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Abstract

We study an iterated temporal and contemporaneous aggregation of N independent

copies of a strongly stationary subcritical Galton–Watson branching process with regularly

varying immigration having index α ∈ (0, 2). Limits of finite dimensional distributions

of appropriately centered and scaled aggregated partial sum processes are shown to exist

when first taking the limit as N → ∞ and then the time scale n → ∞. The limit

process is an α-stable process if α ∈ (0, 1) ∪ (1, 2), and a deterministic line with slope

1 if α = 1.

1 Introduction

The field of temporal and contemporaneous (also called cross-sectional) aggregations of inde-

pendent stationary stochastic processes is an important and very active research area in the

empirical and theoretical statistics and in other areas as well. Robinson [26] and Granger [9]

started to investigate the scheme of contemporaneous aggregation of random-coefficient autore-

gressive processes of order 1 in order to obtain the long memory phenomenon in aggregated

time series. For surveys on aggregation of different kinds of stochastic processes, see, e.g.,

Pilipauskaitė and Surgailis [19], Jirak [12, page 512] or the arXiv version of Barczy et al. [3].

Recently, Puplinskaitė and Surgailis [21, 22] studied iterated aggregation of random coeffi-

cient autoregressive processes of order 1 with common innovations and with so-called idiosyn-

cratic innovations, respectively, belonging to the domain of attraction of an α-stable law. Limits
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of finite dimensional distributions of appropriately centered and scaled aggregated partial sum

processes are shown to exist when first the number of copies N → ∞ and then the time scale

n → ∞. Very recently, Pilipauskaitė et al. [18] extended the results of Puplinskaitė and Sur-

gailis [22] (idiosyncratic case) deriving limits of finite dimensional distributions of appropriately

centered and scaled aggregated partial sum processes when first the time scale n → ∞ and

then the number of copies N → ∞, and when n → ∞ and N → ∞ simultaneously with

possibly different rates.

The above listed references are all about aggregation procedures for times series, mainly

for randomized autoregressive processes. According to our knowledge this question has not

been studied before in the literature. The present paper investigates aggregation schemes for

some branching processes with low moment condition. Branching processes, especially Galton–

Watson branching processes with immigration, have attracted a lot of attention due to the fact

that they are widely used in mathematical biology for modelling the growth of a population

in time. In Barczy et al. [4], we started to investigate the limit behavior of temporal and

contemporaneous aggregations of independent copies of a stationary multitype Galton–Watson

branching process with immigration under third order moment conditions on the offspring and

immigration distributions in the iterated and simultaneous cases as well. In both cases, the

limit process is a zero mean Brownian motion with the same covariance function. As of 2020,

modeling the COVID-19 contamination of the population of a certain region or country is of

great importance. Multitype Galton–Watson processes with immigration have been frequently

used to model the spreading of a number of diseases, and they can be applied for this new

disease as well. For example, Yanev et al. [29] applied a two-type Galton–Watson process with

immigration to model the number of detected, COVID-19-infected and undetected, COVID-

19-infected people in a population. The temporal and contemporaneous aggregation of the first

coordinate process of the two-type branching process in question would mean the total number

of detected, infected people up to some given time point across several regions.

In this paper we study the limit behavior of temporal and contemporaneous aggregations of

independent copies of a strongly stationary Galton–Watson branching process (Xk)k>0 with

regularly varying immigration having index in (0, 2) (yielding infinite variance) in an iterated,

idiosyncratic case, namely, when first the number of copies N → ∞ and then the time scale

n→ ∞. Our results are analogous to those of Puplinskaitė and Surgailis [22].

The present paper is organized as follows. In Section 2, first we collect our assumptions that

are valid for the whole paper, namely, we consider a sequence of independent copies of (Xk)k>0

such that the expectation of the offspring distribution is less than 1 (so-called subcritical

case). In case of α ∈ [1, 2), we additionally suppose the finiteness of the second moment of

the offspring distribution. Under our assumptions, by Basrak et al. [5, Theorem 2.1.1] (see also

Theorem E.1), the unique stationary distribution of (Xk)k>0 is also regularly varying with the

same index α.

In Theorem 2.1, we show that the appropriately centered and scaled partial sum process

of finite segments of independent copies of (Xk)k>0 converges to an α-stable process. The
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characteristic function of the α-stable limit process is given explicitly as well. In Remarks 2.2

and 2.3, we collect some properties of the α-stable limit process in question, such as the support

of its Lévy measure. The proof of Theorem 2.1 is based on a slight modification of Theorem

7.1 in Resnick [25], namely, on a result of weak convergence of partial sum processes towards

Lévy processes, see Theorem D.1, where we consider a different centering. In the course of the

proof of Theorem 2.1 one needs to verify that the so-called limit measures of finite segments of

(Xk)k>0 are in fact Lévy measures. We determine these limit measures explicitly (see part (i) of

Proposition E.3) applying an expression for the so-called tail measure of a strongly stationary

regularly varying sequence based on the corresponding (whole) spectral tail process given in

Planinić and Soulier [20, Theorem 3.1].

While the centering in Theorem 2.1 is the so-called truncated mean, in Corollary 2.4 we

consider no-centering if α ∈ (0, 1), and centering with the mean if α ∈ (1, 2). In both

cases the limit process is an α-stable process, the same one as in Theorem 2.1 plus some

deterministic drift depending on α. Theorem 2.1 and Corollary 2.4 together yield the weak

convergence of finite dimensional distributions of appropriately centered and scaled contem-

poraneous aggregations of independent copies of (Xk)k>0 towards the corresponding finite

dimensional distributions of a strongly stationary, subcritical autoregressive process of order

1 with α-stable innovations as the number of copies tends to infinity, see Corollary 2.7 and

Proposition 2.6.

Theorem 2.8 contains our main result, namely, we determine the weak limit of appropri-

ately centered and scaled finite dimensional distributions of temporal and contemporaneous

aggregations of independent copies of (Xk)k>0, where the limit is taken in a way that first the

number of copies tends to infinity and then the time corresponding to temporal aggregation

tends to infinity. It turns out that the limit process is an α-stable process if α ∈ (0, 1)∪ (1, 2),

and a deterministic line with slope 1 if α = 1. We consider different kinds of centerings,

and we give the explicit characteristic function of the limit process as well. In Remark 2.9, we

rewrite this characteristic function in case of α ∈ (0, 1) in terms of the spectral tail process of

(Xk)k>0.

We close the paper with five appendices. In Appendix A we recall a version of the contin-

uous mapping theorem due to Kallenberg [14, Theorem 3.27]. Appendix B is devoted to some

properties of the underlying punctured space Rd \{0} and vague convergence. In Appendix C

we recall the notion of a regularly varying random vector and its limit measure, and, in Propo-

sition C.10, the limit measure of an appropriate positively homogeneous real-valued function of

a regularly varying random vector. In Appendix D we formulate a result on weak convergence

of partial sum processes towards Lévy processes by slightly modifying Theorem 7.1 in Resnick

[25] with a different centering. In the end, we recall a result on the tail behavior and forward

tail process of (Xk)k>0 due to Basrak et al. [5], and we determine the limit measures of finite

segments of (Xk)k>0, see Appendix E.

Finally, we summarize the novelties of the paper. According to our knowledge, studying

aggregation of regularly varying Galton–Watson branching processes with immigration has not
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been considered before. In the proofs we make use of the explicit form of the (whole) spectral

tail process and a very recent result of Planinić and Soulier [20, Theorem 3.1] about the tail

measure of strongly stationary sequences. We explicitly determine the limit measures of finite

segments of (Xk)k>0, see part (i) of Proposition E.3.

In a companion paper, we will study the other iterated, idiosyncratic aggregation scheme,

namely, when first the time scale n→ ∞ and then the number of copies N → ∞.

2 Main results

Let Z+, N, Q, R, R+, R++, R−, R−− and C denote the set of non-negative integers,

positive integers, rational numbers, real numbers, non-negative real numbers, positive real

numbers, non-positive real numbers, negative real numbers and complex numbers, respectively.

For each d ∈ N, the natural basis in Rd will be denoted by e1, . . . , ed. Put 1d := (1, . . . , 1)⊤

and Sd−1 := {x ∈ Rd : ‖x‖ = 1}, where ‖x‖ denotes the Euclidean norm of x ∈ Rd, and

denote by B(Sd−1) the Borel σ-field of Sd−1. For a probability measure µ on Rd, µ̂ will

denote its characteristic function, i.e., µ̂(θ) :=
∫
Rd ei〈θ,x〉 µ(dx) for θ ∈ Rd. Convergence

in distributions and almost sure convergence of random variables, and weak convergence of

probability measures will be denoted by
D−→,

a.s.−→ and
w−→, respectively. Equality in

distribution will be denoted by
D
=. We will use

Df−→ or Df-lim for weak convergence of finite

dimensional distributions. A function f : R+ → Rd is called càdlàg if it is right continuous

with left limits. Let D(R+,R
d) and C(R+,R

d) denote the space of all Rd-valued càdlàg and

continuous functions on R+, respectively. Let B(D(R+,R
d)) denote the Borel σ-algebra on

D(R+,R
d) for the metric defined in Chapter VI, (1.26) of Jacod and Shiryaev [10]. With this

metric D(R+,R
d) is a complete and separable metric space and the topology induced by this

metric is the so-called Skorokhod topology. For Rd-valued stochastic processes (Y t)t∈R+ and

(Y
(n)
t )t∈R+ , n ∈ N, with càdlàg paths we write Y

(n) D−→ Y as n→ ∞ if the distribution of

Y
(n) on the space (D(R+,R

d),B(D(R+,R
d))) converges weakly to the distribution of Y on

the space (D(R+,R
d),B(D(R+,R

d))) as n→ ∞.

Let (Xk)k∈Z+ be a Galton–Watson branching process with immigration. For each k, j ∈
Z+, the number of individuals in the kth generation will be denoted by Xk, the number

of offsprings produced by the jth individual belonging to the (k − 1)th generation will be

denoted by ξk,j, and the number of immigrants in the kth generation will be denoted by εk.

Then we have

Xk =

Xk−1∑

j=1

ξk,j + εk, k ∈ N,

where we define
∑0

j=1 := 0. Here
{
X0, ξk,j, εk : k, j ∈ N

}
are supposed to be independent

non-negative integer-valued random variables. Moreover, {ξk,j : k, j ∈ N} and {εk : k ∈ N}
are supposed to consist of identically distributed random variables, respectively. For notational

convenience, let ξ and ε be independent random variables such that ξ
D
= ξ1,1 and ε

D
= ε1.

4



If mξ := E(ξ) ∈ [0, 1) and
∑∞

ℓ=1 log(ℓ)P(ε = ℓ) < ∞, then the Markov chain (Xk)k∈Z+

admits a unique stationary distribution π, see, e.g., Quine [23]. Note that if mξ ∈ [0, 1) and

P(ε = 0) = 1, then
∑∞

ℓ=1 log(ℓ)P(ε = ℓ) = 0 and π is the Dirac measure δ0 concentrated

at the point 0. In fact, π = δ0 if and only if P(ε = 0) = 1. Moreover, if mξ = 0 (which is

equivalent to P(ξ = 0) = 1), then π is the distribution of ε.

In what follows, we formulate our assumptions valid for the whole paper. We assume that

mξ ∈ [0, 1) (so-called subcritical case) and ε is regularly varying with index α ∈ (0, 2), i.e.,

P(ε > x) ∈ R++ for all x ∈ R++ and

lim
x→∞

P(ε > qx)

P(ε > x)
= q−α for all q ∈ R++.

Then P(ε = 0) < 1 and
∑∞

ℓ=1 log(ℓ)P(ε = ℓ) < ∞, see, e.g., Barczy et al. [2, Lemma E.5],

hence the Markov process (Xk)k∈Z+ admits a unique stationary distribution π. We suppose

that X0
D
= π, yielding that the Markov chain (Xk)k∈Z+ is strongly stationary. In case of

α ∈ [1, 2), we suppose additionally that E(ξ2) < ∞. By Basrak et al. [5, Theorem 2.1.1]

(see also Theorem E.1), X0 is regularly varying with index α, yielding the existence of a

sequence (aN )N∈N in R++ with N P(X0 > aN ) → 1 as N → ∞, see, e.g., Lemma C.5. Let

us fix an arbitrary sequence (aN )N∈N in R++ with this property. In fact, aN = N
1
αL(N),

N ∈ N, for some slowly varying continuous function L : R++ → R++, see, e.g., Araujo and

Giné [1, Exercise 6 on page 90]. Let X(j) = (X
(j)
k )k∈Z+ , j ∈ N, be a sequence of independent

copies of (Xk)k∈Z+ . We mention that we consider so-called idiosyncratic immigrations, i.e.,

the immigrations (ε
(j)
k )k∈N, j ∈ N, belonging to (X

(j)
k )k∈Z+, j ∈ N, are independent. One

could study the case of common immigrations as well, i.e., when (ε
(j)
k )k∈N = (ε

(1)
k )k∈N, j ∈ N.

2.1 Theorem. For each k ∈ Z+,

(2.1)

(
1

aN

⌊Nt⌋∑

j=1

(
X

(j)
0 − E

(
X

(j)
0 1

{X
(j)
0 6aN}

)
, . . . , X

(j)
k − E

(
X

(j)
k 1

{X
(j)
k

6aN}

))⊤)

t∈R+

=

(
1

aN

⌊Nt⌋∑

j=1

(
X

(j)
0 , . . . , X

(j)
k

)⊤ − ⌊Nt⌋
aN

E
(
X01{X06aN}

)
1k+1

)

t∈R+

D−→
(
X

(k,α)
t

)
t∈R+

as N → ∞, where
(
X

(k,α)
t

)
t∈R+

is a (k + 1)-dimensional α-stable process such that the

characteristic function of the distribution µk,α of X
(k,α)
1 has the form

µ̂k,α(θ)

= exp

{
(1 −mα

ξ )

k∑

j=0

∫ ∞

0

(
ei〈θ,v

(k)
j 〉u − 1 − iu

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉1(0,1](u〈eℓ, v

(k)
j 〉)

)
αu−1−α du

}
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for θ ∈ Rk+1 with the (k + 1)-dimensional vectors

v
(k)
0 := (1 −mα

ξ )−
1
α




1

mξ

m2
ξ
...

mk
ξ



, v

(k)
1 :=




0

1

mξ

...

mk−1
ξ



, v

(k)
2 :=




0

0

1
...

mk−2
ξ



, . . . , v

(k)
k :=




0

0
...

0

1



.

Moreover, for θ ∈ Rk+1,

µ̂k,α(θ) =





exp
{
−Cα(1 −mα

ξ )
∑k

j=0 |〈θ, v
(k)
j 〉|α

(
1 − i tan

(
πα
2

)
sign(〈θ, v(k)

j 〉)
)

− i α
1−α

〈θ, 1k+1〉
}
, if α 6= 1,

exp
{
−C1(1 −mξ)

∑k
j=0 |〈θ, v

(k)
j 〉|

(
1 + i 2

π
sign(〈θ, v(k)

j 〉) log(|〈θ, v(k)
j 〉|)

)

+ iC〈θ, 1k+1〉

+ i(1 −mξ)
∑k

j=0

∑k+1
ℓ=j+1〈eℓ, θ〉〈eℓ, v

(k)
j 〉 log(〈eℓ, v

(k)
j 〉)

}
, if α = 1,

with the convention 0 log(0) := 0,

Cα :=

{
Γ(2−α)
1−α

cos
(
πα
2

)
, if α 6= 1,

π
2
, if α = 1,

and

(2.2) C :=

∫ ∞

1

u−2 sin(u) du+

∫ 1

0

u−2(sin(u) − u) du.

Note that C exists and is finite, since
∫∞

1
u−2| sin(u)| du 6

∫∞

1
u−2 du = 1, and, by

L’Hôspital’s rule, limu→0 u
−2(sin(u) − u) = 0, hence the integrand u−2(sin(u) − u) can be

extended to [0, 1] continuously, yielding that its integral on [0, 1] is finite.

Note that the scaling and the centering in (2.1) do not depend on j or k, since the

copies are independent and the process (Xk)k∈Z+ is strongly stationary, and especially,

E
(
X

(j)
k 1

{X
(j)
k

6aN}

)
= E(X01{X06aN}) for all j ∈ N and k ∈ Z+.

The next two remarks are devoted to the study of some properties of µk,α.

2.2 Remark. By the proof of Theorem 2.1 (see (3.4)), it turns out that the Lévy measure of

µk,α is

νk,α(B) = (1 −mα
ξ )

k∑

j=0

‖v(k)
j ‖α

∫ ∞

0

1B

(
u

v
(k)
j

‖v(k)
j ‖

)
αu−α−1 du, B ∈ B(Rk+1

0 ),
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where the space Rk+1
0 := Rk+1 \ {0} and its topological properties are discussed in Appendix

B. The radial part of νk,α is u−α−1 du, and the spherical part of νk,α is any positive

constant multiple of the measure
∑k

j=0 ‖v
(k)
j ‖αǫ

v
(k)
j /‖v

(k)
j ‖

on Sk, where for any x ∈ Rk+1,

ǫx denotes the Dirac measure concentrated at the point x. Particularly, the support of νk,α
is ∪k

j=0(R++v
(k)
j ). The vectors v

(k)
0 , . . . , v

(k)
k form a basis in Rk+1, hence there is no

proper linear subspace V of Rk+1 covering the support of νk,α. Consequently, µk,α is a

nondegenerate measure in the sense that there are no a ∈ Rk+1 and a proper linear subspace

V of Rk+1 such that a+V covers the support of µk,α, see, e.g., Sato [27, Proposition 24.17

(ii)]. ✷

2.3 Remark. If α ∈ (0, 1), then, for each θ ∈ Rk+1,

µ̂k,α(θ) = exp

{
(1 −mα

ξ )

k∑

j=0

∫ ∞

0

(
ei〈θ,v

(k)
j 〉u − 1

)
αu−1−α du− i

α

1 − α
〈θ, 1k+1〉

}
,

see the proof of Theorem 2.1. Consequently, the drift of µk,α is − α
1−α

1k+1, see, e.g., Sato

[27, Remark 14.6]. This drift is nonzero, hence µk,α is not strictly α-stable, see, e.g., Sato

[27, Theorem 14.7 (iv) and Definition 13.2].

The 1-stable probability measure µk,1 is not strictly 1-stable, since the spherical part of

its nonzero Lévy measure νk,1 is concentrated on Rk+1
+ ∩ Sk, and hence the condition (14.12)

in Sato [27, Theorem 14.7 (v)] is not satisfied.

If α ∈ (1, 2), then, for each θ ∈ Rk+1,

µ̂k,α(θ) = exp

{
(1 −mα

ξ )
k∑

j=0

∫ ∞

0

(
ei〈θ,v

(k)
j 〉u − 1 − i〈θ, v(k)

j 〉u
)
αu−1−α du+ i

α

α− 1
〈θ, 1k+1〉

}
,

see the proof of Theorem 2.1. Consequently, the center of µk,α is α
α−1

1k+1, which is, in fact,

the expectation of µk,α, and it is nonzero, and hence µk,α is not strictly stable, see, e.g., Sato

[27, Theorem 14.7 (vi) and Definition 13.2].

All in all, µk,α is not strictly α-stable, but α-stable for any α ∈ (0, 2). We also note

that µk,α is absolutely continuous, see, e.g., Sato [27, Theorem 27.4 and Proposition 14.5]. ✷

The centering in Theorem 2.1 can be simplified in case of α 6= 1. Namely, if α ∈ (0, 1],

then for each t ∈ R++, by Lemma C.6,

(2.3)

⌊Nt⌋
aN

E(X01{X06aN}) =
⌊Nt⌋
N

E(X01{X06aN})

aN P(X0 > aN)
N P(X0 > aN)

→
{

α
1−α

t for α ∈ (0, 1),

∞ for α = 1
as N → ∞.

In a similar way, if α ∈ (1, 2), then for each t ∈ R++,

⌊Nt⌋
aN

E(X01{X06aN}) =
⌊Nt⌋
aN

E(X0) −
⌊Nt⌋
aN

E(X01{X0>aN}),
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where, limN→∞
⌊Nt⌋
aN

= limN→∞ tN1− 1
αL(N)−1 = ∞, and, by Lemma C.6,

(2.4)
⌊Nt⌋
aN

E(X01{X0>aN }) →
α

α− 1
t as N → ∞.

This shows that in case of α ∈ (0, 1), there is no need for centering, in case of α ∈ (1, 2)

one can center with the expectation as well, while in case of α = 1, neither non-centering nor

centering with the expectation works even if the expectation does exist. More precisely, without

centering in case of α ∈ (0, 1) or with centering with the expectation in case of α ∈ (1, 2),

we have the following convergences.

2.4 Corollary. In case of α ∈ (0, 1), for each k ∈ Z+, we have

(
1

aN

⌊Nt⌋∑

j=1

(
X

(j)
0 , . . . , X

(j)
k

)⊤
)

t∈R+

D−→
(
X

(k,α)
t +

α

1 − α
t1k+1

)
t∈R+

as N → ∞, and, in case of α ∈ (1, 2), for each k ∈ Z+, we have

(2.5)

(
1

aN

⌊Nt⌋∑

j=1

(
X

(j)
0 − E(X

(j)
0 ), . . . , X

(j)
k − E(X

(j)
k )
)⊤
)

t∈R+

=

(
1

aN

⌊Nt⌋∑

j=1

(
X

(j)
0 , . . . , X

(j)
k

)⊤ − ⌊Nt⌋
aN

E(X0)1k+1

)

t∈R+

D−→
(
X

(k,α)
t +

α

1 − α
t1k+1

)
t∈R+

as N → ∞. Moreover,
(
X

(k,α)
t + α

1−α
t1k+1

)
t∈R+

is a (k + 1)-dimensional α-stable process

such that the characteristic function of X
(k,α)
1 + α

1−α
1k+1 has the form

E

(
exp
{

i
〈
θ,X

(k,α)
1 +

α

1 − α
1k+1

〉})

=





exp

{
(1 −mα

ξ )
∑k

j=0

∫∞

0

(
ei〈θ,v

(k)
j 〉u − 1

)
αu−1−α du

}
, if α ∈ (0, 1),

exp

{
(1 −mα

ξ )
∑k

j=0

∫∞

0

(
ei〈θ,v

(k)
j 〉u − 1 − i〈θ, v(k)

j 〉u
)
αu−1−α du

}
, if α ∈ (1, 2),

= exp

{
−Cα(1 −mα

ξ )

k∑

j=0

|〈θ, v(k)
j 〉|α

(
1 − i tan

(πα
2

)
sign(〈θ, v(k)

j 〉)
)}

, if α 6= 1,

for θ ∈ Rk+1.

Note that in case of α ∈ (1, 2), the scaling and the centering in (2.5) do not depend on j

or k, since the copies are independent and the process (Xk)k∈Z+ is strongly stationary, and

especially, E
(
X

(j)
k

)
= E(X0) = mε

1−mξ
for all j ∈ N and k ∈ Z+ with mε := E(ε), see, e.g.,

Barczy et al. [4, formula (14)].

The next remark is devoted to study some distributional properties of the α-stable process(
X

(k,α)
t + α

1−α
t1k+1

)
t∈R+

in case of α 6= 1.
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2.5 Remark. The Lévy measure of the distribution of X
(k,α)
1 + α

1−α
1k+1 is the same as that

of X
(k,α)
1 , namely, νk,α given in Remark 2.2.

If α ∈ (0, 1), then the drift of the distribution of X
(k,α)
1 + α

1−α
1k+1 is 0, hence the process(

X
(k,α)
t + α

1−α
t1k+1

)
t∈R+

is strictly α-stable, see, e.g., Sato [27, Theorem 14.7 (iv)].

If α ∈ (1, 2), then the center, i.e., the expectation of X
(k,α)
1 + α

1−α
1k+1 is 0, hence the

process
(
X

(k,α)
t + α

1−α
t1k+1

)
t∈R+

is strictly α-stable see, e.g., Sato [27, Theorem 14.7 (vi)].

All in all,
(
X

(k,α)
t + α

1−α
t1k+1

)
t∈R+

is strictly α-stable for any α 6= 1. We also note that

for each t ∈ R++, the distribution of X
(k,α)
t + α

1−α
t1k+1 is absolutely continuous, see, e.g.,

Sato [27, Theorem 27.4 and Proposition 14.5]. ✷

Let
(
Y (α)

k

)
k∈Z+

be a strongly stationary process such that

(
Y (α)

k

)
k∈{0,...,K}

D
= X

(K,α)
1 for each K ∈ Z+.(2.6)

The existence of
(
Y (α)

k

)
k∈Z+

follows from the Kolmogorov extension theorem. Its strong

stationarity is a consequence of (2.1) together with the strong stationarity of (Xk)k∈Z+. We

note that the common distribution of Y (α)
k , k ∈ Z+, depends only on α, it does not depend

on mξ, since its characteristic function has the form

E
(
eiϑY

(α)
0
)

= E
(
eiϑX

(0,α)
1
)

= exp

{
(1 −mα

ξ )

∫ ∞

0

(
eiϑ(1−mα

ξ
)−

1
α u − 1 − iuϑ(1 −mα

ξ )−
1
α
1(0,1](u(1 −mα

ξ )−
1
α )
)
αu−1−α du

}

= exp

{∫ ∞

0

(
eiϑv − 1 − iϑv1(0,1](v)

)
αv−1−α dv

}
, ϑ ∈ R.

2.6 Proposition. For each α ∈ (0, 2), the strongly stationary process
(
Y (α)

k

)
k∈Z+

is a

subcritical autoregressive process of order 1 with autoregressive coefficient mξ and with α-

stable innovations, namely,

Y (α)
k = mξY (α)

k−1 + ε̃
(α)
k , k ∈ N,

where

ε̃
(α)
k := Y (α)

k −mξY (α)
k−1, k ∈ N,

is a sequence of independent, identically distributed α-stable random variables such that for

all k ∈ N, ε̃
(α)
k is independent of (Y (α)

0 , . . . ,Y (α)
k−1)

⊤. Therefore,
(
Y (α)

k

)
k∈Z+

is a strongly

stationary, time homogeneous Markov process.

Theorem 2.1 and Corollary 2.4 have the following consequences for a contemporaneous

aggregation of independent copies with different centerings.
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2.7 Corollary. (i) For each α ∈ (0, 2),

(
1

aN

N∑

j=1

(
X

(j)
k − E

(
X

(j)
k 1

{X
(j)
k

6aN}

)))

k∈Z+

=

(
1

aN

N∑

j=1

X
(j)
k − N

aN
E
(
X01{X06aN}

))

k∈Z+

Df−→
(
Y (α)

k

)
k∈Z+

as N → ∞,

(ii) in case of α ∈ (0, 1),

(
1

aN

N∑

j=1

X
(j)
k

)

k∈Z+

Df−→
(
Y (α)

k +
α

1 − α

)
k∈Z+

as N → ∞,

(iii) in case of α ∈ (1, 2),

(
1

aN

N∑

j=1

(
X

(j)
k − E

(
X

(j)
k

)))

k∈Z+

=

(
1

aN

N∑

j=1

X
(j)
k − N

aN
E
(
X0

))

k∈Z+

Df−→
(
Y (α)

k +
α

1 − α

)
k∈Z+

as N → ∞,

where (Y (k))k∈Z+ is given by (2.6).

Limit theorems will be presented for the aggregated stochastic process
(∑⌊nt⌋

k=1

∑N
j=1X

(j)
k

)
t∈R+

with different centerings and scalings. We will provide limit theorems in an iterated manner

such that first N , and then n converges to infinity.

2.8 Theorem. In case of α ∈ (0, 1), we have

(2.7)

Df- lim
n→∞

Df- lim
N→∞

(
1

n
1
αaN

⌊nt⌋∑

k=1

N∑

j=1

(
X

(j)
k − E

(
X

(j)
k 1

{X
(j)
k

6aN}

)))

t∈R+

= Df- lim
n→∞

Df- lim
N→∞

(
1

n
1
αaN

⌊nt⌋∑

k=1

N∑

j=1

X
(j)
k − ⌊nt⌋N

n
1
αaN

E
(
X01{X06aN}

))

t∈R+

=
(
Z(α)

t +
α

1 − α
t
)
t∈R+

,

and

(2.8) Df- lim
n→∞

Df- lim
N→∞

(
1

n
1
αaN

⌊nt⌋∑

k=1

N∑

j=1

X
(j)
k

))

t∈R+

=
(
Z(α)

t +
α

1 − α
t
)
t∈R+

,
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in case of α = 1, we have

(2.9)

Df- lim
n→∞

Df- lim
N→∞

(
1

n log(n)aN

⌊nt⌋∑

k=1

N∑

j=1

(
X

(j)
k − E

(
X

(j)
k 1

{X
(j)
k

6aN}

)))

t∈R+

= Df- lim
n→∞

Df- lim
N→∞

(
1

n log(n)aN

⌊nt⌋∑

k=1

N∑

j=1

X
(j)
k − ⌊nt⌋N

n log(n)aN
E
(
X01{X06aN}

))

t∈R+

= (t)t∈R+ ,

and in case of α ∈ (1, 2), we have

(2.10)

Df- lim
n→∞

Df- lim
N→∞

(
1

n
1
αaN

⌊nt⌋∑

k=1

N∑

j=1

(X
(j)
k − E(X

(j)
k ))

))

t∈R+

= Df- lim
n→∞

Df- lim
N→∞

(
1

n
1
αaN

⌊nt⌋∑

k=1

N∑

j=1

X
(j)
k − ⌊nt⌋N

n
1
αaN

E(X0)

)

t∈R+

=
(
Z(α)

t +
α

1 − α
t
)
t∈R+

,

where
(
Z(α)

t

)
t∈R+

is an α-stable process such that the characteristic function of the distribution

of Z(α)
1 has the form

E
(
eiϑZ

(α)
1
)

= exp

{
ibαϑ+

1 −mα
ξ

(1 −mξ)α

∫ ∞

0

(eiϑu − 1 − iϑu1(0,1](u))αu−1−α du

}
, ϑ ∈ R,

where

bα :=

(
1 −mα

ξ

(1 −mξ)α
− 1

)
α

1 − α
, α ∈ (0, 1) ∪ (1, 2),

and
(
Z(α)

t + α
1−α

t
)
t∈R+

is an α-stable process such that the characteristic function of the

distribution of Z(α)
1 + α

1−α
has the form

E

(
exp
{

iϑ
(
Z(α)

1 +
α

1 − α

)})
=





exp
{

1−mα
ξ

(1−mξ)α

∫∞

0
(eiϑu − 1)αu−1−α du

}
, if α ∈ (0, 1),

exp
{

1−mα
ξ

(1−mξ)α

∫∞

0
(eiϑu − 1 − iϑu)αu−1−α du

}
, if α ∈ (1, 2),

= exp

{
−Cα

1 −mα
ξ

(1 −mξ)α
|ϑ|α

(
1 − i tan

(πα
2

)
sign(ϑ)

)}
if α ∈ (0, 1) ∪ (1, 2),

for ϑ ∈ R.

2.9 Remark. Note that, in accordance with Basrak and Segers [6, Remark 4.8] and Mikosch
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and Wintenberger [17, page 171], in case of α ∈ (0, 1), we have

E

(
exp
{

iϑ
(
Z(α)

1 +
α

1 − α

)})

= exp

{
−
∫ ∞

0

E

[
exp

(
iuϑ

∞∑

ℓ=1

Θℓ

)
− exp

(
iuϑ

∞∑

ℓ=0

Θℓ

)]
αu−α−1 du

}(2.11)

for ϑ ∈ R, where (Θℓ)ℓ∈Z+ is the (forward) spectral tail process of (Xℓ)ℓ∈Z+ given in (3.7)

and (3.8). Indeed, by (3.10),

exp

{
−
∫ ∞

0

E

[
exp

(
iuϑ

∞∑

ℓ=1

Θℓ

)
− exp

(
iuϑ

∞∑

ℓ=0

Θℓ

)]
αu−α−1 du

}

= exp

{
−
∫ ∞

0

E

[
exp

(
iuϑ

∞∑

ℓ=1

mℓ
ξ

)
− exp

(
iuϑ

∞∑

ℓ=0

mℓ
ξ

)]
αu−α−1 du

}

= exp

{
−
∫ ∞

0

(
exp

(
iuϑ

mξ

1 −mξ

)
− exp

(
iuϑ

1

1 −mξ

))
αu−α−1 du

}

= exp

{
−
∫ ∞

0

(
exp

(
iu

ϑmξ

1 −mξ

)
− 1

)
αu−α−1 du+

∫ ∞

0

(
exp

(
iu

ϑ

1 −mξ

)
− 1

)
αu−α−1 du

}

= exp

{
Cα

∣∣∣∣
ϑmξ

1 −mξ

∣∣∣∣
α(

1 − i tan
(πα

2

)
sign

(
ϑmξ

1 −mξ

))

− Cα

∣∣∣∣
ϑ

1 −mξ

∣∣∣∣
α(

1 − i tan
(πα

2

)
sign

(
ϑ

1 −mξ

))}

= exp

{
−Cα

1 −mα
ξ

(1 −mξ)α
|ϑ|α

(
1 − i tan

(πα
2

)
sign

(
ϑ

1 −mξ

))}
,

as desired. We also remark that, using (3.13), one can check that (2.11) does not hold in case

of α ∈ (1, 2), which is somewhat unexpected in view of page 171 in Mikosch and Wintenberger

[17]. ✷

2.10 Remark. If α ∈ (0, 1), then the drift of the distribution of Z(α)
1 + α

1−α
is 0, hence

the process
(
Z(α)

t + α
1−α

t
)
t∈R+

is strictly α-stable, see, e.g., Sato [27, Theorem 14.7 (iv) and

Definition 13.2].

If α ∈ (1, 2), then the center, i.e., the expectation of Z(α)
1 + α

1−α
is 0, hence the process(

Z(α)
t + α

1−α
t
)
t∈R+

is strictly α-stable see, e.g., Sato [27, Theorem 14.7 (vi) and Definition

13.2].

All in all, the process
(
Z(α)

t + α
1−α

t
)
t∈R+

is strictly α-stable for any α 6= 1. ✷
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3 Proofs

Proof of Theorem 2.1. Let k ∈ Z+. We are going to apply Theorem D.1 with d = k + 1

and XN,j := a−1
N (X

(j)
0 , . . . , X

(j)
k )⊤, N, j ∈ N. The aim of the following discussion is to check

condition (D.1) of Theorem D.1, namely

(3.1) N P(XN,1 ∈ ·) = N P
(
a−1
N (X

(1)
0 , . . . , X

(1)
k )⊤ ∈ ·

) v−→ νk,α(·) on Rk+1
0 as N → ∞,

where νk,α is a Lévy measure on Rk+1
0 . For each N ∈ N and B ∈ B(Rk+1

0 ), we can write

N P(XN,1 ∈ B) = N P(X0 > aN)
P(a−1

N (X0, . . . , Xk)
⊤ ∈ B)

P(X0 > aN )
.

By the assumption, we have N P(X0 > aN ) → 1 as N → ∞, yielding also aN → ∞ as

N → ∞, consequently, it is enough to show that

(3.2)
P(x−1(X0, . . . , Xk)

⊤ ∈ ·)
P(X0 > x)

v−→ νk,α(·) on Rk+1
0 as x→ ∞,

where νk,α is a Lévy measure on Rk+1
0 . In fact, by Theorem E.2, (X0, . . . , Xk)

⊤ is regularly

varying with index α, hence, by Proposition C.8, we know that

(3.3)
P(x−1(X0, . . . , Xk)

⊤ ∈ ·)
P(‖(X0, . . . , Xk)⊤‖ > x)

v−→ ν̃k,α(·) on Rk+1
0 as x→ ∞,

where ν̃k,α is the so-called limit measure of (X0, . . . , Xk)
⊤. Applying Proposition C.10 for

the canonical projection p0 : Rk+1 → R given by p0(x) := x0 for x = (x0, . . . , xk)⊤ ∈ Rk+1,

which is continuous and positively homogeneous of degree 1, we obtain

P(X0 > x)

P(‖(X0, . . . , Xk)⊤‖ > x)
→ ν̃k,α(T1) as x→ ∞,

with T1 := {x ∈ Rk+1
0 : p0(x) > 1}, where we have ν̃k,α(T1) ∈ (0, 1]. Indeed, P(X0 >

x) 6 P(‖(X0, . . . , Xk)
⊤‖ > x), hence ν̃k,α(T1) 6 1. Moreover, by the strong stationarity of

(Xk)k∈Z+ , we have

P(‖(X0, . . . , Xk)
⊤‖ > x) 6

k∑

j=0

P(Xj > x/
√
k + 1) = (k + 1)P(X0 > x/

√
k + 1),

thus

P(X0 > x)

P(‖(X0, . . . , Xk)⊤‖ > x)
>

P(X0 > x)

(k + 1)P(X0 > x/
√
k + 1)

→ (k + 1)−1−α
2 as x→ ∞,

since X0 is regularly varying with index α, hence ν̃k,α(T1) ∈ (0, 1], as desired. Consequently,

(3.2) holds with νk,α = ν̃k,α/ν̃k,α(T1). In general, one does not know whether νk,α is a Lévy

measure on Rk+1
0 or not. So, additional work is needed. We will determine νk,α explicitly,

using a result of Planinić and Soulier [20].
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The aim of the following discussion is to apply Theorem 3.1 in Planinić and Soulier [20]

in order to determine νk,α, namely, we will prove that for each Borel measurable function

f : Rk+1
0 → R+,

(3.4)

∫

R
k+1
0

f(x) νk,α(dx) = (1 −mα
ξ )

k∑

j=0

∫ ∞

0

f(uv
(k)
j )αu−α−1 du.

Let (Xℓ)ℓ∈Z be a strongly stationary extension of (Xℓ)ℓ∈Z+ . For each i, j ∈ Z with i 6 j,

by Theorem E.2, (Xi, . . . , Xj)
⊤ is regularly varying with index α, hence, by the strong

stationarity of (Xk)k∈Z and the discussion above, we know that

P(x−1(Xi, . . . , Xj)
⊤ ∈ ·)

P(X0 > x)
=

P(x−1(X0, . . . , Xj−i)
⊤ ∈ ·)

P(X0 > x)

v−→ νi,j,α(·) on R
j−i+1
0 as x→ ∞,

where νi,j,α := νj−i,α is a non-null locally finite measure on R
j−i+1
0 . According to Basrak

and Segers [6, Theorem 2.1], there exists a sequence (Yℓ)ℓ∈Z of random variables, called the

(whole) tail process of (Xℓ)ℓ∈Z, such that

P(x−1(Xi, . . . , Xj)
⊤ ∈ · |X0 > x)

w−→ P((Yi, . . . , Yj)
⊤ ∈ ·) as x→ ∞.

Let K be a random variable with geometric distribution

P(K = k) = mαk
ξ (1 −mα

ξ ), k ∈ Z+.

Especially, if mξ = 0, then P(K = 0) = 1. If mξ ∈ (0, 1), then we have

(3.5) Yℓ =

{
mℓ

ξY0, if ℓ > 0,

mℓ
ξY01{K>−ℓ}, if ℓ < 0,

where Y0 is a random variable independent of K with Pareto distribution

P(Y0 > y) =

{
y−α, if y ∈ [1,∞),

1, if y ∈ (−∞, 1).

Indeed, as shown in Basrak et al. [5, Lemma 3.1], (Yℓ)ℓ∈Z+ is the forward tail process of (Xℓ)ℓ∈Z.

On the other hand, by Janssen and Segers [11, Example 6.2], (Yℓ)ℓ∈Z is the tail process of the

stationary solution (X ′
ℓ)ℓ∈Z to the stochastic recurrence equation X ′

ℓ = µAX
′
ℓ−1 +Bℓ, ℓ ∈ Z.

Since the distribution of the forward tail process determines the distribution of the (whole) tail

process (see Basrak and Segers [6, Theorem 3.1 (ii)]), it follows that (Yℓ)ℓ∈Z represents the

tail process of (Xℓ)ℓ∈Z. If mξ = 0, then one can easily check that

(3.6) Yℓ =

{
Y0, if ℓ = 0,

0, if ℓ 6= 0.

By (3.5) and (3.6), we have Yℓ
a.s.−→ 0 as ℓ → ∞ or ℓ → −∞, hence condition (3.1) in

Planinić and Soulier [20] is satisfied.
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Moreover, there exists a unique measure να on RZ endowed with the cylindrical σ-algebra

B(R)⊗Z such that να({0}) = 0 and for each i, j ∈ Z with i 6 j, we have να ◦ p−1
i,j = νi,j,α

on R
j−i+1
0 , where pi,j denotes the canonical projection pi,j : RZ → Rj−i+1 given by

pi,j(y) := (yi, . . . , yj) for y = (yℓ)ℓ∈Z ∈ RZ, see, e.g., Planinić and Soulier [20]. The measure

να is called the tail measure of (Xℓ)ℓ∈Z.

If mξ ∈ (0, 1), then, by (3.5), the (whole) spectral tail process Θ = (Θℓ)ℓ∈Z of (Xℓ)ℓ∈Z
is given by

(3.7) Θℓ :=
Yℓ
|Y0|

=

{
mℓ

ξ, if ℓ > 0,

mℓ
ξ1{K>−ℓ}, if ℓ < 0.

If mξ = 0, then, by (3.6),

(3.8) Θℓ :=
Yℓ
|Y0|

=

{
1, if ℓ = 0,

0, if ℓ 6= 0.

Let us introduce the so called infargmax functional I : RZ → Z ∪ {−∞,∞}. For y =

(yℓ)ℓ∈Z ∈ RZ, the value I(y) is the first time when the supremum supℓ∈Z |yℓ| is achieved,

more precisely,

I(y) :=





ℓ ∈ Z, if sup
m6ℓ−1

|ym| < |yℓ| and sup
m>ℓ+1

|ym| 6 |yℓ|,

−∞, if sup
m6ℓ

|ym| = sup
m∈Z

|ym| for all ℓ ∈ Z,

∞, if sup
m6ℓ

|ym| < sup
m∈Z

|ym| for all ℓ ∈ Z.

We have P(I(Θ) = −K) = 1, hence the condition P(I(Θ) ∈ Z) = 1 of Theorem 3.1 in

Planinić and Soulier [20] is satisfied.

Consequently, we may apply Theorem 3.1 in Planinić and Soulier [20] for the nonnegative

measurable function H : RZ → R+ given by H(y) = f ◦ p0,k, where f : Rk+1 → R+ is a

measurable function with f(0) = 0. By (3.2) in Planinić and Soulier [20], we obtain

∫

R
k+1
0

f(x) νk,α(dx) =

∫

Rk+1

f(x) ν0,k,α(dx) =

∫

Rk+1

f(x) (να ◦ p−1
0,k)(dx) =

∫

RZ

f(p0,k(y)) να(dy)

=

∫

RZ

H(y) να(dy) =
∑

ℓ∈Z

∫ ∞

0

E(H(uLℓ(Θ))1{I(Θ)=0})αu
−α−1 du,

where L denotes the backshift operator L : RZ → RZ given by L(y) = (L(y)k)k∈Z :=

(yk−1)k∈Z for y = (yk)k∈Z ∈ RZ. Using P(I(Θ) = −K) = 1, we obtain

∫

R
k+1
0

f(x) νk,α(dx) =
∑

ℓ∈Z

∫ ∞

0

E(f(p0,k(uL
ℓ(Θ)))1{K=0})αu

−α−1 du.
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For each k ∈ Z+ and u ∈ R+, on the event {K = 0}, by (3.7) and (3.8), we have

p0,k(uLℓ(Θ)) =





0 ∈ Rk+1, if ℓ > k,

uv
(k)
ℓ , if ℓ ∈ {1, . . . , k},

(1 −mα
ξ )

1
αm−ℓ

ξ uv
(k)
0 , if ℓ 6 0,

hence, using P(K = 0) = 1 −mα
ξ , we obtain

∫

Rk+1
0

f(x) νk,α(dx)

= (1 −mα
ξ )
∑

ℓ60

∫ ∞

0

f((1 −mα
ξ )

1
αm−ℓ

ξ uv
(k)
0 )αu−α−1 du+ (1 −mα

ξ )
k∑

ℓ=1

∫ ∞

0

f(uv
(k)
ℓ )αu−α−1 du

= (1 −mα
ξ )2
∑

ℓ60

m−ℓα
ξ

∫ ∞

0

f(uv
(k)
0 )αu−α−1 du+ (1 −mα

ξ )

k∑

ℓ=1

∫ ∞

0

f(uv
(k)
ℓ )αu−α−1 du

= (1 −mα
ξ )

k∑

ℓ=0

∫ ∞

0

f(uv
(k)
ℓ )αu−α−1 du.

The measure νk,α is a Lévy measure on Rk+1
0 , since (3.4) implies

∫

R
k+1
0

min{1, ‖x‖2} νk,α(dx) = (1 −mα
ξ )

k∑

j=0

∫ ∞

0

min{1, ‖uv(k)
j ‖2}αu−α−1 du

= (1 −mα
ξ )

k∑

j=0

‖v(k)
j ‖α

∫ ∞

0

min{1, w2}αw−α−1 dw =
2(1 −mα

ξ )

2 − α

k∑

j=0

‖v(k)
j ‖α <∞.

Consequently, we obtain (3.2), and hence (3.1), so condition (D.1) is satisfied.

The aim of the following discussion is to check condition (D.2) of Theorem D.1, namely

(3.9) lim
ε↓0

lim sup
N→∞

N E(a−2
N (X

(j)
ℓ )21

{X
(j)
ℓ

6aN ε}
) = lim

ε↓0
lim sup
N→∞

N E(a−2
N X2

01{X06aN ε}) = 0

for each j ∈ N and ℓ ∈ {0, . . . , k}. By Lemma C.6 with β = 2, we have

lim
x→∞

x2 P(X0 > x)

E(X2
01{X06x})

=
2 − α

α
,

hence, for all ε ∈ R++, using again that X0 is regularly varying with index α, we have

N E(a−2
N X2

01{X06aN ε}) =
E
(
X2

01{X06aN ε}

)

(aNε)2 P(X0 > aNε)

P(X0 > aNε)

P(X0 > aN )
ε2N P(X0 > aN ) → α

2 − α
ε2−α

as N → ∞, and, as ε ↓ 0, we conclude (3.9).
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Consequently, we may apply Theorem D.1, and we obtain (2.1), where (X
(k,α)
t )t∈R+ is

an α-stable process such that the characteristic function of the distribution µk,α of X
(k,α)
1

has the form given in Theorem 2.1. Indeed, (3.4) is valid for each Borel measurable function

f : Rk+1
0 → C as well, for which the real and imaginary parts of the right hand side of (3.4)

are well defined. Hence for all θ ∈ Rk+1, by (D.3),

µ̂k,α(θ) = exp

{∫

R
k+1
0

(
ei〈θ,y〉 − 1 − i

k+1∑

ℓ=1

〈eℓ, θ〉〈eℓ,y〉1(0,1](|〈eℓ,y〉|)
)
νk,α(dy)

}

= exp

{
(1 −mα

ξ )
k∑

j=0

∫ ∞

0

(
ei〈θ,v

(k)
j 〉u − 1 − iu

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉1(0,1](u〈eℓ, v

(k)
j 〉)

)
αu−1−α du

}
,

since it will turn out that the real and imaginary parts of the exponent in the last expression

are well defined. If α ∈ (0, 1), then
∫ ∞

0

(e±ix − 1)x−1−α dx = Γ(−α)e∓iπα/2,

see, e.g., (14.18) in Sato [27] and its complex conjugate, thus for each ϑ ∈ R++,
∫ ∞

0

(eiϑu − 1)u−1−α du = ϑα
∫ ∞

0

(eiv − 1)v−1−α dv = ϑαΓ(−α)e−iπα/2

= ϑα
Γ(2 − α)

(1 − α)(−α)
cos
(πα

2

)(
1 − i tan

(πα
2

))
= −Cα

α
ϑα
(

1 − i tan
(πα

2

))
.

In a similar way, for each ϑ ∈ R−−,∫ ∞

0

(eiϑu − 1)u−1−α du = (−ϑ)α
∫ ∞

0

(e−iv − 1)v−1−α dv = (−ϑ)αΓ(−α)eiπα/2

= (−ϑ)α
Γ(2 − α)

(1 − α)(−α)
cos
(πα

2

)(
1 + i tan

(πα
2

))
= −Cα

α
(−ϑ)α

(
1 + i tan

(πα
2

))
.

Thus, for each ϑ ∈ R,∫ ∞

0

(eiϑu − 1)u−1−α du = −Cα

α
|ϑ|α

(
1 − i tan

(πα
2

)
sign(ϑ)

)
,(3.10)

and hence, for each θ ∈ Rk+1 and j ∈ {0, . . . , k},
∫ ∞

0

(
ei〈θ,v

(k)
j 〉u − 1 − iu

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉1(0,1](u〈eℓ, v

(k)
j 〉)

)
αu−1−α du

= −Cα|〈θ, v(k)
j 〉|α

(
1 − i tan

(πα
2

)
sign(〈θ, v(k)

j 〉)
)
− iα

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉
∫ 1/〈eℓ,v

(k)
j 〉

0

u−α du

= −Cα|〈θ, v(k)
j 〉|α

(
1 − i tan

(πα
2

)
sign(〈θ, v(k)

j 〉)
)
− i

α

1 − α

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉
(

1

〈eℓ, v
(k)
j 〉

)1−α

= −Cα|〈θ, v(k)
j 〉|α

(
1 − i tan

(πα
2

)
sign(〈θ, v(k)

j 〉)
)
− i

α

1 − α

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉α.
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Consequently,

(3.11)

µ̂k,α(θ) = exp
{
−Cα(1 −mα

ξ )
k∑

j=0

|〈θ, v(k)
j 〉|α

(
1 − i tan

(πα
2

)
sign(〈θ, v(k)

j 〉)
)

− i
α

1 − α
(1 −mα

ξ )
k∑

j=0

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉α

}

for all θ ∈ Rk+1, where

k∑

j=0

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉α =

k+1∑

ℓ=1

〈eℓ, θ〉
ℓ−1∑

j=0

〈eℓ, v
(k)
j 〉α =

1

1 −mα
ξ

k+1∑

ℓ=1

〈eℓ, θ〉,

since 〈e1, v
(k)
0 〉α = (1 −mα

ξ )−1, and, for each ℓ ∈ {2, . . . , k + 1}, we have

ℓ−1∑

j=0

〈eℓ, v
(k)
j 〉α =

m
(ℓ−1)α
ξ

1 −mα
ξ

+
ℓ−1∑

j=1

m
(ℓ−j−1)α
ξ =

m
(ℓ−1)α
ξ

1 −mα
ξ

+
1 −m

(ℓ−1)α
ξ

1 −mα
ξ

=
1

1 −mα
ξ

.

Hence we obtain

(3.12) (1 −mα
ξ )

k∑

j=0

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉α = 〈θ, 1k+1〉,

yielding the statement in case of α ∈ (0, 1). Note that the above calculation shows that (3.12)

is valid for each α ∈ (0, 2).

If α ∈ (1, 2), then

∫ ∞

0

(e±ix − 1 ∓ ix)x−1−α dx = Γ(−α) e∓iπα/2,

see, e.g., (14.19) in Sato [27] and its complex conjugate, thus for each ϑ ∈ R++,

∫ ∞

0

(eiϑu − 1 − iϑu)u−1−α du = ϑα
∫ ∞

0

(eix − 1 − ix)x−1−α dx = ϑαΓ(−α)e−iπα/2

= ϑα
Γ(2 − α)

(1 − α)(−α)
cos
(πα

2

)(
1 − i tan

(πα
2

))
= −Cα

α
ϑα
(

1 − i tan
(πα

2

))
.

In a similar way, for each ϑ ∈ R−−,

∫ ∞

0

(eiϑu − 1 − iϑu)u−1−α du = (−ϑ)α
∫ ∞

0

(e−ix − 1 + ix)x−1−α dx = (−ϑ)αΓ(−α)eiπα/2

= (−ϑ)α
Γ(2 − α)

(1 − α)(−α)
cos
(πα

2

)(
1 + i tan

(πα
2

))
= −Cα

α
(−ϑ)α

(
1 + i tan

(πα
2

))
.
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Thus, for each ϑ ∈ R,

∫ ∞

0

(eiϑu − 1 − iϑu)u−1−α du = −Cα

α
|ϑ|α

(
1 − i tan

(πα
2

)
sign(ϑ)

)
,(3.13)

and hence, for each θ ∈ Rk+1 and j ∈ {0, . . . , k},

∫ ∞

0

(
ei〈θ,v

(k)
j 〉u − 1 − iu

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉1(0,1](u〈eℓ, v

(k)
j 〉)

)
αu−1−α du

= −Cα|〈θ, v(k)
j 〉|α

(
1 − i tan

(πα
2

)
sign(〈θ, v(k)

j 〉)
)

+ iα
k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉
∫ ∞

1/〈eℓ,v
(k)
j

〉

u−α du

= −Cα|〈θ, v(k)
j 〉|α

(
1 − i tan

(πα
2

)
sign(〈θ, v(k)

j 〉)
)
− i

α

1 − α

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉
(

1

〈eℓ, v
(k)
j 〉

)1−α

= −Cα|〈θ, v(k)
j 〉|α

(
1 − i tan

(πα
2

)
sign(〈θ, v(k)

j 〉)
)

+ i
α

α− 1

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉α.

Consequently, we obtain (3.11) for all θ ∈ Rk+1, and, applying again (3.12), we conclude the

statement in case of α ∈ (1, 2).

Finally, we consider the case α = 1. For each ϑ ∈ R++,

∫ ∞

0

(eiϑu − 1 − iϑu1(0,1](u))u−2 du = −πϑ
2

− iϑ log(ϑ) + iCϑ,

where C is given in (2.2), see, e.g., (14.20) in Sato [27]. Its complex conjugate has the form

∫ ∞

0

(e−iϑu − 1 + iϑu1(0,1](u))u−2 du = −πϑ
2

+ iϑ log(ϑ) − iCϑ, ϑ ∈ R++,

thus
∫ ∞

0

(ei(−ϑ)u − 1 − i(−ϑ)u1(0,1](u))u−2 du = −π(−(−ϑ))

2
− i(−ϑ) log(−(−ϑ)) + iC(−ϑ)

for ϑ ∈ R++, and hence

∫ ∞

0

(eiϑu − 1 − iϑu1(0,1](u))u−2 du = −π|ϑ|
2

− iϑ log(|ϑ|) + iCϑ

= −C1|ϑ|
(

1 + i
2

π
sign(ϑ) log(|ϑ|)

)
+ iCϑ, ϑ ∈ R.
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Consequently, for each θ ∈ Rk+1 and j ∈ {0, . . . , k},

∫ ∞

0

(
ei〈θ,v

(k)
j 〉u − 1 − iu

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉1(0,1](u〈eℓ, v

(k)
j 〉)

)
u−2 du

= −C1|〈θ, v(k)
j 〉|

(
1 + i

2

π
sign(〈θ, v(k)

j 〉) log(|〈θ, v(k)
j 〉|)

)
+ iC〈θ, v(k)

j 〉

+ i
k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉
∫ 1

1/〈eℓ,v
(k)
j 〉

u−1 du

= −C1|〈θ, v(k)
j 〉|

(
1 + i

2

π
sign(〈θ, v(k)

j 〉) log(|〈θ, v(k)
j 〉|)

)
+ iC〈θ, v(k)

j 〉

− i

k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉 log

(
1

〈eℓ, v
(k)
j 〉

)

= −C1|〈θ, v(k)
j 〉|

(
1 + i

2

π
sign(〈θ, v(k)

j 〉) log(|〈θ, v(k)
j 〉|)

)
+ iC〈θ, v(k)

j 〉

+ i
k+1∑

ℓ=j+1

〈eℓ, θ〉〈eℓ, v
(k)
j 〉 log(〈eℓ, v

(k)
j 〉).

Applying again (3.12), we have the statement in case of α = 1. ✷

Proof of Corollary 2.4. In case of α ∈ (0, 1), by (2.3) with t = 1, we have

(3.14) lim
N→∞

N

aN
E
(
X01{X06aN}

)
=

α

1 − α
.

Next, we may apply Lemma A.2 with

U
(N)
t :=

1

aN

⌊Nt⌋∑

j=1

(
X

(j)
0 , . . . , X

(j)
k

)⊤ − ⌊Nt⌋
aN

E
(
X01{X06aN}

)
1k+1, N ∈ N,

ΦN (f)(t) := f(t) +
⌊Nt⌋
aN

E(X01{X06aN})1k+1, N ∈ N,

U t := X
(k,α)
t , Φ(f)(t) := f(t) +

α

1 − α
t1k+1

for t ∈ R+ and f ∈ D(R+,R
k+1). Indeed, in order to show ΦN (fN) → Φ(f) in D(R+,R

k+1)

as N → ∞ whenever fN → f in D(R+,R
k+1) as N → ∞ with f, fN ∈ D(R+,R

k+1),

N ∈ N, by Propositions VI.1.17 and VI.1.23 in Jacod and Shiryaev [10], it is enough to check

that for each T ∈ R++, we have

sup
t∈[0,T ]

∥∥∥∥
⌊Nt⌋
aN

E
(
X01{X06aN}

)
1k+1 −

α

1 − α
t1k+1

∥∥∥∥→ 0 as N → ∞.
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This follows, since, by (3.14), we obtain

sup
t∈[0,T ]

∥∥∥∥
⌊Nt⌋
aN

E
(
X01{X06aN}

)
1k+1 −

α

1 − α
t1k+1

∥∥∥∥

6 sup
t∈[0,T ]

∥∥∥∥
⌊Nt⌋
N

(
N

aN
E
(
X01{X06aN}

)
− α

1 − α

)
1k+1

∥∥∥∥+ sup
t∈[0,T ]

∥∥∥∥∥
α

1 − α

(⌊Nt⌋
N

− t

)
1k+1

∥∥∥∥∥

6 T
√
k + 1

∣∣∣∣
N

aN
E
(
X01{X06aN}

)
− α

1 − α

∣∣∣∣ +

√
k + 1

N

α

1 − α
→ 0 as N → ∞.

Applying Lemma A.2, we obtain

(
1

aN

⌊Nt⌋∑

j=1

(X
(j)
0 , . . . , X

(j)
k )

)

t∈R+

= ΦN (U (N))
D−→ Φ(U) as N → ∞,

where Φ(U)t = X
(k,α)
t + α

1−α
t1k+1, t ∈ R+, is a (k + 1)-dimensional α-stable process. By

Theorem 2.1 and Remark 2.3, the characteristic function of X
(k,α)
1 + α

1−α
1k+1 has the form

given in the theorem, and hence we conclude the statement in case of α ∈ (0, 1).

In case of α ∈ (1, 2), by (2.4) with t = 1, we have

(3.15) lim
N→∞

N

aN
E
(
X01{X0>aN}

)
=

α

α− 1
.

Next, we may apply Lemma A.2 with U , Φ and U
(N), N ∈ N, as defined above, and with

ΦN (f)(t) := f(t) − ⌊Nt⌋
aN

E(X01{X0>aN})1k+1, N ∈ N, f ∈ D(R+,R
k+1), t ∈ R+.

Indeed, in order to show ΦN(fN ) → Φ(f) in D(R+,R
k+1) as N → ∞ whenever fN → f

in D(R+,R
k+1) as N → ∞ with f, fN ∈ D(R+,R

k+1), N ∈ N, by Propositions VI.1.17

and VI.1.23 in Jacod and Shiryaev [10], it is enough to check that for each T ∈ R++, we have

sup
t∈[0,T ]

∥∥∥∥
⌊Nt⌋
aN

E
(
X01{X0>aN}

)
1k+1 −

α

α− 1
t1k+1

∥∥∥∥→ 0 as N → ∞.

This follows, since, by (3.15), we obtain

sup
t∈[0,T ]

∥∥∥∥
⌊Nt⌋
aN

E
(
X01{X0>aN}

)
1k+1 −

α

α− 1
t1k+1

∥∥∥∥

6 sup
t∈[0,T ]

∥∥∥∥
⌊Nt⌋
N

(
N

aN
E
(
X01{X0>aN}

)
− α

α− 1

)
1k+1

∥∥∥∥+ sup
t∈[0,T ]

∥∥∥∥∥
α

α− 1

(⌊Nt⌋
N

− t

)
1k+1

∥∥∥∥∥

6 T
√
k + 1

∣∣∣∣
N

aN
E
(
X01{X0>aN}

)
− α

α− 1

∣∣∣∣+

√
k + 1

N

α

α− 1
→ 0 as N → ∞.
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Applying Lemma A.2, we obtain

(
1

aN

⌊Nt⌋∑

j=0

(
X

(j)
1 , . . . , X

(j)
k

)
− ⌊Nt⌋

aN
E(X0)1k+1

)

t∈R+

= ΦN(U (N))
D−→ Φ(U) as N → ∞,

where Φ(U)t = X
(k,α)
t − t α

α−1
1k+1, t ∈ R+, is a (k + 1)-dimensional α-stable process. By

Theorem 2.1 and Remark 2.3, the characteristic function of X
(k,α)
1 − α

α−1
1k+1 has the form

given in the theorem, and hence we conclude the statement in case of α ∈ (1, 2) as well. ✷

Proof of Proposition 2.6. The sequence (ε̃
(α)
k )k∈N consists of identically distributed random

variables, since the strong stationarity of
(
Y (α)

k

)
k∈Z+

yields that
(
Y (α)

k ,Y (α)
k−1

)
k∈N

consists of

identically distributed random variables.

In what follows, let k ∈ N be fixed. By (2.6), the characteristic function of

(Y (α)
0 , . . . ,Y (α)

k−1, ε̃k) has the form

E
(
ei(ϑ0Y

(α)
0 +···+ϑk−1Y

(α)
k−1+ϑk ε̃

(α)
k

)
)

= E
(
ei(ϑ0Y

(α)
0 +···+(ϑk−1−mξϑk)Y

(α)
k−1+ϑkY

(α)
k

)
)

= E
(
ei〈θk ,X

(k,α)
1 〉

)

for (ϑ0, . . . , ϑk)⊤ ∈ Rk+1, where

θk := (ϑ0, . . . , ϑk−2, ϑk−1 −mξϑk, ϑk)⊤ ∈ Rk+1.

We can write θk = θ
(1)
k + θ

(2)
k with

θ
(1)
k := (ϑ0, . . . , ϑk−2, ϑk−1, 0)⊤, θ

(2)
k := (0, . . . , 0,−mξϑk, ϑk)⊤.

We have 〈θ(2)
k , v

(k)
j 〉 = 0 for each j ∈ {0, . . . , k − 1}, and 〈θ(1)

k , v
(k)
k 〉 = 0, hence

〈θk, v
(k)
j 〉 =

{
〈θ(1)

k , v
(k)
j 〉 if j ∈ {0, . . . , k − 1},

〈θ(2)
k , v

(k)
k 〉 if j = k.

In case of α ∈ (0, 1) ∪ (1, 2), by Theorem 2.1, we have

E
(
ei(ϑ0Y

(α)
0 +···+ϑk−1Y

(α)
k−1+ϑk ε̃

(α)
k

)
)

= exp

{
−Cα(1 −mα

ξ )
k∑

j=0

|〈θk, v
(k)
j 〉|α

(
1 − i tan

(πα
2

)
sign(〈θk, v

(k)
j 〉)

)
− i

α

1 − α
〈θk, 1k+1〉

}

= exp

{
−Cα(1 −mα

ξ )

k−1∑

j=0

|〈θ(1)
k , v

(k)
j 〉|α

(
1 − i tan

(πα
2

)
sign(〈θ(1)

k , v
(k)
j 〉)

)
− i

α

1 − α
〈θ(1)

k , 1k+1〉

− Cα(1 −mα
ξ )|〈θ(2)

k , v
(k)
k 〉|α

(
1 − i tan

(πα
2

)
sign(〈θ(2)

k , v
(k)
k 〉)

)
− i

α

1 − α
〈θ(2)

k , 1k+1〉
}

= E
(
ei(ϑ0Y

(α)
0 +···+ϑk−1Y

(α)
k−1)
)
E
(
eiϑk ε̃

(α)
k

)
,
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where we used that

〈θ(1)
k , v

(k)
j 〉 = 〈(ϑ0, . . . , ϑk−1)

⊤, v
(k−1)
j 〉, j = 0, 1, . . . , k − 1,

〈θ(1)
k , 1k+1〉 = 〈(ϑ0, . . . , ϑk−1)

⊤, 1k〉,

〈θ(2)
k , v

(k)
k 〉 = ϑk, 〈θ(2)

k , 1k+1〉 = ϑk,

and ϑ0 = ϑ1 = . . . = ϑk−1 = 0 yields θ
(1)
k = 0 ∈ Rk+1. Thus we obtain the independence of

(Y (α)
0 , . . . ,Y (α)

k−1)
⊤ and ε̃

(α)
k , and the characteristic function of ε̃

(α)
k has the form

E
(
eiϑk ε̃

(α)
k

)
= exp

{
−Cα(1 −mα

ξ )|ϑk|α
(

1 − i tan
(πα

2

)
sign(ϑk)

)
− i

α

1 − α
ϑk

}
, ϑk ∈ R,

hence ε̃
(α)
k is α-stable (see, e.g., Sato [27, Theorem 14.10]). In fact, ε̃

(α)
k + α

1−α

D
= (1 −

mα
ξ )

1
α

(
Y (α)

0 + α
1−α

)
, k ∈ N, since for all ϑk ∈ R, we have

E

(
eiϑk(1−mα

ξ
)
1
α

(
Y

(α)
0 + α

1−α

))
= ei

α
1−α

ϑk(1−mα
ξ
)
1
α
µ̂0,α(ϑk(1 −mα

ξ )
1
α )

= exp
{
−Cα(1 −mα

ξ )|〈ϑk(1 −mα
ξ )

1
α , (1 −mα

ξ )−
1
α 〉|α

×
(

1 − i tan
(πα

2

)
sign(〈ϑk(1 −mα

ξ )
1
α , (1 −mα

ξ )−
1
α 〉)
)}

= exp
{
− Cα(1 −mα

ξ )|ϑk|α
(

1 − i tan
(πα

2

)
sign(ϑk)

)}
.

Further,
(
Y (α)

k + α
1−α

)
k∈Z+

is also a strongly stationary α-stable time homogeneous Markov

process. In fact, it is a subcritical autoregressive process of order 1 with autoregressive coeffi-

cient mξ such that the distribution of its innovations satisfies

(
Y (α)

k +
α

1 − α

)
−mξ

(
Y (α)

k−1 +
α

1 − α

)
= ε̃k + (1 −mξ)

α

1 − α

D
= (1 −mα

ξ )
1
α

(
Y (α)

0 +
α

1 − α

)
−mξ

α

1 − α
, k ∈ N.

In case of α = 1, by Theorem 2.1, we have

E
(
ei(ϑ0Y

(1)
0 +···+ϑk−1Y

(1)
k−1+ϑk ε̃

(1)
k

)
)

= exp

{
−C1(1 −mξ)

k∑

j=0

|〈θk, v
(k)
j 〉|

(
1 + i

2

π
sign(〈θk, v

(k)
j 〉) log(|〈θk, v

(k)
j 〉|)

)

+ iC〈θk, 1k+1〉 + i(1 −mξ)

k∑

j=0

k+1∑

ℓ=j+1

〈eℓ, θk〉〈eℓ, v
(k)
j 〉 log(〈eℓ, v

(k)
j 〉)

}
.
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If α = 1 and mξ = 0, then for each j ∈ {0, . . . , k}, we have v
(k)
j = ej+1, and hence

〈θk, v
(k)
j 〉 = ϑj , and 〈eℓ, v

(k)
j 〉 = 1 if ℓ = j+1 and 〈eℓ, v

(k)
j 〉 = 0 if ℓ 6= j+1. Consequently,

E
(
ei(ϑ0Y

(1)
0 +···+ϑk−1Y

(1)
k−1+ϑk ε̃

(1)
k

)
)

= exp

{
−C1

k∑

j=0

|ϑj |
(

1 + i
2

π
sign(ϑj) log(|ϑj |)

)
+ iC

k∑

j=0

ϑj

}

= E
(
eiϑ0Y

(α)
0
)
· · ·E

(
eiϑ0Y

(α)
k−1

)
E
(
eiϑk ε̃

(α)
k

)
,

thus we obtain the independence of Y (1)
0 , . . . , Y (1)

k−1 and ε̃
(1)
k , and the characteristic function

of ε̃
(1)
k has the form

E
(
eiϑk ε̃

(1)
k

)
= exp

{
−C1|ϑk|

(
1 + i

2

π
sign(ϑk) log(|ϑk|)

)
+ iCϑk

}
, ϑk ∈ R,

hence ε̃
(1)
k is 1-stable (see, e.g., Sato [27, Theorem 14.10]). In fact, ε̃

(1)
k

D
= Y (1)

0 , and (Y (1)
k )k∈Z+

is a sequence of independent, identically distributed 1-stable random variables.

If α = 1 and mξ ∈ (0, 1), then, by Theorem 2.1,

E
(
ei(ϑ0Y

(1)
0 +···+ϑk−1Y

(1)
k−1+ϑk ε̃

(1)
k

)
)

= exp

{
−C1(1 −mξ)

k−1∑

j=0

|〈θ(1)
k , v

(k)
j 〉|

(
1 + i

2

π
sign(〈θ(1)

k , v
(k)
j 〉) log(|〈θ(1)

k , v
(k)
j 〉|)

)

+ iC〈θ(1)
k , 1k+1〉 + i(1 −mξ)

k−1∑

j=0

k∑

ℓ=j+1

〈eℓ, θ
(1)
k 〉〈eℓ, v

(k)
j 〉 log(〈eℓ, v

(k)
j 〉)

− C1(1 −mξ)|〈θ(2)
k , v

(k)
k 〉|

(
1 + i

2

π
sign(〈θ(2)

k , v
(k)
k 〉) log(|〈θ(2)

k , v
(k)
k 〉|)

)

+ iC〈θ(2)
k , 1k+1〉 + i(1 −mξ)

k∑

j=0

k+1∑

ℓ=j+1

〈eℓ, θ
(2)
k 〉〈eℓ, v

(k)
j 〉 log(〈eℓ, v

(k)
j 〉)

}

= E
(
ei(ϑ0Y

(1)
0 +···+ϑk−1Y

(1)
k−1)
)
E
(
eiϑk ε̃

(1)
k

)
,

where we used that 〈eℓ, θ
(1)
k 〉 = 0 if ℓ = k + 1, and ϑ0 = ϑ1 = . . . = ϑk−1 = 0 yields that

θ
(1)
k = 0 ∈ Rk+1. Thus we obtain the independence of (Y (1)

0 , . . . ,Y (1)
k−1)

⊤ and ε̃
(1)
k , and the

characteristic function of ε̃
(1)
k has the form

E
(
eiϑk ε̃

(1)
k

)
= exp

{
−C1(1 −mξ)|ϑk|

(
1 + i

2

π
sign(ϑk) log(|ϑk|)

)
+ iCϑk

+ i(1 −mξ)

k∑

j=0

k+1∑

ℓ=j+1

〈eℓ, θ
(2)
k 〉〈eℓ, v

(k)
j 〉 log(〈eℓ, v

(k)
j 〉)

}
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= exp

{
−C1(1 −mξ)|ϑk|

(
1 + i

2

π
sign(ϑk) log(|ϑk|)

)
+ iϑk(C +mξ log(mξ))

}

for ϑk ∈ R, since

k∑

j=0

k+1∑

ℓ=j+1

〈eℓ, θ
(2)
k 〉〈eℓ, v

(k)
j 〉 log(〈eℓ, v

(k)
j 〉) =

k+1∑

ℓ=1

〈eℓ, θ
(2)
k 〉

ℓ−1∑

j=0

〈eℓ, v
(k)
j 〉 log(〈eℓ, v

(k)
j 〉)

= (−mξϑk)

(
mk−1

ξ

1 −mξ

log

(
mk−1

ξ

1 −mξ

)
+

k−1∑

j=1

mk−j−1
ξ log(mk−j−1

ξ )

)

+ ϑk

(
mk

ξ

1 −mξ

log

(
mk

ξ

1 −mξ

)
+

k∑

j=1

mk−j
ξ log(mk−j

ξ )

)

= ϑk

(
mk

ξ

1 −mξ
log(mξ) +

k−1∑

j=1

mk−j
ξ log(mξ)

)
= ϑk

(
mk

ξ

1 −mξ
+
mξ −mk

ξ

1 −mξ

)
log(mξ)

= ϑk
mξ

1 −mξ
log(mξ).

Hence ε̃
(1)
k is 1-stable (see, e.g., Sato [27, Theorem 14.10]). In fact,

ε̃
(1)
k −mξ(C + log(mξ))

D
= (1 −mξ)(Y (1)

0 + log(1 −mξ)), k ∈ N,

since for all ϑk ∈ R,

E(eiϑk(1−mξ)Y
(1)
0 ) = exp

{
− C1(1 −mξ)|ϑk|

(
1 + i

2

π
sign(ϑk) log(|ϑk|)

)

+ iC(1 −mξ)ϑk − iϑk(1 −mξ) log(1 −mξ)
}
.

✷

Proof of Corollary 2.7. It follows from Theorem 2.1 and Corollary 2.4 using the continuous

mapping theorem. ✷

Proof of Theorem 2.8. In case of α ∈ (0, 1), by (3.14), we have

lim
N→∞

⌊nt⌋N
n

1
αaN

E(X01{X06aN}) =
⌊nt⌋
n

1
α

α

1 − α
→ 0 as n→ ∞,

hence, by Slutsky’s lemma, (2.7) will be a consequence of (2.8).

For each n ∈ N, by Corollary 2.7 and by the continuous mapping theorem, we obtain

(
1

n
1
αaN

⌊nt⌋∑

k=1

N∑

j=1

X
(j)
k

)

t∈R+

Df−→
(

1

n
1
α

⌊nt⌋∑

k=1

(
Y (α)

k +
α

1 − α

))

t∈R+

as N → ∞

25



in case of α ∈ (0, 1), and

(
1

n
1
αaN

⌊nt⌋∑

k=1

N∑

j=1

(
X

(j)
k − E(X

(j)
k )
))

t∈R+

Df−→
(

1

n
1
α

⌊nt⌋∑

k=1

(
Y (α)

k +
α

1 − α

))

t∈R+

as N → ∞

in case of α ∈ (1, 2). Consequently, in order to prove (2.8) and (2.10), we need to show that

for each α ∈ (0, 1) ∪ (1, 2), we have

(3.16)

(
1

n
1
α

⌊nt⌋∑

k=1

(
Y (α)

k +
α

1 − α

))

t∈R+

Df−→
(
Z(α)

t +
α

1 − α
t
)
t∈R+

as n→ ∞.

For each α ∈ (0, 1) ∪ (1, 2), n ∈ N, d ∈ N, t1, . . . , td ∈ R++ with t1 < . . . < td and

ϑ1, . . . , ϑd ∈ R, we have

E

(
exp

{
i

d∑

ℓ=1

ϑℓ

n
1
α

⌊ntℓ⌋∑

k=⌊ntℓ−1⌋+1

(
Y (α)

k +
α

1 − α

)})
= E

(
exp
{

i
〈
n− 1

αθn,X
(⌊ntd⌋,α)
1 +

α

1 − α
1⌊ntd⌋+1

〉})

with t0 := 0 and

θn :=

d∑

ℓ=1

ϑℓ

⌊ntℓ⌋∑

k=⌊ntℓ−1⌋+1

ek+1 ∈ R⌊ntd⌋+1.

For each α ∈ (0, 1) ∪ (1, 2), by the explicit form of the characteristic function of X
(⌊ntd⌋,α)
1

given in Theorem 2.1,

E

(
exp
{

i
〈
n− 1

αθn,X
(⌊ntd⌋,α)
1 +

α

1 − α
1⌊ntd⌋+1

〉})

= exp

{
−Cα(1 −mα

ξ )

⌊ntd⌋∑

j=0

∣∣〈n− 1
αθn, v

(⌊ntd⌋)
j

〉∣∣α
(

1 − i tan
(πα

2

)
sign

(〈
n− 1

αθn, v
(⌊ntd⌋)
j

〉))}

= exp

{
−Cα(1 −mα

ξ )n−1

⌊ntd⌋∑

j=0

∣∣〈θn, v
(⌊ntd⌋)
j

〉∣∣α
(

1 − i tan
(πα

2

)
sign

(〈
θn, v

(⌊ntd⌋)
j

〉))}
.

We have

〈
θn, v

(⌊ntd⌋)
0

〉
=

d∑

i=1

ϑi

⌊nti⌋∑

k=⌊nti−1⌋+1

〈
ek+1, v

(⌊ntd⌋)
0

〉
=

d∑

i=1

ϑi

⌊nti⌋∑

k=⌊nti−1⌋+1

mk
ξ

(1 −mα
ξ )

1
α

=
1

(1 −mα
ξ )

1
α (1 −mξ)

d∑

i=1

ϑi(m
⌊nti−1⌋+1
ξ −m

⌊nti⌋+1
ξ ),

hence for each α ∈ (0, 1) ∪ (1, 2),

n−1
∣∣〈θn, v

(⌊ntd⌋)
0

〉∣∣α
(

1 − i tan
(πα

2

)
sign

(〈
θn, v

(⌊ntd⌋)
0

〉))
→ 0 as n→ ∞.
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The aim of the following discussion is to show that for each α ∈ (0, 1)∪(1, 2) and ℓ ∈ {1, . . . , d},

(3.17) n−1

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

∣∣〈θn, v
(⌊ntd⌋)
j

〉∣∣α → (tℓ − tℓ−1)|ϑℓ|α
(1 −mξ)α

as n→ ∞.

Here, for each ℓ ∈ {1, . . . , d} and j ∈ {⌊ntℓ−1⌋ + 1, . . . , ⌊ntℓ⌋},

〈
θn, v

(⌊ntd⌋)
j

〉
=

d∑

i=1

ϑi

⌊nti⌋∑

k=⌊nti−1⌋+1

〈
ek+1, v

(⌊ntd⌋)
j

〉
=

d∑

i=1

ϑi

⌊nti⌋∑

k=⌊nti−1⌋+1

mk−j
ξ 1{k>j}

=
1

1 −mξ

(
ϑℓ(1 −m

⌊ntℓ⌋−j+1
ξ ) +

d∑

i=ℓ+1

ϑi(m
⌊nti−1⌋−j+1
ξ −m

⌊nti⌋−j+1
ξ )

)
.

(3.18)

In case of α ∈ (0, 1], we have

|x|α − |y|α 6 |x+ y|α 6 |x|α + |y|α, x, y ∈ R.(3.19)

In case of α ∈ (1, 2), by the mean value theorem and by (3.19), we have

∣∣|x+ y|α − |x|α
∣∣ 6 α|y|max{|x+ y|α−1, |x|α−1} 6 α|y|(|x|α−1 + |y|α−1), x, y ∈ R.

Hence for each α ∈ (0, 2) and x, y ∈ R, we obtain

|x|α − 2|y|(|x|α−1 + |y|α−1) 6 |x+ y|α 6 |x|α + 2|y|(|x|α−1 + |y|α−1),

so, by (3.18) and the squeeze theorem, to prove (3.17), it is enough to check that

1

n

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

(1 −m
⌊ntℓ⌋−j+1
ξ )α → tℓ − tℓ−1,(3.20)

1

n

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

∣∣∣∣∣
d∑

i=ℓ+1

ϑi(m
⌊nti−1⌋−j+1
ξ −m

⌊nti⌋−j+1
ξ )

∣∣∣∣∣

α

→ 0,(3.21)

1

n

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

∣∣∣∣∣
d∑

i=ℓ+1

ϑi(m
⌊nti−1⌋−j+1
ξ −m

⌊nti⌋−j+1
ξ )

∣∣∣∣∣(1 −m
⌊ntℓ⌋−j+1
ξ )α−1 → 0(3.22)

as n → ∞. Since (1 − t)α = 1 − αt + o(t) as t ↓ 0, there exists j0 ∈ N such that

|(1 −mj
ξ)

α − 1 + αmj
ξ| 6 mj

ξ for all j > j0. Hence

∣∣∣∣∣
1

n

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

(
1 −m

⌊ntℓ⌋−j+1
ξ

)α − 1

n

⌊ntℓ⌋−⌊ntℓ−1⌋∑

j=1

(1 − αmj
ξ)

∣∣∣∣∣

=

∣∣∣∣∣
1

n

⌊ntℓ⌋−⌊ntℓ−1⌋∑

j=1

(1 −mj
ξ)

α − 1

n

⌊ntℓ⌋−⌊ntℓ−1⌋∑

j=1

(1 − αmj
ξ)

∣∣∣∣∣
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6

∣∣∣∣∣
1

n

j0−1∑

j=1

(
(1 −mj

ξ)
α − 1 + αmj

ξ

)
∣∣∣∣∣+

1

n

⌊ntℓ⌋−⌊ntℓ−1⌋∑

j=j0

mj
ξ

6

∣∣∣∣∣
1

n

j0−1∑

j=1

(
(1 −mj

ξ)
α − 1 + αmj

ξ

)
∣∣∣∣∣+

1

n

mj0
ξ

1 −mξ
→ 0 as n→ ∞.

Thus

lim
n→∞

1

n

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

(
1 −m

⌊ntℓ⌋−j+1
ξ

)α
= lim

n→∞

1

n

⌊ntℓ⌋−⌊ntℓ−1⌋∑

j=1

(1 − αmj
ξ)

= lim
n→∞

1

n

(
⌊ntℓ⌋ − ⌊ntℓ−1⌋ − α

mξ −m
⌊ntℓ⌋−⌊ntℓ−1⌋+1
ξ

1 −mξ

)
= tℓ − tℓ−1,

yielding (3.20). In case of α ∈ (1, 2), for all x1, . . . , xk ∈ R, we have |x1 + · · · + xk|α 6

kα−1(|x1|α + · · · + |xk|α), hence, by (3.19), for each α ∈ (0, 2), we obtain

|x1 + · · · + xk|α 6 k(|x1|α + · · · + |xk|α), x1, . . . , xk ∈ R.

Consequently, we have

1

n

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

∣∣∣∣∣
d∑

i=ℓ+1

ϑi(m
⌊nti−1⌋−j+1
ξ −m

⌊nti⌋−j+1
ξ )

∣∣∣∣∣

α

6
1

n

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

(d− ℓ)
d∑

i=ℓ+1

|ϑi|α
(
m

⌊nti−1⌋−j+1
ξ −m

⌊nti⌋−j+1
ξ

)α

6
d

n

d∑

i=ℓ+1

|ϑi|α
⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

m
(⌊nti−1⌋−j+1)α
ξ 6

d

n

d∑

i=ℓ+1

|ϑi|α
∞∑

k=0

mkα
ξ → 0 as n→ ∞,

yielding (3.21). For each n ∈ N and for each j ∈ {⌊ntℓ−1⌋ + 1, . . . , ⌊ntℓ⌋}, we have

(1 −m
⌊ntℓ⌋−j+1
ξ )α−1

6

{
(1 −mξ)

α−1 if α ∈ (0, 1],

1 if α ∈ (1, 2),

and hence

1

n

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

∣∣∣∣∣
d∑

i=ℓ+1

ϑi(m
⌊nti−1⌋−j+1
ξ −m

⌊nti⌋−j+1
ξ )

∣∣∣∣∣(1 −m
⌊ntℓ⌋−j+1
ξ )α−1

6
(1 −mξ)

α−1 ∨ 1

n

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

d∑

i=ℓ+1

|ϑi|
(
m

⌊nti−1⌋−j+1
ξ −m

⌊nti⌋−j+1
ξ

)

6
(1 −mξ)

α−1 ∨ 1

n

d∑

i=ℓ+1

|ϑi|
⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

m
⌊nti−1⌋−j+1
ξ 6

(1 −mξ)
α−1 ∨ 1

n

d∑

i=ℓ+1

|ϑi|
∞∑

k=0

mk
ξ → 0
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as n→ ∞, yielding (3.22). Thus we obtain (3.17).

Next we show that for each ℓ ∈ {1, . . . , d}, we have

n−1

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

∣∣〈θn, v
(⌊ntd⌋)
j

〉∣∣α sign
(〈
θn, v

(⌊ntd⌋)
j

〉)
→ (tℓ − tℓ−1)|ϑℓ|α

(1 −mξ)α
sign(ϑℓ)

as n → ∞. If ϑℓ = 0, then this readily follows from (3.18) and (3.21). If ϑℓ 6= 0, then we

show that there exists C̃ℓ ∈ R++ such that

(3.23) sign
(〈
θn, v

(⌊ntd⌋)
j

〉)
= sign(ϑℓ)

for each n ∈ N and for each j ∈ {⌊ntℓ−1⌋ + 1, . . . , ⌊ntℓ⌋} with j < ⌊ntℓ⌋ + 1 − C̃ℓ. First,

observe that, by (3.18), the inequality

(3.24)

∣∣∣∣∣
d∑

i=ℓ+1

ϑi
(
m

⌊nti−1⌋−j+1
ξ −m

⌊nti⌋−j+1
ξ

)
∣∣∣∣∣ < |ϑℓ(1 −m

⌊ntℓ⌋−j+1
ξ )|

implies (3.23). Then we have
∣∣∣∣∣

d∑

i=ℓ+1

ϑi
(
m

⌊nti−1⌋−j+1
ξ −m

⌊nti⌋−j+1
ξ

)
∣∣∣∣∣ 6

(
max

ℓ+16i6d
|ϑi|
) d∑

i=ℓ+1

(
m

⌊nti−1⌋−j+1
ξ −m

⌊nti⌋−j+1
ξ

)

=

(
d∑

i=ℓ+1

|ϑi|
)
(
m

⌊ntℓ⌋−j+1
ξ −m

⌊ntd⌋−j+1
ξ

)
6

(
d∑

i=ℓ+1

|ϑi|
)
m

⌊ntℓ⌋−j+1
ξ ,

hence (3.24) is satisfied if
(

d∑

i=ℓ+1

|ϑi|
)
m

⌊ntℓ⌋−j+1
ξ < |ϑℓ|(1 −m

⌊ntℓ⌋−j+1
ξ ),

which is satisfied if

m
⌊ntℓ⌋−j+1
ξ <

|ϑℓ|
|ϑℓ| + · · · + |ϑd|

,

or equivalently, if

j < ⌊ntℓ⌋ + 1 − C̃ℓ with C̃ℓ := log

( |ϑℓ|
|ϑℓ| + · · · + |ϑd|

)/
log(mξ) ∈ R++.

Hence, for ϑℓ 6= 0, n ∈ N, and j ∈ {⌊ntℓ−1⌋ + 1, . . . , ⌊ntℓ⌋} with j < ⌊ntℓ⌋ + 1 − C̃ℓ, we

have (3.23). Moreover, for each n ∈ N and j ∈ {⌊ntℓ−1⌋ + 1, . . . , ⌊ntℓ⌋}, by (3.18), we have

∣∣〈θn, v
(⌊ntd⌋)
j

〉∣∣ 6 1

1 −mξ

(
|ϑℓ|(1 −m

⌊ntℓ⌋−j+1
ξ ) +

d∑

i=ℓ+1

|ϑi|(m⌊nti−1⌋−j+1
ξ −m

⌊nti⌋−j+1
ξ )

)

6
1

1 −mξ

d∑

i=ℓ

|ϑi|,
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yielding that

∣∣∣∣∣∣
n−1

⌊ntℓ⌋∑

j=⌊ntℓ⌋+1−C̃ℓ

∣∣〈θn, v
(⌊ntd⌋)
j

〉∣∣α sign
(〈
θn, v

(⌊ntd⌋)
j

〉)
∣∣∣∣∣∣
6 n−1

⌊ntℓ⌋∑

j=⌊ntℓ⌋+1−C̃ℓ

∣∣〈θn, v
(⌊ntd⌋)
j

〉∣∣α

6
C̃ℓ

n(1 −mξ)α

(
d∑

i=ℓ

|ϑi|
)α

→ 0 as n→ ∞.

Consequently, by (3.17),

lim
n→∞

n−1

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

∣∣〈θn, v
(⌊ntd⌋)
j

〉∣∣α sign
(〈
θn, v

(⌊ntd⌋)
j

〉)

= lim
n→∞

n−1
∑

⌊ntℓ−1⌋+16j<⌊ntℓ⌋+1−C̃ℓ

∣∣〈θn, v
(⌊ntd⌋)
j

〉∣∣α sign
(〈
θn, v

(⌊ntd⌋)
j

〉)

= lim
n→∞

n−1
∑

⌊ntℓ−1⌋+16j<⌊ntℓ⌋+1−C̃ℓ

∣∣〈θn, v
(⌊ntd⌋)
j

〉∣∣α sign(ϑℓ)

= lim
n→∞

n−1

⌊ntℓ⌋∑

j=⌊ntℓ−1⌋+1

∣∣〈θn, v
(⌊ntd⌋)
j

〉∣∣α sign(ϑℓ) =
(tℓ − tℓ−1)|ϑℓ|α

(1 −mξ)α
sign(ϑℓ),

as desired. We conclude for all α ∈ (0, 1) ∪ (1, 2),

E

(
exp

{
i

d∑

ℓ=1

ϑℓ

n
1
α

⌊ntℓ⌋∑

k=⌊ntℓ−1⌋+1

(
Y (α)

k +
α

1 − α

)})

= E

(
exp
{

i
〈
n− 1

αθn,X
(⌊ntd⌋,α)
1 +

α

1 − α
1⌊ntd⌋+1

〉})

→ exp

{
−Cα

1 −mα
ξ

(1 −mξ)α

d∑

ℓ=1

(tℓ − tℓ−1)|ϑℓ|α
(

1 − i tan
(πα

2

)
sign(ϑℓ)

)}

= E

(
exp

{
i

d∑

ℓ=1

ϑℓ

((
Z(α)

tℓ
+

α

1 − α
tℓ

)
−
(
Z(α)

tℓ−1
+

α

1 − α
tℓ−1

))})
as n→ ∞.

By the continuity theorem, we obtain for all α ∈ (0, 1) ∪ (1, 2),

(
1

n
1
α

⌊ntℓ⌋∑

k=⌊ntℓ−1⌋+1

(
Y (α)

k +
α

1 − α

))

ℓ∈{1,...,d}

D−→
((

Z(α)
tℓ

+
α

1 − α
tℓ

)
−
(
Z(α)

tℓ−1
+

α

1 − α
tℓ−1

))
ℓ∈{1,...,d}

as n → ∞, hence the continuous mapping theorem yields (3.16), and we finished the proofs

of (2.7), (2.8) and (2.10).
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Now we turn to prove (2.9). For each n ∈ N, by Corollary 2.7 and by the continuous

mapping theorem, in case of α = 1, we obtain

(
1

n log(n)aN

⌊nt⌋∑

k=1

N∑

j=1

(
X

(j)
k − E

(
X

(j)
k 1

{X
(j)
k

6aN}

)))

t∈R+

Df−→
(

1

n log(n)

⌊nt⌋∑

k=1

Y (1)
k

)

t∈R+

as N → ∞. Consequently, in order to prove (2.9), we need to show that

(3.25)

(
1

n log(n)

⌊nt⌋∑

k=1

Y (1)
k

)

t∈R+

Df−→ (t)t∈R+ as n→ ∞.

Since the limit in (3.25) is deterministic, by van der Vaart [28, Theorem 2.7, part (vi)], it is

enough to show that for each t ∈ R+, we have

(3.26)
1

n log(n)

⌊nt⌋∑

k=1

Y (1)
k

D−→ t as n→ ∞.

For each n ∈ N, t ∈ R+, and ϑ ∈ R, we have

E
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By the explicit form of the characteristic function of X
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1 given in Theorem 2.1,
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= exp

{
−C1(1 −mξ)|ϑ|

n log(n)

⌊nt⌋∑

j=0

〈
1⌊nt⌋+1, v

(⌊nt⌋)
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〉
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2
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ϑ
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→ eitϑ

as n→ ∞ for each ϑ ∈ R. Indeed,

1

n log(n)
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1⌊nt⌋+1, 1⌊nt⌋+1

〉
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n log(n)
→ 0 as n→ ∞,
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1
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1 −m
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ξ
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6
⌊nt⌋ + 1

(1 −mξ)n log(n)
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〉
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2
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sign(ϑ) log

( |ϑ|
n log(n)

〈
1⌊nt⌋+1, v

(⌊nt⌋)
j

〉)
→ itϑ

as n→ ∞, since
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〈
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(⌊nt⌋)
j
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( |ϑ|
log(n)
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ξ
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=

∣∣∣∣log(|ϑ|) − log(log(n)) + log
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⌊nt⌋−j+1
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)∣∣∣∣ 6 | log(|ϑ|)| + log(log(n)) + | log(1 −mξ)|,

32



hence, by (3.27),

∣∣∣∣
1

n log(n)

⌊nt⌋∑

j=0

〈
1⌊nt⌋+1, v

(⌊nt⌋)
j

〉
log

( |ϑ|
log(n)

〈
1⌊nt⌋+1, v

(⌊nt⌋)
j

〉)∣∣∣∣

6
⌊nt⌋ + 1

(1 −mξ)n log(n)

(
| log(|ϑ|)| + log(log(n)) + | log(1 −mξ)|

)
→ 0 as n→ ∞,

and

C1(1 −mξ)|ϑ|
n log(n)

⌊nt⌋∑

j=0

〈
1⌊nt⌋+1, v

(⌊nt⌋)
j

〉
i
2

π
sign(ϑ) log(n) = i

(1 −mξ)ϑ

n

⌊nt⌋∑

j=0

1 −m
⌊nt⌋−j+1
ξ

1 −mξ

→ itϑ

as n→ ∞. By the continuity theorem, we obtain (3.26), hence we finished the proof of (2.9).

✷

Appendices

A A version of the continuous mapping theorem

If ξ and ξn, n ∈ N, are random elements with values in a metric space (E, d), then we also

denote by ξn
D−→ ξ the weak convergence of the distributions of ξn on the space (E,B(E))

towards the distribution of ξ on the space (E,B(E)) as n→ ∞, where B(E) denotes the

Borel σ-algebra on E induced by the given metric d.

The following version of the continuous mapping theorem can be found for example in

Theorem 3.27 of Kallenberg [14].

A.1 Lemma. Let (S, dS) and (T, dT ) be metric spaces and (ξn)n∈N, ξ be random elements

with values in S such that ξn
D−→ ξ as n→ ∞. Let f : S → T and fn : S → T , n ∈ N, be

measurable mappings and C ∈ B(S) such that P(ξ ∈ C) = 1 and limn→∞ dT (fn(sn), f(s)) = 0

if limn→∞ dS(sn, s) = 0 and s ∈ C, sn ∈ S, n ∈ N. Then fn(ξn)
D−→ f(ξ) as n→ ∞.

We will use the following corollary of this lemma several times.

A.2 Lemma. Let d ∈ N, and let (U t)t∈R+, (U
(n)
t )t∈R+, n ∈ N, be Rd-valued stochastic

processes with càdlàg paths such that U
(n) D−→ U as n→ ∞. Let Φ : D(R+,R

d) → D(R+,R
d)

and Φn : D(R+,R
d) → D(R+,R

d), n ∈ N, be measurable mappings such that Φn(fn) → Φ(f)

in D(R+,R
d) as n → ∞ whenever fn → f in D(R+,R

d) as n → ∞ with f, fn ∈
D(R+,R

d), n ∈ N. Then Φn(U (n))
D−→ Φ(U) as n→ ∞.
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B The underlying space and vague convergence

For each d ∈ N, put Rd
0 := Rd \ {0}, and denote by B(Rd

0) the Borel σ-algebra of Rd
0

induced by the metric ̺ : Rd
0 × Rd

0 → R+, given by

̺(x,y) := min{‖x− y‖, 1} +

∣∣∣∣
1

‖x‖ − 1

‖y‖

∣∣∣∣, x,y ∈ Rd
0.(B.1)

B.1 Lemma. The set Rd
0 furnished with the metric ̺ given in (B.1) is a complete separable

metric space, and B ⊂ Rd
0 is bounded with respect to the metric ̺ if and only if B is

separated from the origin 0 ∈ Rd, i.e., there exists ε ∈ R++ such that B ⊂ {x ∈ Rd
0 : ‖x‖ >

ε}. Moreover, the topology and the Borel σ-algebra B(Rd
0) on Rd

0 induced by the metric

̺ coincides with the topology and the Borel σ-algebra on Rd
0 induced by the usual metric

d(x,y) := ‖x− y‖, x,y ∈ Rd
0, respectively.

Proof. First, we check that Rd
0 furnished with the metric ̺ is a complete separable

metric space. If (xn)n∈N is a Cauchy sequence in Rd
0, then for all ε ∈ (0, 1), there

exists an Nε ∈ N such that ̺(xn,xm) < ε for n,m > Nε. Hence ‖xn − xm‖ < ε and∣∣∣ 1
‖xn‖

− 1
‖xm‖

∣∣∣ < ε for n,m > Nε, i.e., (xn)n∈N and (1/‖xn‖)n∈N are Cauchy sequences in Rd

and in R, respectively. Consequently, there exists an x ∈ Rd such that limn→∞ ‖xn − x‖ = 0

and 1
‖xn‖

being convergent as n→ ∞, yielding that x 6= 0, and so x ∈ Rd
0. By the continuity of

the norm, limn→∞ ̺(xn,x) = 0, as desired. The separability of Rd
0 readily follows, since Rd

0∩Qd

is a countable everywhere dense subset of Rd
0.

Next, we check that B ⊂ Rd
0 is bounded with respect to the metric ̺ if and only if there exists

ε ∈ R++ such that B ⊂ {x ∈ Rd
0 : ‖x‖ > ε}. If B ⊂ Rd

0 is bounded, then there exists r > 0

such that ̺(x, e1) < r, x ∈ B, yielding that | 1
‖x‖

− 1| < r, x ∈ B, and then ‖x‖ > 1
1+r

, x ∈ B,

so one can choose ε = 1
1+r

. If there exists ε > 0 such that B ⊂ {x ∈ Rd
0 : ‖x‖ > ε}, then

̺(x, e1) = min{‖x− e1‖, 1} + | 1
‖x‖

− 1| 6 1 + 1
ε

+ 1, x ∈ B. ✷

Since Rd
0 is locally compact, second countable and Hausdorff, one could choose a metric

such that the relatively compact sets are precisely the bounded ones, see Kallenberg [15, page

18]. The metric ̺ does not have this property, but we do not need it.

Write (Rd
0)̂ for the class of bounded Borel sets with respect to the metric ̺ given in (B.1).

A measure ν on (Rd
0,B(Rd

0)) is said to be locally finite if ν(B) < ∞ for every B ∈ (Rd
0 )̂ ,

and write M(Rd
0) for the class of locally finite measures on (Rd

0,B(Rd
0)).

Write ĈRd
0

for the class of bounded, continuous functions f : Rd
0 → R+ with bounded

support. Hence, if f ∈ ĈRd
0
, then there exist an ε ∈ R++ such that f(x) = 0 for all x ∈ Rd

0

with ‖x‖ 6 ε. The vague topology on M(Rd
0) is constructed as in Chapter 4 in Kallenberg

[15]. The associated notion of vague convergence of a sequence (νn)n∈N in M(Rd
0) towards

ν ∈ M(Rd
0), denoted by νn

v−→ ν as n → ∞, is defined by the condition νn(f) → ν(f) as

n→ ∞ for all f ∈ ĈRd
0
, where κ(f) :=

∫
Rd
0
f(x) κ(dx) for each κ ∈ M(Rd

0).

If ν is a measure on (Rd
0,B(Rd

0)), then B ∈ B(Rd
0) is called a ν-continuity set if
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ν(∂B) = 0, and the class of bounded ν-continuity sets will be denoted by (Rd
0)ν̂ . The

following statement is an analogue of the portmanteau theorem for vague convergence, see,

e.g., Kallenberg [13, 15.7.2].

B.2 Lemma. Let ν, νn ∈ M(Rd
0), n ∈ N. Then the following statements are equivalent:

(i) νn
v−→ ν as n→ ∞,

(ii) νn(B) → ν(B) as n→ ∞ for all B ∈ (Rd
0)ν̂ .

The following statement is an analogue of the continuous mapping theorem for vague con-

vergence, see, e.g., Kallenberg [13, 15.7.3]. Write Df for the set of discontinuities of a function

f : Rd
0 → R.

B.3 Lemma. Let ν, νn ∈ M(Rd
0), n ∈ N, with νn

v−→ ν as n→ ∞. Then νn(f) → ν(f)

as n → ∞ for every bounded measurable function f : Rd
0 → R+ with bounded support

satisfying ν(Df) = 0.

C Regularly varying distributions

First, we recall the notions of slowly varying and regularly varying functions, respectively.

C.1 Definition. A measurable function U : R++ → R++ is called regularly varying at infinity

with index ρ ∈ R if for all c ∈ R++,

lim
x→∞

U(cx)

U(x)
= cρ.

In case of ρ = 0, we call U slowly varying at infinity.

C.2 Definition. A random variable Y is called regularly varying with index α ∈ R++ if

P(|Y | > x) ∈ R++ for all x ∈ R++, the function R++ ∋ x 7→ P(|Y | > x) ∈ R++ is regularly

varying at infinity with index −α, and a tail-balance condition holds:

(C.1) lim
x→∞

P(Y > x)

P(|Y | > x)
= p, lim

x→∞

P(Y 6 −x)

P(|Y | > x)
= q,

where p+ q = 1.

C.3 Remark. In the tail-balance condition (C.1), the second convergence can be replaced by

(C.2) lim
x→∞

P(Y < −x)

P(|Y | > x)
= q.

Indeed, if Y is regularly varying with index α ∈ R++, then

lim sup
x→∞

P(Y < −x)

P(|Y | > x)
6 lim

x→∞

P(Y 6 −x)

P(|Y | > x)
= q,
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and

lim inf
x→∞

P(Y < −x)

P(|Y | > x)
> lim inf

x→∞

P(Y 6 −x− 1)

P(|Y | > x)

= lim inf
x→∞

P(Y 6 −x− 1)

P(|Y | > x + 1)

P(|Y | > x(1 + 1/x))

P(|Y | > x)
= q,

since, by the uniform convergence theorem for regularly varying functions (see, e.g., Bingham

et al. [7, Theorem 1.5.2]) together with the fact that 1 + 1/x ∈ [1, 2] for x ∈ [1,∞), we

obtain

lim
x→∞

P(|Y | > x(1 + 1/x))

P(|Y | > x)
= 1,

and hence, we conclude (C.2).

On the other hand, if Y is a random variable such that P(|Y | > x) ∈ R++ for all

x ∈ R++, the function R++ ∋ x 7→ P(|Y | > x) ∈ R++ is regularly varying at infinity with

index −α, and (C.2) holds, then the second convergence in the tail-balance condition (C.1)

can be derived in a similar way. ✷

C.4 Lemma. (i) A non-negative random variable Y is regularly varying with index α ∈
R++ if and only if P(Y > x) ∈ R++ for all x ∈ R++, and the function R++ ∋ x 7→
P(Y > x) ∈ R++ is regularly varying at infinity with index −α.

(ii) If Y is a regularly varying random variable with index α ∈ R++, then for each β ∈ R++,

|Y |β is regularly varying with index α/β.

C.5 Lemma. If Y is a regularly varying random variable with index α ∈ R++, then there

exists a sequence (an)n∈N in R++ such that nP(|Y | > an) → 1 as n→ ∞. If (an)n∈N is

such a sequence, then an → ∞ as n→ ∞.

Proof. We are going to show that one can choose an := max{ãn, 1}, n ∈ N, where ãn
denotes the 1 − 1

n
lower quantile of |Y |, namely,

ãn := inf

{
x ∈ R : 1 − 1

n
6 P(|Y | 6 x)

}
= inf

{
x ∈ R : P(|Y | > x) 6

1

n

}
, n ∈ N.

For each n ∈ N, by the definition of the infimum, there exists a sequence (xm)m∈N in R

such that xm ↓ ãn as m → ∞ and P(|Y | > xm) 6
1
n
, m ∈ N. Letting m → ∞, using

that the distribution function of |Y | is right-continuous, we obtain P(|Y | > ãn) 6
1
n
, thus

nP(|Y | > ãn) 6 1, and hence

(C.3) lim sup
n→∞

nP(|Y | > ãn) 6 1.

Moreover, for each n ∈ N, again by the definition of the infimum, we have 1
n
< P(|Y | > ãn−1),

thus nP(|Y | > ãn − 1) > 1, and hence

(C.4) lim inf
n→∞

nP(|Y | > ãn − 1) > 1.
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We have ãn → ∞ as n → ∞, since |Y | is regularly variable with index α ∈ R+ (see

part (ii) of Lemma C.4), yielding that |Y | is unbounded. Thus for each q ∈ (0, 1) and

for sufficiently large n ∈ N, we have ãn >
1

1−q
, and then ãn − 1 > qãn, and hence

P(|Y | > ãn − 1) 6 P(|Y | > qãn). Consequently, for each q ∈ (0, 1), using (C.4) and that |Y |
is regularly varying with index α ∈ R++, we obtain

1 6 lim inf
n→∞

nP(|Y | > ãn − 1) 6 lim inf
n→∞

nP(|Y | > qãn)

= lim inf
n→∞

P(|Y | > qãn)

P(|Y | > ãn)
nP(|Y | > ãn) = q−α lim inf

n→∞
nP(|Y | > ãn).

Hence for each q ∈ (0, 1), we have lim infn→∞ nP(|Y | > ãn) > qα. Letting q ↑ 1, we get

lim infn→∞ nP(|Y | > ãn) > 1, and hence by (C.3), we conclude limn→∞ nP(|Y | > ãn) = 1.

If (an)n∈N is a sequence in R++ such that nP(|Y | > an) → 1 as n→ ∞, then an → ∞
as n→ ∞, since |Y | is unbounded. ✷

C.6 Lemma. (Karamata’s theorem for truncated moments) Consider a non-negative

regularly varying random variable Y with index α ∈ R++. Then

lim
x→∞

xβ P(Y > x)

E(Y β
1{Y 6x})

=
β − α

α
for β ∈ [α,∞),

lim
x→∞

xβ P(Y > x)

E(Y β
1{Y >x})

=
α− β

α
for β ∈ (−∞, α).

For Lemma C.6, see, e.g., Bingham et al. [7, pages 26-27] or Buraczewski et al. [8, Appendix

B.4].

Next, based on Buraczewski et al. [8, Appendix C], we recall the definition and some prop-

erties of regularly varying random vectors.

C.7 Definition. A d-dimensional random vector Y and its distribution are called regularly

varying with index α ∈ R++ if there exists a probability measure ψ on Sd−1 such that for

all c ∈ R++,
P
(
‖Y ‖ > cx, Y

‖Y ‖
∈ ·
)

P(‖Y ‖ > x)

w−→ c−αψ(·) as x→ ∞,

where
w−→ denotes the weak convergence of finite measures on Sd−1. The probability measure

ψ is called the spectral measure of Y .

The following equivalent characterization of multivariate regular variation can be derived,

e.g., from Resnick [24, page 69].

C.8 Proposition. A d-dimensional random vector Y is regularly varying with some index

α ∈ R++ if and only if there exists a non-null locally finite measure µ on Rd
0 satisfying the

limit relation

(C.5) µx(·) :=
P(x−1Y ∈ ·)
P(‖Y ‖ > x)

v−→ µ(·) as x→ ∞,
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where
v−→ denotes vague convergence of locally finite measures on Rd

0 (see Appendix B for

the notion
v−→). Further, µ satisfies the property µ(cB) = c−αµ(B) for any c ∈ R++ and

B ∈ B(Rd
0) (see, e.g., Theorem 1.14 and 1.15 and Remark 1.16 in Lindskog [16]).

The measure µ in Proposition C.8 is called the limit measure of Y .

Proof of Proposition C.8. Recall that a d-dimensional random vector Y is regularly varying

with some index α ∈ R++ if and only if on (R
d

0,B(R
d

0)), furnished with an appropriate metric

̺ (see, e.g., Kallenberg [15, page 125]), the vague convergence µx
v−→ µ as x → ∞ holds

with some non-null locally finite measure µ with µ(R
d

0 \ Rd
0) = 0, where R

d

0 := R
d \ {0}

with R := R ∪ {−∞,∞}, see, e.g., Resnick [24, page 69]. It remains to check that µx
v−→ µ

as x → ∞ on (R
d

0,B(R
d

0)) holds if and only if µx
v−→ µ as x → ∞ on (Rd

0,B(Rd
0)) with

µ := µ
∣∣
Rd
0
. By Lemma B.2, µx(B ∩ Rd

0) = µx(B) → µ(B) = µ(B ∩ Rd
0) as x → ∞ for

any bounded µ-continuity Borel set B of R
d

0. By Kallenberg [15, page 125] and Lemma

B.1, a subset B of R
d

0 is bounded with respect to the metric ̺ if and only if B ∩ Rd
0

(as a subset of Rd
0) is bounded with respect to the metric ̺. Further, for any B ∈ B(R

d

0),

(∂
R
d

0
B) ∩ Rd

0 = ∂Rd
0
(B ∩ Rd

0), where ∂
R
d

0
B and ∂Rd

0
(B ∩ Rd

0) denotes the boundary of B in

R
d

0 and that of (B ∩ Rd
0) in Rd

0, respetively, since a set G ⊂ R
d

0 is open with respect to ̺

if and only if G∩Rd
0 is open with respect to ̺. Thus µ(∂

R
d

0
B) = µ((∂

R
d

0
B)∩Rd

0) = 0 if and

only if µ(∂Rd
0
(B∩Rd

0)) = 0. Hence µx(B) → µ(B) as x→ ∞ for any bounded µ-continuity

set B of R
d

0 if and only if µx(B) → µ(B) as x→ ∞ for any bounded µ-continuity set B

of Rd
0. Consequently, by Lemma B.2, µx

v−→ µ as x → ∞ on R
d

0 if and only if µx
v−→ µ

as x→ ∞ on Rd
0. ✷

The next statement follows, e.g., from part (i) in Lemma C.3.1 in Buraczewski et al. [8].

C.9 Lemma. If Y is a regularly varying d-dimensional random vector with index α ∈ R++,

then for each c ∈ Rd, the random vector Y − c is regularly varying with index α.

Recall that if Y is a regularly varying d-dimensional random vector with index α ∈ R++

and with limit measure µ given in (C.5), and f : Rd → R is a continuous function with

f−1({0}) = {0} and it is positively homogeneous of degree β ∈ R++ (i.e., f(cv) = cβf(v)

for every c ∈ R++ and v ∈ Rd), then f(Y ) is regularly varying with index α
β

and with

limit measure µ(f−1(·)), see, e.g., Buraczewski et al. [8, page 282]. Next we describe the tail

behavior of f(Y ) for appropriate positively homogeneous functions f : Rd → R.

C.10 Proposition. Let Y be a regularly varying d-dimensional random vector with index

α ∈ R++ and let f : Rd → R be a measurable function which is positively homogeneous of

degree β ∈ R++, continuous at 0 and µ(Df) = 0, where µ is the limit measure of Y given

in (C.5) and Df denotes the set of discontinuities of f . Then µ(∂Rd
0
(f−1((1,∞)))) = 0,

where ∂Rd
0
(f−1((1,∞))) denotes the boundary of f−1((1,∞)) in Rd

0. Consequently,

lim
x→∞

P(f(Y ) > x)

P(‖Y ‖β > x)
= µ(f−1((1,∞))),
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and f(Y ) is regularly varying with tail index α
β
.

Proof. For all x ∈ R++, we have

P(f(Y ) > x)

P(‖Y ‖β > x)
=

P(x−1f(Y ) > 1)

P(‖Y ‖ > x1/β)
=

P(f(x−1/βY ) > 1)

P(‖Y ‖ > x1/β)
=

P(x−1/βY ∈ f−1((1,∞)))

P(‖Y ‖ > x1/β)
.

Next, we check that f−1((1,∞)) is a µ-continuity set being bounded with respect to the

metric ̺ given in (B.1). Since f(0) = 0 (following from the positive homogeneity of f), we

have f−1((1,∞)) ∈ B(Rd
0). The continuity of f at 0 implies the existence of an ε ∈ R++

such that for all x ∈ Rd with ‖x‖ 6 ε we have |f(x)| 6 1, thus x /∈ f−1((1,∞)), hence

f−1((1,∞)) ⊂ {x ∈ Rd
0 : ‖x‖ > ε}, i.e., f−1((1,∞)) is separated from 0, and hence, by

Lemma B.1, f−1((1,∞)) is bounded in Rd
0 with respect to the metric ̺. Further, we have

∂Rd
0
(f−1((1,∞))) ⊂ f−1(∂R((1,∞))) ∪Df = f−1({1}) ∪Df ,

and hence

µ(∂Rd
0
(f−1((1,∞)))) 6 µ(f−1({1})) + µ(Df) = µ(f−1({1})).

Here µ(f−1({1})) = 0, since if, on the contrary, we suppose that µ(f−1({1})) ∈ (0,∞], then

for all u, v ∈ R++ with u < v, we have

µ(f−1((u, v))) > µ


 ⋃

q∈Q∩(u,v)

f−1({q})


 =

∑

q∈Q∩(u,v)

µ(f−1({q})) =
∑

q∈Q∩(u,v)

µ(q
1
β f−1({1}))

=
∑

q∈Q∩(u,v)

q−
α
β µ(f−1({1})) = ∞,

where we used that µ(cB) = c−αµ(B), c ∈ R++, B ∈ B(Rd
0) (see Proposition C.8), and that

f−1({q}) = {x ∈ Rd
0 : f(x) = q} = {x ∈ Rd

0 : f(q−
1
βx) = 1}

= {q 1
βy ∈ Rd

0 : f(y) = 1} = q
1
β f−1({1}), q ∈ R++.

This leads us to a contradiction, since f−1((u, v)) is separated from 0 (can be seen similarly

as for f−1((1,∞))), so, by Lemma B.1, it is bounded with respect to the metric ̺, and hence

µ(f−1((u, v))) < ∞ due to the local finiteness of µ. Hence µ(∂Rd
0
(f−1((1,∞)))) = 0, as

desired.

Consequently, by portmanteau theorem for vague convergence (see Lemma B.2), we have

P(x−1/βY ∈ f−1((1,∞)))

P(‖Y ‖ > x1/β)
→ µ(f−1((1,∞))) as x→ ∞,

as desired. ✷
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D Weak convergence of partial sum processes towards

Lévy processes

We formulate a slight modification of Theorem 7.1 in Resnick [25] with a different centering.

D.1 Theorem. Suppose that for each N ∈ N, XN,j, j ∈ N, are independent and identically

distributed d-dimensional random vectors such that

(D.1) N P(XN,1 ∈ ·) v−→ ν(·) on Rd
0 as N → ∞,

where ν is a Lévy measure on Rd
0 such that ν({x ∈ Rd

0 : |〈eℓ,x〉| = 1}) = 0 for every

ℓ ∈ {1, . . . , d}, and that

(D.2) lim
ε↓0

lim sup
N→∞

N E
(
〈eℓ,XN,1〉21{|〈eℓ,XN,1〉|6ε}

)
= 0, ℓ ∈ {1, . . . , d}.

Then we have
(

⌊Nt⌋∑

j=1

(
XN,j −

d∑

ℓ=1

E
(
〈eℓ,XN,j〉1{|〈eℓ,XN,j〉|61}

)
eℓ

))

t∈R+

D−→ (X t)t∈R+ as N → ∞,

where (X t)t∈R+ is a Lévy process such that the characteristic function of the distribution µ

of X 1 has the form

(D.3) µ̂(θ) = exp

{∫

Rd
0

(
ei〈θ,x〉 − 1 − i

d∑

ℓ=1

〈eℓ, θ〉〈eℓ,x〉1(0,1](|〈eℓ,x〉|)
)
ν(dx)

}
, θ ∈ Rd.

Proof. There exists r ∈ R++ such that ν({x ∈ Rd
0 : ‖x‖ = r}) = 0, since the function

R++ ∋ t 7→ ν({x ∈ Rd
0 : ‖x‖ > t}) is decreasing. By an appropriate modification of Theorem

7.1 in Resnick [25], we obtain

(
⌊Nt⌋∑

j=1

(
XN,j − E

(
XN,j1{‖XN,j‖6r}

))
)

t∈R+

D−→ (X̃ t)t∈R+ as N → ∞,

where (X̃ t)t∈R+ is a Lévy process such that the characteristic function of X̃ 1 has the form

E(ei〈θ,X̃ 1〉) = exp

{∫

Rd
0

(
ei〈θ,x〉 − 1 − i〈θ,x〉1(0,r](‖x‖)

)
ν(dx)

}
, θ ∈ Rd.

Let us consider the decomposition

⌊Nt⌋∑

j=1

(
XN,j −

d∑

ℓ=1

E
(
〈eℓ,XN,j〉1{|〈eℓ,XN,j〉|61}

)
eℓ

)

=

⌊Nt⌋∑

j=1

(
XN,j − E

(
XN,j1{‖XN,j‖6r}

))
+

d∑

ℓ=1

⌊Nt⌋∑

j=1

E
(
〈eℓ,XN,j〉(1{‖XN,j‖6r} − 1{|〈eℓ,XN,j〉|61})

)
eℓ

40



for each t ∈ R++. Here for each ℓ ∈ {1, . . . , d}, we have

⌊Nt⌋∑

j=1

E
(
〈eℓ,XN,j〉(1{‖XN,j‖6r} − 1{|〈eℓ,XN,j〉|61})

)

= ⌊Nt⌋E
(
〈eℓ,XN,1〉(1{‖XN,1‖6r} − 1{|〈eℓ,XN,1〉|61})

)
=

⌊Nt⌋
N

N E(gℓ(XN,1)),

where gℓ : Rd → R, gℓ(x) := xℓ(1{‖x‖6r} − 1{|xℓ|61}), x = (x1, . . . , xd)
⊤ ∈ Rd. For

each ℓ ∈ {1, . . . , d}, the positive and negative parts g+ℓ and g−ℓ of the function gℓ
are bounded, measurable with a bounded support (following from Lemma B.1), and, due to

ν({x ∈ Rd
0 : |〈eℓ,x〉| = 1}) = 0, ℓ ∈ {1, . . . , d}, and ν({x ∈ Rd

0 : ‖x‖ = r}) = 0, the

sets of discontinuity points Dg+
ℓ

and Dg−
ℓ

have ν-measure 0, i.e., ν(Dg+
ℓ

) = ν(Dg−
ℓ

) = 0.

Consequently, by (D.1) and Lemma B.3, we have

N E(gℓ(XN,1)) = N E(g+ℓ (XN,1)) −N E(g−ℓ (XN,1)) → ν(g+ℓ ) − ν(g−ℓ ) = ν(gℓ) ∈ R

as N → ∞, since ν(g+ℓ ), ν(g−ℓ ) ∈ R+ due to the fact that ν is a Lévy measure. Next, we

may apply Lemma A.2 with

U
(N)
t :=

⌊Nt⌋∑

j=1

(
XN,j − E

(
XN,j1{‖XN,j‖6r}

))
, N ∈ N,

ΦN (f)(t) := f(t) + ⌊Nt⌋
d∑

ℓ=1

E(gℓ(XN,1))eℓ, N ∈ N,

U t := X̃ t, Φ(f)(t) := f(t) + t
d∑

ℓ=1

ν(gℓ)eℓ

for t ∈ R+ and f ∈ D(R+,R
d). Indeed, in order to show ΦN (fN) → Φ(f) in D(R+,R

k+1)

as N → ∞ whenever fN → f in D(R+,R
k+1) as N → ∞ with f, fN ∈ D(R+,R

k+1),

N ∈ N, by Propositions VI.1.17 and VI.1.23 in Jacod and Shiryaev [10], it is enough to check

that for each T ∈ R++, we have

sup
t∈[0,T ]

d∑

ℓ=1

∣∣∣∣⌊Nt⌋E(gℓ(XN,1)) − tν(gℓ)

∣∣∣∣→ 0 as N → ∞.

This follows, since for each ℓ ∈ {1, . . . , d},

sup
t∈[0,T ]

∣∣∣∣⌊Nt⌋E(gℓ(XN,1)) − tν(gℓ)

∣∣∣∣

6 sup
t∈[0,T ]

∣∣∣∣
⌊Nt⌋
N

(
N E(gℓ(XN,1)) − ν(gℓ)

)∣∣∣∣ + sup
t∈[0,T ]

∣∣∣∣∣ν(gℓ)

(⌊Nt⌋
N

− t

)∣∣∣∣∣

6 T |N E(gℓ(XN,1)) − ν(gℓ)| +
ν(gℓ)

N
→ 0 as N → ∞.
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Applying Lemma A.2, we obtain

(⌊Nt⌋∑

j=1

(
XN,j−

d∑

ℓ=1

E
(
〈eℓ,XN,j〉1{|〈eℓ,XN,j〉|61}

)
eℓ

))

t∈R+

= ΦN (U (N))
D−→ Φ(U) as N → ∞,

where Φ(U)t = X̃ t + t
∑d

ℓ=1 ν(gℓ)eℓ = X t, t ∈ R+, is a d-dimensional Lévy process, since

E
(
ei〈θ,X̃ 1+

∑d
ℓ=1 ν(gℓ)eℓ〉

)
= exp

{∫

Rd
0

(
ei〈θ,x〉 − 1 − i〈θ,x〉1(0,r](‖x‖)

)
ν(dx) + i

d∑

ℓ=1

〈θ, eℓ〉ν(gℓ)

}

= exp

{∫

Rd
0

(
ei〈θ,x〉 − 1 − i〈θ,x〉1(0,r](‖x‖)

)
ν(dx)

+ i
d∑

ℓ=1

〈θ, eℓ〉
∫

Rd
0

〈eℓ,x〉(1{‖x‖6r} − 1{|〈eℓ,x〉|61}) ν(dx)

}
,

yielding (D.3). ✷

E Tail behavior of (Xk)k∈Z+

Due to Basrak et al. [5, Theorem 2.1.1], we have the following tail behavior.

E.1 Theorem. We have

lim
x→∞

π((x,∞))

P(ε > x)
=

∞∑

i=0

miα
ξ =

1

1 −mα
ξ

,

where π denotes the unique stationary distribution of the Markov chain (Xk)k∈Z+, and

consequently, π is also regularly varying with index α.

Note that in case of α = 1 and mε = ∞ Basrak et al. [5, Theorem 2.1.1] assume

additionally that ε is consistently varying (or in other words intermediate varying), but,

eventually, it follows from the fact that ε is regularly varying.

Let (Xk)k∈Z be a strongly stationary extension of (Xk)k∈Z+. Basrak et al. [5, Lemma 3.1]

described the so-called forward tail process of the strongly stationary process (Xk)k∈Z, and

hence, due to Basrak and Segers [6, Theorem 2.1], the strongly stationary process (Xk)k∈Z is

jointly regularly varying.

E.2 Theorem. The finite dimensional conditional distributions of (x−1Xk)k∈Z+ with respect

to the condition X0 > x converge weakly to the corresponding finite dimensional distributions

of (mk
ξY )k∈Z+ as x → ∞, where Y is a random variable with Pareto distribution P(Y 6

y) = (1 − y−α)1[1,∞)(y), y ∈ R. Consequently, the strongly stationary process (Xk)k∈Z is

jointly regularly varying with index α, i.e., all its finite dimensional distributions are regularly

varying with index α. The process (mk
ξY )k∈Z+ is the so called forward tail process of (Xk)k∈Z.

Moreover, there exists a (whole) tail process of (Xk)k∈Z as well.
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By the proof of Theorem 2.1 and Proposition C.10, we obtain the following results.

E.3 Proposition. For each k ∈ Z+,

(i) the limit measure ν̃k,α of (X0, . . . , Xk)
⊤ given in (3.3) takes the form

ν̃k,α =
νk,α

νk,α({x ∈ Rk+1
0 : ‖x‖ > 1})

,

where νk,α is given by (3.4) and

νk,α({x ∈ Rk+1
0 : ‖x‖ > 1}) =

1 −mα
ξ

(1 −m2
ξ)

α/2

(
(1 −m

2(k+1)
ξ )α/2

1 −mα
ξ

+
k∑

j=1

(1 −m
2(k−j+1)
ξ )α/2

)
;

(ii) the tail behavior of X0 + · · · +Xk is given by

lim
x→∞

P(X0 + · · · +Xk > x)

P(X0 > x)
=

1 −mα
ξ

(1 −mξ)α

(
(1 −mk+1

ξ )α

1 −mα
ξ

+

k∑

j=1

(1 −mk−j+1
ξ )α

)
.

Proof. (i). In the proof of Theorem 2.1, we derived νk,α = ν̃k,α/ν̃k,α({x ∈ Rk+1
0 : x0 > 1}).

Consequently,

ν̃k,α({x ∈ Rk+1
0 : x0 > 1}) =

ν̃k,α({x ∈ Rk+1
0 : ‖x‖ > 1})

νk,α({x ∈ Rk+1
0 : ‖x‖ > 1})

,

where, using Proposition C.10 with the 1-homogeneous function Rk+1 ∋ x 7→ ‖x‖, we have

ν̃k,α({x ∈ Rk+1
0 : ‖x‖ > 1}) = lim

x→∞

P(‖(X0, . . . , Xk)
⊤‖ > x)

P(‖(X0, . . . , Xk)⊤‖ > x)
= 1,

and, by (3.4),

νk,α({x ∈ Rk+1
0 : ‖x‖ > 1}) =

∫

R
k+1
0

1{‖x‖>1} νk,α(dx)

= (1 −mα
ξ )

k∑

j=0

∫ ∞

0

1

{‖uv
(k)
j ‖>1}

αu−α−1 du

= (1 −mα
ξ )

k∑

j=0

∫ ∞

‖v
(k)
j ‖−1

αu−α−1 du = (1 −mα
ξ )

k∑

j=0

‖v(k)
j ‖α

= (1 −mα
ξ )

(
(1 −mα

ξ )−1(1 +m2
ξ + · · · +m2k

ξ )α/2 +

k∑

j=1

(1 +m2
ξ + · · · +m

2(k−j)
ξ )α/2

)

=
1 −mα

ξ

(1 −m2
ξ)

α/2

(
(1 −m

2(k+1)
ξ )α/2

1 −mα
ξ

+

k∑

j=1

(1 −m
2(k−j+1)
ξ )α/2

)
.
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(ii). Applying Proposition C.10 for the 1-homogeneous functions Rk+1 ∋ x 7→ x0 and

Rk+1 ∋ x 7→ x0 + · · · + xk and formula (3.4), we obtain

lim
x→∞

P(X0 + · · · +Xk > x)

P(X0 > x)
= lim

x→∞

P(‖(X0, . . . , Xk)⊤‖ > x)

P(X0 > x)

P(X0 + · · · +Xk > x)

P(‖(X0, . . . , Xk)⊤‖ > x)

=
ν̃k,α({x ∈ Rk+1

0 : x0 + · · · + xk > 1})

ν̃k,α({x ∈ Rk+1
0 : x0 > 1})

= νk,α({x ∈ Rk+1
0 : x0 + · · · + xk > 1})

= νk,α({x ∈ Rk+1
0 : 〈1k+1,x〉 > 1}) =

∫

R
k+1
0

1{〈1k+1,x〉>1} νk,α(dx)

= (1 −mα
ξ )

k∑

j=0

∫ ∞

0

1

{〈1k+1,uv
(k)
j 〉>1}

αu−α−1 du

= (1 −mα
ξ )

k∑

j=0

∫ ∞

〈1k+1,v
(k)
j 〉−1

αu−α−1 du = (1 −mα
ξ )

k∑

j=0

〈1k+1, v
(k)
j 〉α

= (1 −mα
ξ )

(
(1 −mα

ξ )−1(1 +mξ + · · · +mk
ξ )α +

k∑

j=1

(1 +mξ + · · · +mk−j
ξ )α

)

=
1 −mα

ξ

(1 −mξ)α

(
(1 −mk+1

ξ )α

1 −mα
ξ

+

k∑

j=1

(1 −mk−j+1
ξ )α

)
,

as desired. ✷
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[27] Ken-iti Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge

Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. Trans-

lated from the 1990 Japanese original, Revised by the author.

[28] Aad W. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.

[29] N.M. Yanev, V.K. Stoimenova, and D.V. Atanasov. Stochastic modeling and estimation

of COVID-19 population dynamics. C. R. Acad. Bulg. Sci., 73(4):451–460, 2020.

46


	1 Introduction
	2 Main results
	3 Proofs
	A A version of the continuous mapping theorem
	B The underlying space and vague convergence
	C Regularly varying distributions
	D Weak convergence of partial sum processes towards Lévy processes
	E Tail behavior of  (Xk)kZ+

