q⊤b
≤ max

i

ai
bi
. (33)

Indeed, this follows from
q⊤a

q⊤b
=

∑

i qiai
∑

i qibi
=
∑

i

(

ai
bi

)

qibi
∑

j qjbj
. (34)
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Setting ai = e⊤i Mnx and bi = e⊤i Mnw we get

min
i

e⊤i Mnx

e⊤i Mnw
≤ q⊤Mnx

q⊤Mnw
≤ max

i

e⊤i Mnx

e⊤i Mnw
, (35)

from which the claim follows by Theorems 12, 14, 16.

Let the l.h.s. and the r.h.s. of (35) be denoted by yn and zn, respectively. The elementary lemma below,

which will be used later on, has been established in [10] for the case of the push-sum algorithm with

packet loss:

Lemma 18. The values yn and zn are monotone non-decreasing and non-increasing, respectively. In

particular, it follows that for any time n we have

min
i

e⊤i Mnx

e⊤i Mnw
≤ v1·x

v1·w
≤ max

i

e⊤i Mnx

e⊤i Mnw
a.s. (36)

Proof of Lemma 18. Indeed, for any index j write

hn+1,j :=
e⊤j Mn+1x

e⊤j Mn+1w
=
e⊤j An+1Mnx

e⊤j An+1Mnw
=
q⊤j Mnx

q⊤j Mnw
(37)

with q⊤j = e⊤j An+1. Since An+1 is non-negative and allowable, we have qj ≥ 0, qj 6= 0. Thus we get

by (35) the inequality yn ≤ hn+1,j ≤ zn for all j from which the first claim follows. The second claim

follows trivially from the established monotonicity, and the fact that, according to Theorem 12, we have

a.s.

lim
n→∞

min
i

e⊤i Mnx

e⊤i Mnw
=
v1·x

v1·w
= lim

n→∞
max
i

e⊤i Mnx

e⊤i Mnw
.

In the special case when An is column stochastic for all n, as in the case of the push-sum or weighted

gossip algorithm with no packet loss, Mn will be column-stochastic for all n. It follows that ‖Mn‖
is bounded from above and bounded away from 0, hence it readily follows that for the top-Lyapunov

exponent we have λ1 = 0, and we obtain the following result:

Theorem 19. Assume that any of the sets of conditions of Theorems 12, 14 or 16 is satisfied, and in

addition An is column-stochastic for all n. Then for any vector of initial values x ∈ Rp, and any non-

negative vector of initial weights w ∈ R
p
+ such that w 6= 0 we have for all i a.s.

lim sup
n→∞

1

n
log

∣

∣

∣

∣

e⊤i Mnx

e⊤i Mnw
− 1

⊤x

1⊤w

∣

∣

∣

∣

≤ λ2 < 0.

Choosing w = 1, Theorem 19 implies that ratio consensus will take place in the classic sense: for all

agents k the values xkn/w
k
n will converge to the same non-random limit x̄ =

∑p
i=1 x

i
0/p, with at least the

given rate.

Remark 20. It may come as a pleasing surprise that the a.s. rate of convergence for weighted gossip

algorithms provided by Theorems 19 is identical with the a.s. rate of convergence of a class of linear

gossip algorithms, described in [11], defined via a strictly stationary ergodic edge process. By Theorem

5.2 of [11], with An denoting the associated doubly stochastic matrices, we have for any x ∈ Rp and any

i

lim sup
n→∞

1

n
log |e⊤i An · . . . · A1x−

1
Tx

p
| ≤ λ2 a.s. (38)
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We note that an extension of this result can be easily derived from the proof of Theorem 19: assuming

the additional condition that An is doubly stochastic for all n inequality (38) holds. Unfortunately the

problem of deciding if λ2 < 0 is generally not only NP hard, but undecidable [21], [22].

An upper bound for the rate of a.s. exponential convergence of an appropriately sampled process

xiτn/w
i
τn , generated by the push-sum or weighted gossip algorithms, was derived in [9] assuming, among

others, that (An) is i.i.d. and column-stochastic. These upper bounds for the rate, obtained via the analysis

of the mean squared error of An · · ·A1 · (I − 11
⊤/p), are given by κ = −1

2
log ρ(R), with ρ(·) denoting

the spectral radius, where

R = E[A1 ⊗ A1] · ((I − 11
⊤/p)⊗ (I − 11

⊤/p)).

We should note that that the same computable upper bound for the rate of a.s. exponential convergence

of the complete process xin/w
i
n can be readily derived by combining the arguments of [9] with Lemma

27 of the present paper.

The upper bounds for the rates in the preceding theorems seem to have been unknown prior to this

paper. As for the exact rate the best we can claim is the following theorem:

Theorem 21. Assume that any of the sets of conditions of Theorems 12, 14 or 16 is satisfied. Then for

all pairs of non-negative vectors (x, w) ∈ R
p
+ × R

p
+, such that x, w 6= 0, except perhaps for a set of

Lebesgue-measure zero, it holds that

lim
n→∞

1

n
logmax

i

∣

∣

∣

∣

e⊤i Mnx

e⊤i Mnw
− v1·x

v1·w

∣

∣

∣

∣

= −(λ1 − λ2) a.s.

VI. SPECIFICATION FOR PUSH-SUM WITH PACKET LOSS

In this section we summarize the implications of the above stated results for the classic push-sum or

weighted gossisp algorithm, allowing packet loss as described in the Introduction, which is in line with

the setting of [10].

Theorem 22. Let (An) be the associated i.i.d. sequence of matrices defined under (3). Assume that the

directed communication graph (G,E) is strongly connected. Then for any initial values x ∈ Rp, and a

non-negative vector of initial weights w ∈ R
p
+ such that w 6= 0 ratio consensus takes place and for all

i-s an explicit upper bound for the a.s. rate of convergence can be given as follows:

lim sup
n→∞

1

n
log

∣

∣

∣

∣

e⊤i Mnx

e⊤i Mn1
− v1·x

v1·1

∣

∣

∣

∣

≤ −(λ1 − λ2) < 0.

In the case of no packet loss we have λ1 = 0 and v1· = 1
⊤.

Proof of Theorem 22.. For the first step of the proof we verify the only non-trivial condition of Theorem

8 requiring that (An) is sequentially primitive. Since (An) is an i.i.d. sequence we can resort to Lemma

6. Consider therefore the (finite) range of the random matrices An given by (3), denoted by APS. The

first of the following two lemmas restates a well known result in the consensus literature, see [2], while

the second one claims the validity of the key condition λ1 > λ2. The proofs will be given in Appendix

III:

Lemma 23. Assume that the directed communication graph G = (V,E) is strongly connected. Then the

set APS is primitive.
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Lemma 24. Let (An) be an i.i.d. sequence of matrices corresponding to the push-sum algorithm allowing

packet loss, defined in (3), satisfying the condition described in the Introduction. Then we have for the

spectral gap λ1 − λ2 > 0.

To complete the proof of Theorem 22 we apply Theorem 12, the conditions of which are partially

assumed, and partially ensured by the lemmas above. This confirms the general case with possible packet

loss. In the case of no packet loss the claim λ1 = 0 and v1· = 1 is implied by Theorem 19.

Remark 25. Note that the argument used in [18] to estimate λ1 − λ2 from below can not be used in our

case. Namely, [18] refers to a result of [23]

λ1 − λ2 ≥ −E log τ(A1),

where τ(A1) is the the Birkhoff contraction coefficients of A1 (see below). However, in our case, we have

τ(An) = 1 a.s., hence the lower bound is simply 0.

By this we end the description of the key points of our work and switch to slightly heavier mathematical

details. First we describe the critical steps of the proofs of our main theorems, with some technical details

relegated to Appendix IV, and then a mathematical interlude on the spectral gap is added.

VII. PROOFS OF THEOREMS 12, 14, 16, 19 AND 21

For the proof of Theorem 12 a natural starting point would be Theorem 8. However, we will see that

nothing is gained compared to a direct proof. On the other hand, the situation is completely different in

the case of Theorem 21, the proof of which will rely essentially on Theorem 8.

For the description of the proofs we need the following definition. A stochastic process ξn, n ≥ 1

is called sub-exponential, if for any ε > 0 we have for all n, with finitely many exceptions, a.s.

|ξn| ≤ eεn. We will use the notation ξn = eo(1)n. Equivalently, ξn, n ≥ 1 is called sub-exponential

if lim supn→∞
1
n
log |ξn| ≤ 0.

In view of (19), assuming λ1 > λ2, the matrix product Mn is asymptotically equivalent to the sequence

of rank-1 matrices u·1n v
1·σ1

n, a.s. A weak, a priori estimate of a measure of collinearity of the rows of

Mn is formalized in Condition 26, under which the proofs of Theorems 12 - 21 will be completed. The

validity of Condition 26 itself will be verified by Lemma 48 in Appendix IV.

Condition 26. Letting Mn = AnAn−1 · · ·A1, as before, we assume that for any pair of row indices i, j,

and any column index k it holds that M ik
n /M

jk
n is sub-exponential.

Lemma 27. Under the conditions of Theorem 8, the additional assumption that λ1 > λ2, and Condition

26, it holds that 1/ui1n is sub-exponential a.s. for all i.

Proof of Lemma 27. Recall that according to (19) we have a.s. Mn = u·1n v
1·σ1

n +O(e(λ2+o(1))n). Take an

arbitrary pair of row indices j, i, and compare the rows M j·
n and M i·

n . Choosing a column index k such

that v1k > 0 we consider
M jk

n

M ik
n

=
uj1n v

1kσ1
n +O(e(λ2+o(1))n)

ui1n v
1kσ1

n +O(e(λ2+o(1))n)
. (39)

Taking into account v1k > 0, we would have for any j, i

M jk
n

M ik
n

=
uj1n +O(e(−λ1+λ2+o(1))n)

ui1n +O(e(−λ1+λ2+o(1))n)
. (40)

From this it follows that 1/ui1n is sub-exponential as stated. Indeed, assume that this not the case,

then for some small ε > 0 we have 1/ui1n ≥ eεn for an infinite subsequence, say n = nr, consequently
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ui1n ≤ e−εn for n = nr. Select j so that for some infinite subsequence of (nr), which we identify with (nr),

we have uj1nr
≥ 1/

√
p. The indirect assumption and the choice of j would then imply M jk

n /M
ik
n ≥ Ceεn

with some C > 0 infinitely many times a.s., which is a contradiction to Condition 26.

Lemma 28. Under the conditions of Theorem 8, with the additional assumption that λ1 > λ2, and

Condition 26, it holds that v1i > 0 for all i = 1, . . . , p.

Proof of Lemma 28. Consider the matrix process Ān = A⊤
−n. First we show that the Lyapunov exponents

for the processes (Ān) and (An) are identical, λ̄k = λk for all k = 1, . . . , p. Define for any pair of integers

n > m the products Mn,m = AnAn−1 · · ·Am and M̄n,m = ĀnĀn−1 · · · Ām. Then we have

M⊤
n,m = (AnAn−1 · · ·Am)⊤ = A⊤

m · · ·A⊤
n−1A

⊤
n

= Ā−m · · · Ā−n+1Ā−n = M̄−m,−n.

Let a singular value decomposition (SVD) of Mn,m be

Mn,m = Un,mΣn,mVn,m.

Then an SVD for M̄−m,−n is obtained as follows:

M̄−m,−n = V ⊤
n,mΣn,mU

⊤
n,m =: Ū−m,−nΣ̄−m,−nV̄−m,−n.

with the notations

Ū−m,−n = V ⊤
n,m, (41)

Σ̄−m,−n = Σn,m, (42)

V̄−m,−n = U⊤
n,m. (43)

To prove λ̄1 = λ1 note that (41)-(43) implies:

λ̄1 = lim
−m→∞

1

n−m+ 1
log σ̄1

−m,−n

= lim
−m→∞

1

n−m+ 1
log σ1

n,m

w.p.1, and hence also in distribution. But σ1
n,m and σ1

n−m+1,1 have the same distribution, and for the latter

we have

λ1 = lim
−m→∞

1

n−m+ 1
log σ1

n−m+1,1

w.p.1, and hence also in distribution. Thus the distribution of λ̄1 and λ1 agree implying λ̄1 = λ1.

Applying the same argument to the k-th exterior product sequences formed by An ∧ . . . ∧ An and

Ān ∧ . . . ∧ Ān we conclude that λ̄1 + . . .+ λ̄k = λ1 + . . .+ λk for all k implying the claim.

Next, consider the matrices Vn,m with m fixed and n tending to ∞. The first rows of Vn,m denoted

by v1·n,m converge a.s. to a limit, say v1·m with exponential rate by Lemma 5 of [15], the error being

O(e(−λ1+λ2+o(1))(n−m)). This implies, that the first columns of Ū−m,−n, denoted by ū·1−m,−n also converge

to a limit ū·1−m = v1·⊤m a.s. with the same exponential rate when n tends to ∞.

Take m = 1 and assume in contrary to the statement of the lemma that v1i = v1i1 = 0 for some i.

Then ūi1−1 = 0, and thus ūi1−1,−n is exponentially small a.s. when n tends to ∞ : writing ξn := ūi1−1,−n we

have for any 0 < µ < λ1 − λ2 with some C(ω) > 0 the inequality ξn ≤ C(ω)e−µn. This implies for the

distribution of ξn that for any µ′ < µ < λ1 − λ2

P (ξn ≤ e−µ
′n) ≥ P (C(ω)e−µn ≤ e−µ

′n)

=P (C(ω) ≤ e(µ−µ
′)n) → 1, as n→ ∞. (44)
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On the other hand, shifting the time indices in ūi1−1,−n by n+1 we get the random variables ξ′n := ūi1n,1
having the same distribution as ξn. Applying Lemma 27 to the process (Ān), where the conditions are

easily verified, we get that 1/ξ′n is sub-exponential. Thus for any ε > 0 we have 1/ξ′n ≤ C ′(ω)eεn, with

some C ′(ω) > 0. Following the argument given above we get for the distribution of 1/ξ′n that for any

ε′ > ε > 0 it holds that P (1/ξ′n ≤ eε
′n) → 1 as n → ∞, implying P (e−ε

′n ≤ ξ′n) → 1, which in turn

yields

P (ξ′n < e−ε
′n) → 0, as n→ ∞. (45)

Choosing 0 < ε < ε′ < µ′, and recalling that ξ′n and ξn have the same distribution, we get a contradiction

with (44), and thus the proof is complete.

Proofs of Theorems 12, 14 and 16:. Assuming the validity of Condition 26, to be established separately

under each set of conditions of Theorems 12, 14, 16, the proof of the quoted three theorems are identical:

Recall that we have by (19) Mn = u·1n v
1·σ1

n +O(e(λ2+o(1))n), hence

e⊤i Mnx

e⊤i Mnw
=
e⊤i u

·1
n v

1·xσ1
n +O(e(λ2+o(1))n)

e⊤i u
·1
n v

1·wσ1
n +O(e(λ2+o(1))n)

. (46)

Dividing both the numerator and the denominator by σ1
n, we get

e⊤i Mnx

e⊤i Mnw
=
e⊤i u

·1
n · v1·x+O(e(−λ1+λ2+o(1))n)

e⊤i u
·1
n · v1·w +O(e(−λ1+λ2+o(1))n)

. (47)

Note that v1· > 0 by Lemma 28, and thus w ≥ 0, w 6= 0 imply v1·w > 0. Divide both the numerator and

the denominator by v1·w and also by e⊤i u
·1
n . The proof is then completed by noting that 1/e⊤i u

·1
n = 1/ui1n

is sub-exponential for all i, as stated in Lemma 27.

Proof of Theorem 19. First note that Mn is column-stochastic for all n, hence ‖Mn‖ is bounded from

above and bounded away from zero. It follows that λ1 = 0. To complete the proof it is sufficient to show

that v1· is proportional to 1
⊤, (implying that v1· = 1

⊤/
√
p.) Writing

1
⊤ = 1

⊤Mn = 1
⊤u·1n v

1·σ1
n +O(e(λ2+o(1))n) a.s., (48)

and noting that 1⊤u·1n and σ1
n = ‖Mn‖ are bounded and bounded away from 0, after dividing by these we

get

cn1
⊤ = v1· +O(e(λ2+o(1))n) a.s., (49)

with some possibly random scalar cn. Letting n → ∞, and taking into account λ2 < 0, the r.h.s. will

converge to v1·, and thus the l.h.s. will also converge, implying that cn converges to some c, yielding

c1⊤ = v1·, as claimed.

Proof of Theorem 21. Note that the a.s. inequality

lim sup
n→∞

1

n
max
i

log

∣

∣

∣

∣

e⊤i Mnx

e⊤i Mnw
− v1·x

v1·w

∣

∣

∣

∣

≤ −(λ1 − λ2) (50)

follows directly from Theorem 12. For the proof that the inequality is actually an equality we will rely

on Theorem 8. First note that, in addition to w > 0 we may assume x > 0, since the set of pairs

(x, w) ∈ Rp ×Rp, having a 0 component in x have zero Lebesgue measure. Now, note that for any pairs

or probability vectors (x̄, w̄) we have

max
i

|x̄i − w̄i| ≤ ‖x̄− w̄‖TV ≤ pmax
i

|x̄i − w̄i|.
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Therefore Theorem 8 can be restated as follows: for all pairs (x, w) ∈ R
p
+ × R

p
+, x, w 6= 0, except for a

set of Lebesgue-measure zero, it holds a.s. that

lim
n→∞

1

n
logmax

i
|x̄in − w̄in|

= lim
n→∞

1

n
logmax

i

∣

∣

∣

∣

xin
1⊤xn

− win
1⊤wn

∣

∣

∣

∣

= −(λ1 − λ2). (51)

We may relate this equality to a ratio consensus problem by rewriting the middle term as

lim
n→∞

1

n
logmax

i

∣

∣

∣

∣

xin
win

− 1
⊤xn

1⊤wn

∣

∣

∣

∣

· win
1⊤xn

= lim
n→∞

1

n
max
i

(

log

∣

∣

∣

∣

xin
win

− 1
⊤xn

1⊤wn

∣

∣

∣

∣

+ log
win

1⊤xn

)

. (52)

Now, if ai, bi are real numbers, then maxi(ai+ bi) ≤ maxi ai+maxi bi. Apply this inequality to the r.h.s.

of (52) and take into account (51) to get that −(λ1 − λ2) is bounded from above by

lim inf
n

1

n

(

max
i

log

∣

∣

∣

∣

xin
win

− 1
⊤xn

1⊤wn

∣

∣

∣

∣

+max
i

log
win

1⊤xn

)

.

Furthermore, if αn, βn, n ≥ 1, are real numbers and γn = αn + βn then lim infn γn ≤ lim infn αn +

lim supn→∞ βn. (For the verification recall that γn ≤ αn + supn≥1 βn =: αn + B, yielding infn≥m γn ≤
infn≥m(αn+B) = infn≥m αn+B.) Also note that win ≤ 1

⊤wn implies maxi log(w
i
n/1

⊤xn) ≤ log(1⊤wn/1
⊤xn).

Thus we get

−(λ1 − λ2) ≤ lim inf
n

1

n
max
i

log

∣

∣

∣

∣

xin
win

− 1
⊤xn

1⊤wn

∣

∣

∣

∣

+ lim sup
n→∞

1

n
log

1
⊤wn
1⊤xn

. (53)

Now, by Corollary 17 1
⊤wn/1

⊤xn has a finite, non-zero limit w.p.1, hence

lim sup
n→∞

1

n
log

1
⊤wn
1⊤xn

= lim
n→∞

1

n
log

1
⊤wn
1⊤xn

= 0.

Hence we conclude that

− (λ1 − λ2) ≤ lim inf
n

1

n
max
i

log

∣

∣

∣

∣

xin
win

− 1
⊤xn

1⊤wn

∣

∣

∣

∣

, (54)

and combining this with (50) we can write equality and lim in place of lim inf on the right hand side:

− (λ1 − λ2) = lim
n→∞

1

n
max
i

log

∣

∣

∣

∣

xin
win

− 1
⊤xn

1⊤wn

∣

∣

∣

∣

. (55)

Now, in view of Corollary 17 we have

min
i

xin
win

≤ 1
⊤xn

1⊤wn
≤ max

i

xin
win

. (56)

On the other hand, the trivial inequalities

1

2

∣

∣

∣

∣

max
i

xin
win

−min
i

xin
win

∣

∣

∣

∣

≤ max
i

∣

∣

∣

∣

xin
win

− 1
⊤xn

1⊤wn

∣

∣

∣

∣

≤
∣

∣

∣

∣

max
i

xin
win

−min
i

xin
win

∣

∣

∣

∣

(57)
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combined with (55) yield

− (λ1 − λ2) = lim
n→∞

1

n
log

∣

∣

∣

∣

max
i

xin
win

−min
i

xin
win

∣

∣

∣

∣

a.s. (58)

except for a set of initial (x, w)-s of Lebesgue measure zero. Considering (57) and replacing 1
⊤xn/1

⊤wn
by an arbitrary sequence of intermediate values vn such that

min
i

xin
win

≤ vn ≤ max
i

xin
win

we get by the same logic

− (λ1 − λ2) = lim
n→∞

1

n
max
i

log

∣

∣

∣

∣

xin
win

− vn

∣

∣

∣

∣

. (59)

Taking vn = v1·x/v1·w for all n, in view of Lemma 18, we get the claim.

Remark 29. In the special case when Mn is column-stochastic, we have 1
⊤xn = 1

⊤Mnx = 1
⊤x, and

similarly 1
⊤wn = 1

⊤w for all n. Furthermore, by Theorem 19 we have v1· = 1
⊤. Thus, in this special

case (55) immediately implies the claim without any further deliberations.

VIII. A REPRESENTATION OF THE SPECTRAL GAP λ1 − λ2

As we have seen, the spectral gap λ1−λ2 plays a key role in characterizing the stability of normalized

products and the convergence rate of the ratio consensus method. In this section we present a set of simple

results providing computable lower bounds and alternative representations for the spectral gap under the

conditions of Theorems 8, 12, 14 or 16.

A lower bound for the spectral gap was established in [23], Proposition 5, under the condition that

A1 is strictly positive with positive probability. In fact this result is a simple corollary of Theorem 8

relying on its less restrictive conditions. For the formal statement we introduce the following definitions

and notations.

Definition 30. Let x, y ∈ R
p
+ be strictly positive vectors, x, y > 0. Then their Hilbert-distance is defined

as

h(x, y) := logmax
k,l

(

xk
yk

/xl
yl

)

. (60)

The Hilbert-distance satisfies the properties of a metric within the set of strictly positive vectors in Rp,

except that h(x, y) = 0 if and only if y = cx with some c > 0. The operator norm of a non-negative

allowable matrix A corresponding to the Hilbert-distance is called the Birkhoff contraction coefficient of

A. More exactly we set

Definition 31. The Birkhoff contraction coefficient of a non-negative allowable matrix A is defined as

τ(A) := sup

{

h(Ax,Ay)

h(x, y)

∣

∣

∣

∣

x, y ∈ R
p
+, h(x, y) 6= 0

}

.

Note that x, y > 0 and the assumption that A is allowable imply that Ax,Ay > 0, and thus h(Ax,Ay)

is well– defined. Obviously, τ(A) is sub-multiplicative, i.e. τ(AB) ≤ τ(A) · τ(B), and it is easy to see

that τ(A) ≤ 1.

A beautiful theorem due to Birkhoff yields an explicit expression of τ(A) in terms of the elements

of A, which we present for allowable matrices. Define an intermediary quantity ϕ(A) as follows. Let

ϕ(A) = 0 if A has any 0 element. Otherwise, we set

ϕ(A) := logmax
i,j,k,l

(

Aik

Ajk

)

/

(

Ail

Ajl

)

= max
i,j

h(Ai·, Aj·). (61)



17

By Birkhoff’s theorem (Theorem 3.12 of [24] or [25])

τ(A) = tanh

(

ϕ(A)

4

)

=
eϕ(A)/4 − eϕ(A)/4

eϕ(A)/4 + eϕ(A)/4
. (62)

Theorem 32. Let (An) be a strictly stationary, ergodic stochastic process of p×p matrices satisfying the

conditions of Theorem 8. Then

λ1 − λ2 ≥ −E log τ(A1).

Proof of Theorem 32.. Since Am is allowable for all m and x, w are strictly positive, the Hilbert-distances

of xn = AnAn−1 · · ·A1x and wn = AnAn−1 · · ·A1w are well-defined, and we have

h(xn, wn) = h(AnAn−1 · · ·A1x, AnAn−1 · · ·A1w)

≤
n
∏

k=1

τ(Ak) · h(x, w). (63)

Therefore we get:

lim sup
n→∞

1

n
log h(xn, wn) ≤ lim sup

n→∞

1

n

n
∑

k=1

log τ(Ak)

= lim
n→∞

1

n

n
∑

k=1

log τ(Ak) = E log τ(A1) a.s., (64)

where the last two equalities follow from the ergodic theorem. Note that we can handle also the case

when E log τ(A1) = −∞ since log τ(A1) is bounded from above by 0. Now, the left hand side can be

bounded from below via the total variation ||x̄n − w̄n||TV using the following elementary lemma:

Lemma 33. Let ξ, η be two strictly positive probability vectors in Rp. Then for their total variation

distance we have

‖ξ − η‖TV ≤ 1

2
(eh(ξ,η) − 1).

Proof of Lemma 33. Let us write briefly h = h(ξ, η). First note that for any k, l we have

ξk
ηk
/
ξl
ηl

≤ eh.

Define R = maxk
ξk
ηk

, r = minl
ξl
ηl
. Since ξ, η are probability vectors, we have R ≥ 1 ≥ r, and thus from

the above inequality we get e−h ≤ r ≤ R ≤ eh. Taking a k such that ξk ≥ ηk we have

|ξk − ηk| = ξk − ηk =

(

ξk
ηk

− 1

)

ηk ≤ (eh − 1)ηk.

On the other hand, for ξk ≤ ηk we get

|ξk − ηk| = ηk − ξk =

(

1− ξk
ηk

)

ηk ≤ (1− e−h)ηk ≤ (eh − 1)ηk.

Summation over k gives the claim.
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To complete the proof of Theorem 32 we note that due to the lemma above we can bound h = h(ξ, η)

from below for small h, say for 0 ≤ h ≤ 1/2 we get ‖ξ−η‖TV ≤ h. Taking into account that the Hilbert-

distance is invariant w.r.t. scaling its arguments we have h(xn, wn) = h(x̄n, w̄n), and this is exponentially

small by Theorem 8, thus we can use ‖ξ − η‖TV ≤ h in (64) to get

lim sup
n→∞

1

n
log ‖x̄n − w̄n‖TV ≤ lim sup

n→∞

1

n
log h(x̄n, w̄n)

= lim sup
n→∞

1

n
log h(xn, wn) ≤ E log τ(A1) a.s. (65)

But we know by Theorem 8 that for almost all pairs (x, w), x > 0, w > 0, the left side is equal to

−(λ1 − λ2) a.s., even with lim instead of lim sup . From here after rearrangement we get the claim.

Note that the above result is directly not applicable for the analysis of the push-sum algorithm allowing

packet loss, since all off-diagonal elements of A1, except at most one, is 0 and hence τ(A1) ≡ 1 for all ω.

A set of alternative lower bounds can be obtained by segmenting the product An · · ·A1 into the product

of blocks of fixed length, say m ≥ 1. Let An(ω) = A1(T
nω), where T is a measure-preserving ergodic

transformation of Ω. Theorem 32 has the following extension:

Theorem 34. Let (An) be a strictly stationary, ergodic stochastic process of p×p matrices satisfying the

conditions of Theorem 8. Then for all integers integers m ≥ 1 we have

λ1 − λ2 ≥ − 1

m
E log τ(Mm). (66)

Proof of Theorem 34.. Let m ≥ 1, and define Bn = Anm ·Anm−1 · · · ·A(n−1)m+1. Obviously, Bn+1(ω) =

Bn(T
mω), thus (Bn) is a strictly stationary process. Now, in analogy with (63) we have

h(xnm, wnm) = h(BnBn−1 · · ·B1x, BnBn−1 · · ·B1w)

≤
n
∏

k=1

τ(Bk) · h(x, w). (67)

Therefore we get:

lim sup
n→∞

1

nm
log h(xnm, wnm) ≤ lim sup

n→∞

1

nm

n
∑

k=1

log τ(Bk)

=
1

m
lim
n→∞

1

n

n
∑

k=1

log τ(Bk) w.p.1, (68)

where the last equality follows from the ergodic theorem. Here the left hand side is bounded from below

by −(λ1−λ2) w.p.1. as seen above. Applying the ergodic theorem once again the right hand side converges

to 1
m
E [log τ(B1) | FTm], where FTm denotes the σ-algebra of invariant sets w.r.t. Tm. Thus we get the

almost sure upper bound for −(λ1 − λ2):

1

m
lim
n→∞

1

n

n
∑

k=1

log τ(Bk) =
1

m
E [log τ(B1) | FTm ].

Taking expectation of both sides we get the claim.

Now, it is easy to see that the sequence E log τ(Mm) is sub-additive (for any ergodic T ), therefore

E log τ(Mm)/m has a limit (the value of which may be −∞). In addition

lim
m→∞

1

m
E log τ(Mm) = inf

m

1

m
E log τ(Mm).
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Thus we get the following corollary:

Corollary 35. Let (An) be a strictly stationary, ergodic stochastic process of p × p matrices satisfying

the conditions of Theorem 8. Then λ1 − λ2 is bounded from below by

lim
m→∞

− 1

m
E log τ(Mm) = sup

m
− 1

m
E log τ(Mm). (69)

A nice application of Corollary 35, providing a lower bound for the spectral gap, is the following:

Theorem 36. Let (An) be a strictly stationary, ergodic stochastic process of p×p matrices satisfying the

conditions of Theorem 8. Then we have λ1 − λ2 > 0.

Proof. Since (An) is sequentially primitive, there exists a finite m such that P (Mm > 0) > 0. But then

P (τ(Mm) < 1) > 0, and hence −E log τ(Mm) > 0. The claim now follows from the second part of

Corollary 35.

A natural question that arises at this point if we can drop the expectation on the right hand sides of

(69). We show that in fact this can be done using Kingmans’s sub-additive ergodic theorem, see [26],

[27], [28], [29].

Theorem 37. Let (An) be a strictly stationary, ergodic stochastic process of p×p matrices satisfying the

conditions of Theorem 8. Then we have

lim
m→∞

1

m
log τ(Mm) = lim

m→∞

1

m
E log τ(Mm) w.p.1.

Proof of Theorem 37.. The double index series Mm,k = AmAm−1 · · ·Ak is obviously strictly stationary,

Mm+1,k+1(ω) = Mm,k(Tω), where T is ergodic. It follows that the double index series log τ(Mm,k) is

also strictly stationary. Moreover, it is obviously sub-additive, and E log+ τ(M1,1) = 0 since τ(M1,1) ≤ 1.

Thus by the sub-additive ergodic theorem we have

lim
m→∞

1

m
log τ(Mm,1) = lim

m→∞

1

m
E log τ(Mm,1) w.p.1,

which proves our claim.

Combining this theorem with Corollary 35 we get the following extension:

Corollary 38. Let (An) be a strictly stationary, ergodic stochastic process of p × p matrices satisfying

the conditions of Theorem 8. Then we have the following lower bound for the spectral gap:

λ1 − λ2 ≥ lim
m→∞

− 1

m
log τ(Mm) w.p.1. (70)

The above results can be interpreted also as lower bounds for log τ(Mm) in various forms. We will

now develop an almost sure upper bound for log τ(Mm) using the techniques developed in the previous

sections. Taking into account (62) the Birkhoff contraction coefficient τ(Mm), for its small values and

for Mm > 0, is equivalent to ϕ(Mm). On the other hand, ϕ(Mm) is a measure of collinearity of the rows

of τ(Mm), see (61). Thus an upper bound for τ(Mm) provides a bound on the speed with which Mm

converges to a rank-1 matrix.

Theorem 39. Assume that any of the sets of conditions of Theorems 12, 14 or 16 is satisfied. Then we

have

lim sup
n→∞

1

n
log τ(Mn) ≤ −(λ1 − λ2) w.p.1. (71)



20

Proof of Theorem 39.. The conditions of the theorem are identical to those of Lemma 48, implying that

for any pair of row indices i, j and any column index k the quotient M ik
n /M

jk
n is sub-exponential, and

thus Condition 26 is satisfied. It follows that the conditions of Lemma 27 are also satisfied, implying that

1/ui1n is sub-exponential a.s. for all i.

Now, consider the equality (40), developed in the course of the proof of Lemma 27. Recall that |uj1n | ≤ 1

and 1/ui1n is sub-exponential for all i, j. Hence dividing both the numerator and the denominator of (40)

by ui1n , we get, independently of the column index k,

M jk
n

M ik
n

=
uj1n
ui1n

+O(e(−λ1+λ2+o(1))n) a.s. (72)

By assumption for sufficiently large (random) n, the matrix Mn is strictly positive, hence we can write,

see (61),

ϕ(Mn) = max
i,j,k,l

log

(

M jl
n

M il
n

)

/

(

M jk
n

M ik
n

)

. (73)

Taking into account (72), and once again noting that |uj1n | ≤ 1 and 1/ui1n is sub-exponential for all i, j,

we get a.s.

ϕ(Mn) = O(log(1 + e(−λ1+λ2+o(1))n)) = O(e(−λ1+λ2+o(1))n).

Taking into account Birkhoff’s quoted theorem, stating that τ(Mn) = tanh (ϕ(Mn)/4) , we immediately

get

τ(Mn) = O(e(−λ1+λ2+o(1))n), (74)

from which the theorem immediately follows.

From the theorem above we get via a trivial rearrangement an a.s. upper bound for the spectral gap in

terms of Birkhoff contraction coefficient:

λ1 − λ2 ≤ − lim sup
n→∞

1

m
log τ(Mm) w.p.1. (75)

We have seen that on the right hand side lim sup can be replaced with lim . Combining the above upper

bound for the gap with the lower bound obtained in Corollary 38 we get the following result:

Theorem 40. Assume that any of the sets of conditions of Theorems 12, 14 or 16 is satisfied. Then we

have

λ1 − λ2 = lim
m→∞

− 1

m
log τ(Mm) w.p.1. (76)

Remark 41. We note in passing that a straightforward extension of (47) yields the following: let u, v ≥ 0

be non-zero vectors, then we have a.s.
(

u⊤Mnx

u⊤Mnw

)

/

(

v⊤Mnx

v⊤Mnw

)

= 1 +O(e(λ2−λ1+o(1))n).

In the case when we take a fixed non-negative, allowable, primitive matrix A, we easily get the following

result: for all pairs of non-negative, non-zero vectors (u, v), except for a set of Lebesgue-measure zero,

we have a.s.

lim
n→∞

1

n
log log

(

u⊤Anx

u⊤Anw

)

/

(

v⊤Anx

v⊤Anw

)

= −(λ1 − λ2).
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IX. DISCUSSION AND CONCLUSION

We should point out that the characterization of the a.s. rate of convergence via the spectral gap λ1−λ2
may provide a solid ground for further investigations of direct practical interest, such as explicit estimates

on the relation of spectral gap with respect to the number of nodes, the failure probabilities or the strength

of connectivity, see [9] on related empirical results to this effect. Let us mention two simple facts that

may be relevant in such investigations.

First, we note λ1(A) is monotone non-decreasing in A. More precisely, letting A = (An) and A′ = (A′
n),

and assuming An ≤ A′
n entry-wise for all n w.p.1 implies λ1(A) ≤ λ1(A′). Indeed, A′

nA
′
n−1 · · ·A′

1 is

entry-wise not less than AnAn−1 · · ·A1, hence letting ‖B‖ =
∑

i,j bij , we have ‖AnAn−1 · · ·A1‖ ≤
‖A′

nA
′
n−1 · · ·A′

1‖, implying the stated inequality. From the above observation we immediately get the

following simple result:

Lemma 42. Let (An) and (A′
n) be two strictly stationary, ergodic processes of matrices associated with

the push-sum method on the same underlying network but with with packet loss probabilities rij ≤ r′ij for

all i, j. Then λ1(A) ≥ λ1(A′).

Unfortunately, the effect of increasing the packet loss probabilities on λ2 is yet unknown. If we had

λ2(A) ≤ λ2(A′) then we could conclude that increasing the packet loss probabilities would decrease, or

at least not increase the gap. A nice observation here is that although we do not know if λ2(A) ≤ λ2(A′)

we do know that
∑p

i=2 λi(A) ≤∑p
i=2 λi(A′). The last inequality follows from a simple relationship for

the sum of the Lyapunov-exponents given in the lemma below:

Lemma 43. Let (An) be a sequence of p × p matrices satisfying the conditions of Proposition 1. Then

we have

λ1 + . . .+ λp = E log(| detA1|)

In the case of the push-sum algorithm allowing packet loss we get λ1 + . . .+ λp = − log 2.

The magic of the lemma is that the l.h.s. depends only on the marginal distribution of A1.

Proof of Lemma 43. For the p-factor exterior product we have,

An ∧ · · · ∧ An = detAn.

Therefore

Πn
k=1 (Ak ∧ · · · ∧ Ak) = Πn

k=1 detAk.

On the other hand, using the singular value decomposition An · · ·A1 = UnΣnVn we can write

Πn
k=1 (Ak ∧ · · · ∧ Ak)

=Πn
k=1 (Uk ∧ · · · ∧ Uk) · Πn

k=1 (Σk ∧ · · · ∧ Σk)

·Πn
k=1 (Vk ∧ · · · ∧ Vk)

Therefore

Πn
k=1 detAk = ±Πn

k=1 det Σk = ±Πn
k=1σ

1
k · · ·σpk.

Taking absolute value and logarithm, dividing by n, and the taking the limit, we get

E log(| detA1|) = λ1 + . . .+ λp.

In the case of the push-sum algorithm allowing packet loss we have | detAn| = 1/2 for all n and all

ω, thus we get the claim.
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Remark 44. Setting p = 2 the combination of the above observations give that in the case of the push-sum

algorithm increasing the probabilities of packet loss will decrease the spectral gap:

λ1(A)− λ2(A) ≥ λ1(A′)− λ2(A′) (77)

for any strictly stationary, ergodic 2× 2 matrix-valued processes (An) and (A′
n) of the form 3, no matter

what the dependence structure is.

Remark 45. Finally we should note in retrospect that Theorem 36 implies that the conditions λ1 − λ2 in

our main results Theorems 12, 14, 16 and 19 can be removed, namely it is implied by the assumption that

(An) is sequentially primitive. Similarly, in the case of the push-sum algorithm, Theorem 22, the claim

that −(λ1 − λ2) < 0 follows immediately from Theorem 36.

This observation combined with Theorem 8 has the following nice implication. Let x, w be probability

vectors. The xn, wn will be probability vectors for all n, which can be interpreted as the distributions

generated by a finite-state Markov-chain in a random, strictly stationary environment with initial distri-

butions x, w. Then the statement of Theorem 8, with the assumption λ2 < 0 ensured by Theorem 36 as

a consequence of sequential primitivity, specializes to

lim sup
n→∞

1

n
log ‖xn − wn‖TV = λ2 < 0,

for almost all (x, w) stating a kind of exponential stability for Markov-chains in random environment.

Furthermore, combining with Theorem 19 we get a rate of stability for ratios inspired by the separation

distance

lim sup
n→∞

1

n
logmax

i

∣

∣

∣

∣

xin
win

− 1

∣

∣

∣

∣

= λ2 < 0,

once again for almost all (x, w) initial distributions.

Potential connections. We thank to our anonymous reviewers for calling our attention to papers that

may be relevant to the problems discussed above, such as [4], and the follow-up paper [30] developing a

ratio consensus algorithm allowing arbitrary bounded delays. In fact, the results of our paper, combined

with the basic ideas of [30], are directly applicable to this class of problems. Secondly, an ingenious

device was proposed in [31], using auxiliary variables to solve the average consensus problem with

column stochastic matrices via a linear asynchronous gossip algorithm, proving exponential mean square

stability with an explicit upper bound for the rate. Our results seem to be applicable to prove almost

sure exponential convergence, the rate of which is superior to the rate provided by [31] due to a simple

convexity argument.

Conclusion. The problems discussed in the paper are motivated by the ratio consensus problems and

algorithms, such as the push-sum or weighted gossip algorithms. We have considered fairly general,

strictly stationary communication protocols, covering as special cases broadcast algorithms, geographic

gossip, randomized path averaging or one-way averaging. We have given sharp upper bounds for the rate

of almost sure exponential convergence in terms of the spectral gap of the associated matrix sequence

under various technical conditions. We have presented a variety of connections between the spectral gap

and the Birkhoff contraction coefficient of the product of the associated matrices. Our results significantly

extend relevant results of [9], and provide a solution to an open problem raised in [2].
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X. APPENDIX I. SEQUENTIAL PRIMITIVITY

Lemma 5 is a direct consequence of the lemma below, a standard device in queuing theory:

Lemma 46. Let (∆n) be a two-sided strictly stationary, non-negative process. Define for all n

mn = max
m≤n

{m+∆m ≤ n} and ∆′
n = n−mn. (78)

Then the distributions of ∆n and ∆′
n are the same for all n. In particular, E∆n = E∆′

n.

Proof of Lemma 46.. We have for any x ≥ 0

P (∆′
n > x) = P (n−mn > x) = P (mn < n− x)

= P (n− x+∆n−x > n) = P (∆n−x > x). (79)

Since (∆n) is strictly stationary we have P (∆n−x > x) = P (∆n > x), as claimed.

The lemma above describes an apparent paradox between forward and backward waiting times, since

at any time n we have ∆′
n ≥ ∆mn

, and this may tempt us to believe that ∆′
n is stochastically larger than

∆n, which would contradict to the symmetry between forward and backward.

Proof of Lemma 7. Let the elements of A be denoted by B1, B2, . . . , Br so that P (A1 = Bi) > 0 for all

i. The i.i.d. sequence (An) can be identified with an i.i.d. sequence of indices i1, i2, . . . , with 1 ≤ ik ≤ r.

Since A is primitive, there exists a word w = (js, js−1, . . . , j1) such that BjsBjs−1
· · ·Bj1 > 0. Segment

the full sequence of indices into an i.i.d. sequence of s-tuples vm. Let τ := min{m : vm = w}. Since

p := P (vm = w) > 0 implies P (τ > x) = (1− p)x and ψ1 ≤ mτ , the claim follows.

XI. APPENDIX II. NORMALIZED PRODUCTS

In this section we present the proof of Theorem 8, starting with the proofs of the auxiliary results,

Lemma 9 and 10.

Proof of Lemma 9. Consider

M⊤
nMn = V ⊤

n diag(2σin)Vn.

For n ≥ τ this is a symmetric positive semi-definite matrix with strictly positive elements. Its eigenvalues

are 2σin with corresponding eigenvectors (vi·n)
⊤. By the Perron-Frobenius theorem M⊤

nMn has a unique

eigenvalue with maximal modulus, which is positive as is the corresponding eigenvector. It follows that

2σ1
n is a single eigenvalue, and v1·n > 0 elementwise.

Expand x in the orthonormal system defined by the rows of Vn: x⊤ =
∑

αinv
i·
n . Here αin := vi·nx. Then

xTM⊤
nMnx =

∑

(σin)
2(αin)

2.

Now, v1·n > 0 and |v1·n | = 1, together with x > 0 imply that α1n > α1 > 0 with some α1. Thus

xTM⊤
nMnx > (σ1

n)
2α2

1, from which we get lim inf 1
n
log |xTM⊤

nMnx| ≥ 2λ1, implying lim inf 1
n
log |Mnx| ≥

λ1, and thus the claim of the lemma follows.

Proof of Lemma 10. Write V ′
1 = Rp ∧ Rp. According to Oseledec’s theorem there is a proper random

subspace of V ′
1 of fixed dimension, say V ′

2 , such that for z ∈ V ′
1 \ V ′

2

lim
n→∞

1

n
log |((AnAn−1 · · ·A1) ∧ (AnAn−1 · · ·A1))z|

=λ1 + λ2 a.s.
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Consider the tensor product space Rp ⊗ Rp and its canonical linear mapping to V ′
1 = Rp ∧ Rp, denoted

by S, defined by
∑

i,j

xij ei ⊗ ej−→
∑

i,j

xijei ∧ ej =
∑

i<j

(xij − xji)ei ∧ ej .

Equivalently, interpreting Rp⊗Rp as the linear space of matrices of size p×p, and identifying Rp∧Rp as

the linear space of antisymmetric matrices, the linear transformation S takes the form S(X) = X −X⊤.

It is readily seen that V2” = S−1V ′
2 is a proper subspace of the tensor product space Rp ⊗Rp. Indeed,

any X ∈ Rp ⊗ Rp can be written as X = Xa +Xs, as a sum of its antisymmetric and symmetric part,

and we have S(X) = 2Xa. Therefore the linear subspace V2” = S−1V ′
2 consists of matrices for which

Xa ∈ V ′
2 , and thus it is indeed a proper subspace.

Let E denote the random set of exceptional pairs (x, w)(ω) defined as

Exw(ω) = {(x, w) : x⊗ w ∈ V2”(ω)} (80)

We claim that Exw(ω) ∈ Rp×Rp has zero Lebesgue-measure for all almost all ω. Assuming the contrary,

there is a set Ex(ω) ∈ Rp of positive Lebesgue measure such that for each x ∈ Ex(ω) the set

Ew|x(ω) = {w : (x, w) ∈ Exw(ω)}
has positive Lebesgue-measure in Rp. Taking any x ∈ Ex(ω), the elements of Ew|x(ω) span the full Rp,

therefore (x, w), w ∈ Ew|x(ω) span the linear space x⊗Rp. Letting x vary through the positive set Ex(ω)

we get that the elements of x⊗Rp span the whole Rp×Rp. This is in contradiction with the assumption

any for (x, w) ∈ Exw(ω) the tensor product x⊗ w lies in the proper subspace V2”.

We conclude by Fubini’s theorem that the exceptional set in Rp × Rp × Ω

Exwω = {(x, w, ω) : (x, w) ∈ V2”(ω)} (81)

has λ× λ× P -measure zero. Applying Fubini’s theorem once again in the opposite direction we get the

claim.

Proof of Theorem 8. Note that since x̄n and w̄n belong to the simplex of probability vectors we have

‖x̄n − w̄n‖TV ∼ | sin(x̄n, w̄n)| = | sin(xn, wn)| =
|xn ∧ wn|
|xn| · |wn|

,

where an ∼ bn means that an/bn and bn/an are bounded by a deterministic constant. After taking logarithm

we get that log ‖x̄n − w̄n‖TV can be written as

log |xn ∧ wn| − log |xn| − log |wn|+O(1), (82)

where O(1) is bounded by a deterministic constant.

To deal with the second and third terms of (82) we use Lemma 9, from which we get for any strictly

positive initial vectors x, w > 0 almost surely

lim
n→∞

1

n
log |xn| = λ1 and lim

n→∞

1

n
log |wn| = λ1. (83)

To deal with the first term of (82) we use Lemma 10 implying that for all initial pairs (x, w) ∈ R
p
+×R

p
+,

except for a set of Lebesgue measure zero, we have

lim
n→∞

1

n
log |(xn ∧ wn)| = λ1 + λ2 a.s. (84)

Moreover, Oseledec’s theorem implies that for all initial pairs (x, w) ∈ Rp×Rp the left hand side of (84)

exists, and it is majorized by the right hand side w.p.1. Combining these facts with (82) we immediately

get Theorem 8.
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XII. APPENDIX III. THE PUSH-SUM ALGORITHM

Proof of Lemma 23. The basic idea is what is called flooding. A convenient reference is Lemma 4.2

of [2], the conditions of which can be readily verified, implying that there exist an N such that p :=

P (AN · · ·A1 > 0) > 0, where the strict inequality is meant entry-wise. It follows that for any m ≥ 1 we

have P (AmN · · ·A1 > 0) > 1− (1− p)m, and the claim follows by a Borell-Cantelli argument.

Proof of Lemma 24. The following proof relies on a combination of [10] and Theorem 8. Note that our

conditions are identical with those of [10], except that in there αji = 1/2 for all (j, i) ∈ E and w = 1 were

assumed. It is easily seen that the analysis of Theorem 3 in [10] carries over for general w ≥ 0, w 6= 0

and αji ∈ (0, 1). In particular, setting sn = 1
⊤xn and tn = 1

⊤wn, we get by a straightforward extension

of Theorem 3 in [10] : for any vector of initial values x ∈ Rp, and a non-negative vector of initial weights

w ∈ R
p
+ such that w 6= 0 we have for all i = 1, . . . p a.s.

lim
n→∞

xni
wni

= lim
n→∞

sn
tn

· x̄ni
w̄ni

= x∗ (85)

for some random x∗. In fact the convergence is at least exponential with a deterministic rate: for all

i = 1, . . . p a.s.
sn
tn

· x̄ni
w̄ni

= x∗ +O(e−αn). (86)

It follows by a simple convexity argument (see the proof of Corollary 17) that we also have sn/tn → x∗

a.s. exponentially fast with the same rate:

sn
tn

= x∗ +O(e−αn) a.s. (87)

In addition, x∗ is a convex combination of the initial ratios xk/wk. It follows that choosing x, w > 0 we

will have x∗ > 0.

Hence dividing (86) by (87) we get for all i = 1, . . . p a.s.

x̄ni
w̄ni

= 1 +O(e−αn). (88)

From this the exponential decay of the total variation distance of x̄ni and w̄ni immediately follows:

multiplying both sides of (88) by 0 < w̄ni ≤ maxiwi, followed by summation over i gives the almost

sure asymptotics

|x̄ni − w̄ni| = O(e−αn) and ‖x̄n − w̄n‖TV = O(e−αn),

and hence for all strictly positive pairs (x, w) we get

lim sup
n→∞

1

n
log ‖x̄n − w̄n‖TV < 0 a.s. (89)

But the left hand side is equal to −(λ1 − λ2) a.s. for Lebesgue-almost all (x, w) ∈ R
p
+ ×R

p
+ x, w 6= 0 by

Theorem 8 with lim sup replaced by lim . Thus
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XIII. APPENDIX IV. M ik
n /M

jk
n IS SUB-EXPONENTIAL

We first provide an elementary a priori estimate of M ik
n /M

jk
n using using the following lemma, a variant

of which has been stated by Bellman, see [12], [32].

Lemma 47. Let M,B,X be p× p matrices such that M = BX. Assume that B is strictly positive, and

X is a non-negative, allowable matrix. Then M is strictly positive, and for any fixed pair of row indices

(i, j) and any column index k we have

min
r

Bir

Bjr
≤ M ik

M jk
≤ max

r

Bir

Bjr

Proof of Lemma 47. The (i, k) and the (j, k) element of M can be expressed as

M ik =
∑

r

BirXrk and M jk =
∑

r

BjrXrk.

It is easily seen that the ratio M ik/M jk, i.e.

Mi,k

M jk
=

∑

r BirXrk
∑

r BjrXrk

can be written as a convex combination of Bir/Bjr with weights

µr = BjrXrk/
∑

s

BjsXsk

which implies the claim.

Lemma 48. Under any set of conditions given in Theorem 12, 14, 16 it holds that for any pair of row

indices i, j and any column index k the quotient M ik
n /M

jk
n is sub-exponential.

Proof of Lemma 48. In order to apply Lemma 47 let us first extend the sequence (An) for n ≤ 0, with

eventual extension of the underlying probability space, so that we get a two-sided strictly stationary,

ergodic sequence, or even i.i.d. sequence in the case of Theorem 12. Recall the definition of the index of

backward sequential primitivity:

ρn = min{ρ ≥ 0 : AnAn−1 · · ·An−ρ+1 > 0}.

Note that under any set of conditions given in Theorems 12, 14, 16 we can claim that Eρn <∞. Indeed,

under the conditions of Theorem 12 Eρn < ∞ follows from Lemma 7. On the other hand, Eρn < ∞
follows from the condition Eψn <∞, that was a priori assumed to hold in the case of Theorems 14 and

16, due to Lemma 5. Consider now the sets

ΩGn = {ω : ρn ≤ n} and ΩGcn = Ω \ ΩGn .

Note that Eρn <∞ implies that

∞
∑

n=1

P (ΩGcn ) =
∞
∑

n=1

(1− P (ΩGn )) =
∞
∑

n=1

P (ρn > n) <∞,

and thus ΩGcn occurs finitely many times w.p.1. by the Borel-Cantelli lemma. Equivalently, the set

ΩGc := lim sup
n→∞

ΩGcn =
⋂

m≥1

⋃

n≥m

ΩGn (90)
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has measure 0, and consequently its complement

ΩG := lim inf
n

ΩGn =
⋃

m≥1

⋂

n≥m

ΩGn (91)

has probability 1. On the set ΩGn consider the following decomposition of Mn by separating a strictly

positive factor Bn on the left:

Mn = AnAn−1 · · ·An−ρn+1M̃n = BnM̃n. (92)

Let β ′
n =

∑

k,lA
kl
n . Obviously, β ′

n is equivalent to βn = maxk,lA
kl
n , and also to ‖An‖, i.e. β ′

n ∼ βn ∼
‖An‖. Then, a simple crude estimator of minr B

ir
n /B

jr
n can be obtained on the set ΩGn , with αn defined

under (28), as follows:
Πn
m=n−ρn+1αm

Πn
m=n−ρn+1β

′
m

≤ Bir
n

Bjr
n

≤
Πn
m=n−ρn+1β

′
m

Πn
m=n−ρn+1αm

. (93)

Obviously, the lower bound is the reciprocal of the upper bound. We will estimate the latter from above.

From the inequality (93) we get on ΩGn

log+
Bir
n

Bjr
n

≤
n
∑

m=n−ρn+1

log+ β ′
m −

n
∑

m=n−ρn+1

log− αm =: πn. (94)

Note that the middle term, and thus πn, is actually well-defined on all Ω (since m can take on negative

values) and obviously their distributions are independent of n. Thus, if we prove Eπn <∞, it will imply

that πn is sub-linear on Ω, yielding that Bir
n /B

jr
n is sub-exponential a.s. on ΩG for any pair (i, j) and any

r. This, in combination with Lemma 47 yields the proof of Lemma 48.

Claim: Under any set of conditions given in Theorems 12, 14, 16 it holds that Eπn <∞.

The proof for the case of Theorem 12. Note that ρn is a stopping time for the backward process with

finite expectation. In addition, E log+ β ′
n < ∞. Moreover E log− αn > −∞, by Condition (11). Since

log+ β ′
n and log− αn form i.i.d. sequences we get by Wald’s theorem

E

(

n
∑

m=n−ρn+1

log+ β ′
m −

n
∑

m=n−ρn+1

log− αm

)

= Eρn · E log+ β ′
1 − Eρn · E log− α1 <∞. (95)

The proof for the case of Theorem 14, in which the positive elements of An are assumed to be bounded

from below by a positive bound and from above, is trivial: we have

E

(

n
∑

m=n−ρn+1

log+ β ′
m −

n
∑

m=n−ρn+1

log− αm

)

≤ E ρn · log+(p2β)− E ρn · E log− α <∞. (96)

Finally, consider the case of Theorem 16, in which the positive elements of An may spread all over

R+. Setting λ := E log+ β ′
n, and noting that (log+ β ′

n) is ergodic, the random variable defined by

Cn(ω, ε) = max
k≥0

(

n
∑

m=n−k

(log+ β ′
m − λ− ε)

)+

(97)

is finite w.p.1. for any ε > 0. Obviously, we have

n
∑

m=n−ρn+1

log+ β ′
m ≤ Cn(ω, ε) + (λ+ ε)ρn. (98)
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We can proceed with the estimation of
∑n

m=n−ρn+1 log
− αm analogously. Under the conditions of Theorem

16 we have Eρn < ∞. Obviously, (Cn(ω, ε)) is a strictly stationary sequence, therefore to complete the

proof of the Claim it is sufficient to prove that ECn(ω, ε) < ∞. This follows directly from the lemma

below:

Lemma 49. Let (ξk), k ≥ 1 be a strictly stationary, ergodic process such that Eξk =: −c < 0. Define

η = max
m≥1

(

m
∑

k=1

ξk

)+

. (99)

Assume that (ξk) is M-mixing of order q with some q > 4. Then Eη <∞.

Proof of Lemma 49. For any x ≥ 0 we have

P (η ≥ x) ≤
∞
∑

m=1

P

(

m
∑

k=1

ξk ≥ x

)

=

∞
∑

m=1

P

(

m
∑

k=1

(ξk + c) ≥ x+mc

)

. (100)

The m-th term on the r.h.s. can be bounded from above by using Markov’s inequality for the q-th absolute

moment and the condition that (ξk) is M-mixing of order q as follows:

Cqm
q/2

(x+mc)q
=

Cqm
q/2

cq (x/c+m)q
≤ Cq (x/c+m)q/2

cq (x/c +m)q

=
Cq

cq (x/c+m)q/2
(101)

with some q > 4. Thus the sum over m on the r.h.s. of (100) can be majorized, by noting that the right

hand sides of (101) are monotone decreasing, as follows:
∞
∑

m=1

Cq
cq (x/c+m)q/2

≤
∫ ∞

0

Cq
cq (x/c+ t)q/2

dt

=

∫ ∞

x/c

Cq
cq tq/2

dt =
Cq

cq (−q/2 + 1)

(x

c

)−q/2+1

. (102)

Summing through the positive integers x = n, and recalling that q > 4, we conclude that
∞
∑

n=1

P (η ≥ n) ≤
∞
∑

n=1

Cq
cq(−q/2 + 1)

(n

c

)−q/2+1

<∞, (103)

hence Eη <∞, as stated in the lemma.

It follows immediately, that the process

ηn = max
m≥n

(

m
∑

k=n

ξi

)+

. (104)

is sub-linear. If (ξi) is a two-sided process the same argument applies for the time-reversed process

ηrn := max
m≤n

(

n
∑

k=m

ξi

)+

. (105)

With this the proof of Lemma 48 is complete.
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