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Abstract. Surprisingly, apart from some special cases, simple asymptotic expansions for

the associated Legendre functions Pµν (z) and Qµν (z) for large degree ν or large order µ are

not available in the literature. The main purpose of the present paper is to fill this gap
by deriving simple (inverse) factorial expansions for these functions and provide sharp and

realistic bounds on their error terms. Analogous results for the Ferrers functions and the

closely related Gegenbauer function are also included. In the cases that ν is an integer or 2µ
is an odd integer, many of these new expansions terminate and provide finite representations

in terms of simple functions. Most of these representations appear to be new. It is well known
that the hypergeometric series can be regarded as a large-c asymptotic expansion for the

hypergeometric function F (a, b; c; z). We also derive computable bounds for the remainder

term of this expansion. To our best knowledge, no such estimates have been given in the
literature prior to this paper.

1. Introduction and main results

In this paper, we derive asymptotic expansions for the associated Legendre functions Pµν (z)
and Qµν (z), and the Ferrers functions Pµν (x) and Qµν (x) in the case that either the degree ν or
the order µ becomes large. These functions are solutions of the associated Legendre differential
equation

(1.1) (1− z2)
d2w(z)

dz2
− 2z

dw(z)

dz
+

(
ν(ν + 1)− µ2

1− z2
)
w(z) = 0.

The equation (1.1) occurs in the theory of spherical harmonics, potential theory, quantum me-
chanics and in other branches of applied mathematics (see, for example, [4, Ch. 14]). Over the
past several decades, a great deal of effort has gone into deriving asymptotic expansions for
these functions. Most of these (uniform) expansions are in terms of non-elementary functions
(Airy functions, Bessel functions, parabolic cylinder functions, etc.) and often have complicated
coefficients (see the end of this section for a short summary). In contrast, the expansions we
present in this paper are just (inverse) factorial expansions, with simple, elementary coefficients.
In addition, we provide, in Sections 2–5, sharp and realistic error bounds for the new expan-
sions. Numerical examples demonstrating the sharpness of these bounds and the accuracy of the
asymptotic expansions are given in Section 11. Note, however, that unlike their uniform coun-
terparts, our expansions break down near the transition points z = ±1 of the equation (1.1),
except for the large-µ asymptotic expansions for the associated Legendre functions which require
z to be bounded instead. We find it surprising that, apart from some special cases, these simple
expansions have not been given in the literature before. The reason might be that previous
authors were mainly focusing on deriving asymptotic results that are uniform in character, and
hence, inevitably posses a rather complicated structure. Some of our results are special cases
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2 G. NEMES AND A. B. OLDE DAALHUIS

of the well-known large-c asymptotic expansion of the hypergeometric function F (a, b; c; z), for
which we also provide, for the first time, computable error bounds.

A common feature of our large-ν expansions below is that they terminate when 2µ equals an
odd integer, thereby giving simple, closed-form expressions for the associated Legendre functions
and the Ferrers functions. Most of these representations appear to be new. Similarly, the
large-µ expansions terminate in the case that ν is an integer and, again, yield simple, finite
representations.

We begin with the definition of the functions under consideration. The associated Legendre
functions of complex degree ν and order µ are defined in terms of the (regularised) hypergeometric
function as follows (cf. [4, §14.3(ii)]):

Pµν (z) =

(
z + 1

z − 1

)µ/2
F

(
ν + 1,−ν

1− µ ;
1− z

2

)
for z ∈ C \ (−∞, 1], and

(1.2) e−πiµQµν (z) =
π1/2Γ(ν + µ+ 1)

(
z2 − 1

)µ/2
2ν+1zν+µ+1

F

(
ν+µ+2

2 , ν+µ+1
2

ν + 3
2

;
1

z2

)
for z ∈ C \ (−∞, 1] and ν +µ ∈ C \Z<0. For analytic continuation to other Riemann sheets, see
[4, §14.24]. The Ferrers functions of complex degree ν and order µ are defined as follows (cf. [4,
§14.3(i)]):

(1.3) Pµν (x) =

(
1 + x

1− x

)µ/2
F

(
ν + 1,−ν

1− µ ;
1− x

2

)
for −1 < x < 1, and

Qµν (x) =
π

2 sin(πµ)

(
cos(πµ)

(
1 + x

1− x

)µ/2
F

(
ν + 1,−ν

1− µ ;
1− x

2

)

−Γ(ν + µ+ 1)

Γ(ν − µ+ 1)

(
1− x
1 + x

)µ/2
F

(
ν + 1,−ν

1 + µ
;

1− x
2

))
for −1 < x < 1 and ν + µ ∈ C \ Z<0. When µ is an integer, the right-hand side is replaced by
its limiting value.

We shall also study the closely related Gegenbauer function. The Gegenbauer function of
complex degree ν and order λ may be defined as follows (cf. [4, Eq. 14.3.21] and [4, Eq. 14.3.22]):

(1.4) C(λ)
ν (z) =

√
πΓ(ν + 2λ)

Γ(λ)Γ(ν + 1)
(
2
√
z2 − 1

)λ− 1
2

P
1
2−λ
ν+λ− 1

2

(z)

for z ∈ C \ (−∞, 1], and

(1.5) C(λ)
ν (x) =

√
πΓ(ν + 2λ)

Γ(λ)Γ(ν + 1)
(
2
√

1− x2
)λ− 1

2

P
1
2−λ
ν+λ− 1

2

(x)

for −1 < x < 1.
Our initial focus is on the large-ν asymptotics. In the case that ν is large, Qµν (z) is the

recessive solution of differential equation (1.1). Our main tools are the following convenient
representations for this function.

http://dlmf.nist.gov/14.3.ii
http://dlmf.nist.gov/14.24
http://dlmf.nist.gov/14.3.i
http://dlmf.nist.gov/14.3.E21
http://dlmf.nist.gov/14.3.E22
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(1) The associated Legendre function of the second kind can be represented in terms of the
modified Bessel function of the second kind as

(1.6) e−πiµQµν (cosh ξ) =
1

Γ(ν − µ+ 1)

∫ +∞

0

tνe−t cosh ξKµ(t sinh ξ)dt,

provided that ξ > 0 and <ν > |<µ| − 1 (compare [6, Eq. (6.8.29)] and (1.2)). An immediate
consequence of the factor tν in the integrand in (1.6) is that when <ν is large and positive, the
main contribution to this integral comes from large values of t, and thus we can obtain a large-ν
asymptotic expansion by expanding the Bessel function by its well-known large-t asymptotic
expansion. In this way it is also straightforward to obtain sharp and realistic error bounds.

(2) If combined with a quadratic transformation [4, Eq. 15.8.19] for the hypergeometric func-
tion, (1.2) yields the representation

(1.7) e−πiµQµν (cosh ξ) =

√
π

2 sinh ξ
e−(ν+ 1

2 )ξΓ(ν + µ+ 1)F

(
1
2 + µ, 12 − µ

ν + 3
2

;
−e−ξ

2 sinh ξ

)
,

(cf. [7, Eq. (3.2.44)]) in which, again, ν + µ ∈ C \ Z<0 and we take ξ ∈ D1 where

(1.8) Dp = {ξ : <ξ > 0, |=ξ| < πp} , p > 0.

Note that the function cosh ξ is a biholomorphic bijection between D1 and C \ (−∞, 1].
Any hypergeometric function for which a quadratic transformation exists can be expressed

in terms of the associated Legendre functions or the Ferrers functions (cf. [4, §15.9(iv)]). Con-
sequently, there are several representations in terms of hypergeometric functions. For large
parameter asymptotic approximations of hypergeometric functions see, e.g., [21] and [8]. These
results can be used to obtain asymptotic expansions for the associated Legendre functions or the
Ferrers functions. In general, the hypergeometric series

F

(
a, b

c
; z

)
= Γ(c)F

(
a, b

c
; z

)
=

∞∑
n=0

(a)n (b)n
(c)n n!

zn

converges only for |z| < 1, but it can be regarded as a large-c asymptotic series in much larger
complex z-domains (cf. [4, §15.12(ii)]). Thus, the representation (1.7) is very convenient since it is
possible to obtain a large-ν asymptotic expansion by replacing the hypergeometric function with
its hypergeometric series. This asymptotic expansion will be valid in the sector | arg ν| ≤ π − δ
(< π) and for ξ ∈ D1, |sinh ξ| ≥ ε (> 0). Error bounds for this expansion will then follow from
the more general results we shall prove for the hypergeometric series (see Section 2).

Before stating our main results, we introduce some notation. We define, for any n ≥ 0,

an(µ) =
(4µ2 − 12)(4µ2 − 32) · · · (4µ2 − (2n− 1)2)

8nn!
=

(
1
2 − µ

)
n

(
1
2 + µ

)
n

(−2)
n
n!

,

and let

(1.9) C(ξ, µ) =

{
sin(πµ) if ξ > 0,

±ie∓πiµ if 0 < ±=ξ < π,
χ(p) =

√
πΓ
(
p
2 + 1

)
Γ
(
p
2 + 1

2

) , p > 0.

The main large parameter asymptotic expansions we prove in this paper are as follows.

http://dlmf.nist.gov/15.8.E19
https://dlmf.nist.gov/15.9.iv
https://dlmf.nist.gov/15.12.ii


4 G. NEMES AND A. B. OLDE DAALHUIS

Legendre functions for large ν and fixed µ. Assume that ξ ∈ D1, |sinh ξ| ≥ ε (> 0) and
µ ∈ C is bounded. Then the associated Legendre functions have the inverse factorial expansions

Pµν (cosh ξ) ∼ e(ν+ 1
2 )ξ

√
2π sinh ξ

∞∑
n=0

an(µ)
Γ
(
ν − n+ 1

2

)
Γ(ν − µ+ 1)

(−e−ξ

sinh ξ

)n

+
C(ξ, µ)e−(ν+ 1

2 )ξ
√

2π sinh ξ

∞∑
n=0

an(µ)
Γ
(
ν − n+ 1

2

)
Γ(ν − µ+ 1)

(
eξ

sinh ξ

)n
,

(1.10)

(1.11) e−πiµQµν (cosh ξ) ∼
√

π

2 sinh ξ
e−(ν+ 1

2 )ξ
∞∑
n=0

an(µ)
Γ
(
ν − n+ 1

2

)
Γ(ν − µ+ 1)

(
eξ

sinh ξ

)n
,

as <ν → +∞, with =ν being bounded. These results are direct consequences of Theorems
3.1 and 3.2, where we give sharp and realistic error bounds for the truncated versions of the
expansions. We remark that in the special case that ξ is positive, ν is a positive integer and
µ = 0, these expansions (without error estimates) were also given by Olver [16]. For more
information regarding inverse factorial expansions, see, e.g., [13].

Under the same assumptions, the associated Legendre function of the second kind has the
factorial expansion

(1.12) e−πiµQµν (cosh ξ) ∼
√

π

2 sinh ξ
e−(ν+ 1

2 )ξ
∞∑
n=0

an(µ)
Γ(ν + µ+ 1)

Γ
(
ν + 3

2 + n
) ( e−ξ

sinh ξ

)n
,

as |ν| → +∞ in the sector | arg ν| ≤ π−δ (< π). This result is a direct consequence of Theorems
3.3 and 3.4, where we provide sharp and realistic error bounds for the truncated version of the
expansion. For more information regarding factorial series, see, e.g., [3]. Note that Theorem 3.4
implies (1.12) for bounded values of µ satisfying − 1

2 < <µ. This restriction can be removed by
appealing to the connection formula (1.32).

We observe that when e2<ξ > 2 cos (2=ξ), the infinite series on the right-hand side of (1.12)
converges to its left-hand side. This is no surprise because this infinite series is just the power
series for the hypergeometric function in (1.7). Note that when e−2<ξ > 2 cos (2=ξ) and ν+ 1

2 /∈ Z,
the infinite series on the right-hand side of (1.11) is also convergent, however, its sum is not the
associated Legendre function on the left-hand side.

We mention that if 2µ equals an odd integer, then the expansions (1.10), (1.11) and (1.12)
terminate and represent the corresponding function exactly. This generalises the cases 2µ = ±1
given in [4, §14.5(iii)]. The exact representations resulting from (1.12) were also found earlier by
Cohl et al. [2, Eq. (5.5)].

To obtain a large-ν asymptotic expansion for the associated Legendre function Pµν (z) that
holds in the sectors (0 <) δ ≤ |arg ν| ≤ π − δ (< π), we can combine (1.12) with the connection
formula

e−πiµ cos(πν)Pµν (cosh ξ) =
Q−µ−ν−1(cosh ξ)−Q−µν (cosh ξ)

Γ(ν − µ+ 1)Γ(−ν − µ)

(combine [4, Eq. 14.9.12] with [4, Eq. 14.3.10]).

https://dlmf.nist.gov/14.5.iii
http://dlmf.nist.gov/14.9.E12
http://dlmf.nist.gov/14.3.E10
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Legendre functions for large µ and fixed ν. To obtain large-µ asymptotic expansions for
the associated Legendre functions, we can combine the results above with the identities

Pµν (coth ξ) =

√
2 sinh ξ

π

(
sin(πµ)Γ(ν + µ+ 1)P

−ν− 1
2

µ− 1
2

(cosh ξ)(1.13)

− ie−πiν

Γ(ν − µ+ 1)
Q
ν+ 1

2

µ− 1
2

(cosh ξ)

)
,

Qµν (coth ξ) =

√
π sinh ξ

2
eπiµΓ(ν + µ+ 1)P

−ν− 1
2

µ− 1
2

(cosh ξ).(1.14)

These identities follow from Whipple’s formulae [4, §14.9(iv)] and the equations [4, Eq. 14.3.10],
(1.30) and (1.31). For example, if ξ ∈ D 1

2
, |sinh ξ| ≥ ε (> 0) and ν ∈ C is bounded, (1.10) and

(1.11) yield the inverse factorial expansions

Pµν (coth ξ) ∼ sin(πµ)

π
eµξ

∞∑
n=0

an
(
ν + 1

2

)
Γ (µ− n)

(−e−ξ

sinh ξ

)n
+ C

(
ξ,−µ− 1

2

) sin(πν)

π
e−µξ

∞∑
n=0

an
(
ν + 1

2

)
Γ (µ− n)

(
eξ

sinh ξ

)n
,

(1.15)

e−πiµQµν (coth ξ) ∼ 1
2eµξ

∞∑
n=0

an
(
ν + 1

2

)
Γ (µ− n)

(−e−ξ

sinh ξ

)n
+ C

(
ξ,−ν − 1

2

)
1
2e−µξ

∞∑
n=0

an
(
ν + 1

2

)
Γ (µ− n)

(
eξ

sinh ξ

)n
,

(1.16)

as <µ→ +∞, with =µ being bounded.
Examination of the remainder terms in the limiting case <ξ → 0, =ξ 6= 0 (using Theorems

3.1 and 3.2), shows that these inverse factorial expansions are actually valid on the boundary
∓iξ ∈

[
arcsin ε, π2

)
as well. Bounds for the error terms of these expansions follow from Theorems

3.1 and 3.2, the details are left to the reader. Note that the function coth ξ is a biholomorphic
bijection between the domains D 1

2
and {z : <z > 0, z 6∈ (0, 1]}, see Figure 1. In particular, the

domain {z : <z < 0,=z 6= 0} is not covered by the expansions (1.15) and (1.16).

A = 0

B+ = ⇡
2 i

B� = �⇡
2 i

C+ = ⇡
2 i + 1

C� = �⇡
2 i + 1

C0 = +1

⇠

Figure 1: Test.

C = 1

A�

A+

A0B = 0

z

Figure 2: Test.

1

A = 0

B+ = ⇡
2 i

B� = �⇡
2 i

C+ = ⇡
2 i + 1

C� = �⇡
2 i + 1

C0 = +1

⇠

Figure 1: Test.

C = 1

A�

A+

A0B = 0

z

Figure 2: Test.

1

Figure 3: Test.

2

Figure 1. The mapping z = coth ξ from D 1
2

to {z : <z > 0, z 6∈ (0, 1]}. The

boundary ∓iξ ∈ (0, π2 ) is mapped to the imaginary axis ±iz > 0.

http://dlmf.nist.gov/14.9.iv
http://dlmf.nist.gov/14.3.E10


6 G. NEMES AND A. B. OLDE DAALHUIS

In order to cover the whole Riemann sheet C \ (−∞, 1], we employ the analytic continuation
formulae

Pµν
(
ze±πi

)
= e±πiνPµν (z)− 2

π sin(π(ν + µ))e−πiµQµν (z),

Qµν
(
ze±πi

)
= −e∓πiνQµν (z),

(see, e.g., [4, Eq. 14.3.10], [4, Eq. 14.24.1] and [4, Eq. 14.24.2]) together with the above inverse
factorial expansions, to obtain

Pµν
(
e±πi coth ξ

)
∼ − C

(
ξ, µ+ 1

2

) sin(πν)

π
eµξ

∞∑
n=0

an
(
ν + 1

2

)
Γ (µ− n)

(−e−ξ

sinh ξ

)n
+

sin(πµ)

π
e−µξ

∞∑
n=0

an
(
ν + 1

2

)
Γ (µ− n)

(
eξ

sinh ξ

)n
,

(1.17)

e−πiµQµν
(
e±πi coth ξ

)
∼ − C

(
ξ, ν + 1

2

)
1
2eµξ

∞∑
n=0

an
(
ν + 1

2

)
Γ (µ− n)

(−e−ξ

sinh ξ

)n
+ 1

2e−µξ
∞∑
n=0

an
(
ν + 1

2

)
Γ (µ− n)

(
eξ

sinh ξ

)n
,

(1.18)

as <µ → +∞, with =µ being bounded and ±=ξ > 0. Again, construction of error bounds is
possible and we leave the details to the interested reader. It is seen from Figure 1, for example,
that in the case ξ ∈ D 1

2
and =ξ > 0, we have arg

(
e+πi coth ξ

)
∈ (π2 , π).

We note that if ν is an integer, then the expansions (1.15)–(1.18) terminate and represent the
corresponding function exactly.

Ferrers functions for large ν and fixed µ. Suppose that (0 <) ε ≤ ζ ≤ π − ε (< π) and
µ ∈ C is bounded, and let

(1.19) αµ,ν,n =
(
ν − n+ 1

2

)
ζ +

(
µ+ n− 1

2

)
π
2 , βµ,ν,n =

(
ν + n+ 1

2

)
ζ +

(
µ+ n− 1

2

)
π
2 .

Then the Ferrers functions have the inverse factorial expansions

Pµν (cos ζ) ∼
√

2

π sin ζ

∞∑
n=0

an(µ)
Γ
(
ν − n+ 1

2

)
Γ(ν − µ+ 1)

cos(αµ,ν,n)

sinn ζ
,(1.20)

Qµν (cos ζ) ∼ −
√

π

2 sin ζ

∞∑
n=0

an(µ)
Γ
(
ν − n+ 1

2

)
Γ(ν − µ+ 1)

sin(αµ,ν,n)

sinn ζ
,(1.21)

as <ν → +∞, with =ν being bounded. These results follow from Theorem 4.1, where we give
sharp and realistic error bounds for the truncated versions of the expansions.

Under the same assumptions, the Ferrers functions posses the factorial expansions

Pµν (cos ζ) ∼
√

2

π sin ζ

∞∑
n=0

an(µ)
Γ(ν + µ+ 1)

Γ
(
ν + 3

2 + n
) cos(βµ,ν,n)

sinn ζ
,(1.22)

Qµν (cos ζ) ∼ −
√

π

2 sin ζ

∞∑
n=0

an(µ)
Γ(ν + µ+ 1)

Γ
(
ν + 3

2 + n
) sin(βµ,ν,n)

sinn ζ
,(1.23)

as |ν| → +∞ in the sector | arg ν| ≤ π−δ (< π). These results follow from Theorems 4.2 and 4.3,
where we provide sharp and realistic error bounds for the truncated version of the expansions.
Note that Theorem 4.3 implies (1.22) and (1.23) for bounded values of µ satisfying − 1

2 < <µ.
This restriction can be removed by appealing to the connection formulae (1.33) and (1.34). We

http://dlmf.nist.gov/14.3.E10
http://dlmf.nist.gov/14.24.E1
http://dlmf.nist.gov/14.24.E2
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remark that the expansion (1.22) (without error estimates and conditions on ζ, µ and ν) is posed
as an exercise in the book of Whittaker and Watson [23, Exer. 38, p. 335] (see also [10, p. 169]).

In the case that π
6 < ζ < 5π

6 , the infinite series on the right-hand sides of (1.22) and (1.23)

converge to the Ferrers functions on the left-hand sides. Note that when π
6 < ζ < 5π

6 and

ν + 1
2 /∈ Z, the infinite series in (1.20) and (1.21) are also convergent, however, their sums are

not the Ferrers functions on the left-hand sides.
We mention that if 2µ equals an odd integer, then the expansions (1.20)–(1.23) terminate and

represent the corresponding function exactly. This generalises the cases 2µ = ±1 given in [4,
§14.5(iii)].

Ferrers functions for large µ and fixed ν. Assume that (0 <) ε ≤ ζ ≤ π − ε (< π) and
ν ∈ C is bounded. Then the Ferrers functions have the inverse factorial expansions

Pµν (cos ζ) ∼ sin(πµ)

π
cotµ

(
1
2ζ
) ∞∑
n=0

an
(
ν + 1

2

)
Γ(µ− n)

(
2 sin2

(
1
2ζ
))n

− sin(πν)

π
tanµ

(
1
2ζ
) ∞∑
n=0

an
(
ν + 1

2

)
Γ(µ− n)

(
2 cos2

(
1
2ζ
))n

,

(1.24)

Qµν (cos ζ) ∼ cos(πµ)

2
cotµ

(
1
2ζ
) ∞∑
n=0

an
(
ν + 1

2

)
Γ(µ− n)

(
2 sin2

(
1
2ζ
))n

− cos(πν)

2
tanµ

(
1
2ζ
) ∞∑
n=0

an
(
ν + 1

2

)
Γ(µ− n)

(
2 cos2

(
1
2ζ
))n

,

(1.25)

as <µ→ +∞, with =µ being bounded. The proof of these results is given in Section 10. Bounds
for the error terms of these expansions follow from Theorems 3.1 and 3.2, we leave the details to
the reader.

We note that if ν is an integer, then the expansions (1.24) and (1.25) terminate and represent
the corresponding function exactly.

If combined with Theorems 2.1 and 2.2, formula (1.3) yields the truncated version, together
with error bounds, of the known factorial expansion of the Ferrers function P−µν (x) (see [4, Eq.
14.15.1]). The analogous expansions for Pµν (x) and Q±µν (x) may then be obtained by means of
connection formulae, see [4, §14.15(i)].

Gegenbauer function for large ν and fixed λ. Suppose that ξ ∈ D1, |sinh ξ| ≥ ε (> 0),
(0 <) ε ≤ ζ ≤ π − ε (< π) and λ ∈ C is bounded, and let

(1.26) K(ξ, λ) =

{
cos(πλ) if ξ > 0,

e±πiλ if 0 < ±=ξ < π,

γλ,ν,n = (ν + λ− n)ζ − (λ− n)π2 ,
δλ,ν,n = (ν + λ+ n)ζ − (λ− n)π2 .

Then the Gegenbauer function has the inverse factorial expansions

C(λ)
ν (cosh ξ) ∼ eξ(ν+λ)

(2 sinh ξ)
λ

∞∑
n=0

an
(
λ− 1

2

) Γ(ν + λ− n)

Γ(λ)Γ(ν + 1)

(−e−ξ

sinh ξ

)n
+K(ξ, λ)

e−ξ(ν+λ)

(2 sinh ξ)
λ

∞∑
n=0

an
(
λ− 1

2

) Γ(ν + λ− n)

Γ(λ)Γ(ν + 1)

(
eξ

sinh ξ

)n
,

(1.27)

C(λ)
ν (cos ζ) ∼ 2

(2 sin ζ)
λ

∞∑
n=0

an
(
λ− 1

2

) Γ(ν + λ− n)

Γ(λ)Γ(ν + 1)

cos(γλ,ν,n)

sinn ζ
,(1.28)

https://dlmf.nist.gov/14.5.iii
http://dlmf.nist.gov/14.15.E1
http://dlmf.nist.gov/14.15.E1
https://dlmf.nist.gov/14.15.i
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as <ν → +∞, with =ν being bounded. These results are direct consequences of Corollaries
5.1 and 5.2, where we provide sharp and realistic error bounds for the truncated versions of

the expansions. If ν is a positive integer, C
(λ)
ν (cosh ξ) is a polynomial in cosh ξ. Thus, we can

extend (1.27) to the larger set D̃1 = {ξ : <ξ > 0,−π < =ξ ≤ π} (provided |sinh ξ| ≥ ε (> 0)).

The function cosh ξ is a continuous bijection between D̃1 and C \ [−1, 1]. We remark that in the
special case that ν is a positive integer and λ is real, the expansions (1.27) and (1.28) (without
error estimates) were also given by Szegő [18, Theorem 8.21.10, pp. 196–197]. If, in addition,
λ = 1

2 , the expansions (1.27) and (1.28) reduce to the generalized Laplace–Heine asymptotic
expansion and Darboux’s asymptotic expansion for the Legendre polynomials [18, Theorems
8.21.3 and 8.21.4, pp. 194–195]. To our knowledge, no error bounds for these latter expansions
have been given in the literature prior to this paper.

Under the same assumptions, the Gegenbauer function has the factorial expansion

(1.29) C(λ)
ν (cos ζ) ∼ 2

(2 sin ζ)
λ

∞∑
n=0

an
(
λ− 1

2

) Γ(ν + 2λ)

Γ(λ)Γ (ν + λ+ n+ 1)

cos(δλ,ν,n)

sinn ζ
,

as |ν| → +∞ in the sector | arg ν| ≤ π − δ (< π). This result follows from (1.5) and (1.22).
In Corollaries 5.3 and 5.4, we give sharp and realistic error bounds for the truncated version of
the expansion. We remark that in the special case that ν is a positive integer and 0 < λ < 1,
the expansion (1.29) (together with the error estimate (5.4) below) was also given by Szegő [18,
Theorem 8.21.11, p. 197]. If, in addition, λ = 1

2 , the expansion reduces to Stieltjes’ asymptotic
expansion for the Legendre polynomials [18, Theorem 8.21.5, p. 195].

In the case that π
6 < ζ < 5π

6 , the infinite series on the right-hand side of (1.29) converge to

the Gegenbauer function on the left-hand side. Note that when π
6 < ζ < 5π

6 and ν + λ /∈ Z, the
infinite series in (1.28) is also convergent, however, its sum is not the Gegenbauer function on
the left-hand side.

We mention that if λ is an integer, then the expansions (1.27)–(1.29) terminate and represent
the corresponding function exactly.

The cases in which −ν or −µ is large. The asymptotic expansions we gave in this section
are valid either in half-planes or in sectors not including the negative real axis. For the reader’s
convenience, we reproduce here a series of known connection relations satisfied by the Legendre
functions and the Ferrers functions. By combining the above asymptotic expansions with these
connection relations, it is possible to cover larger regions in the parameter spaces. According to
[4, §14.9(iii)] and [4, Eq. 14.3.10],

Pµ−ν(z) = Pµν−1(z),(1.30)

Qµ−ν(z) = −eπiµ cos(πν)Γ(ν + µ)Γ(µ− ν + 1)P−µν−1(z) +Qµν−1(z),(1.31)

P−µν (z) =
Γ(ν − µ+ 1)

Γ(ν + µ+ 1)

(
Pµν (z)− 2

π e−πiµ sin(πµ)Qµν (z)
)
,

Q−µν (z) = e−2πiµ
Γ(ν − µ+ 1)

Γ(ν + µ+ 1)
Qµν (z).(1.32)

http://dlmf.nist.gov/14.9.iii
http://dlmf.nist.gov/14.3.E10
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Similarly, according to [4, §14.9(i)],

Pµ−ν(x) = Pµν−1(x),

sin(π(ν − µ))Qµ−ν(x) = −π cos(πν) cos(πµ)Pµν−1(x) + sin(π(ν + µ))Qµν−1(x),

P−µν (x) =
Γ(ν − µ+ 1)

Γ(ν + µ+ 1)

(
cos(πµ)Pµν (x)− 2

π sin(πµ)Qµν (x)
)
,(1.33)

Q−µν (x) =
Γ(ν − µ+ 1)

Γ(ν + µ+ 1)

(
π
2 sin(πµ)Pµν (x) + cos(πµ)Qµν (x)

)
.(1.34)

Earlier asymptotic results. We close this section by providing a brief summary of existing
asymptotic results in the literature. Thorne [19] obtained uniform asymptotic expansions for
Pµν (z) and Qµν (z) with the assumptions that z is complex, µ is a negative integer, ν is a large
positive integer and 0 < −µ/

(
ν + 1

2

)
< 1 is fixed. Olver [14] derived uniform expansions for

Pµν (x) and Qµν (x) under the conditions that 0 ≤ x < 1, µ is real and negative, ν is a large positive
real number, and 0 < −µ/

(
ν + 1

2

)
≤ 1 is fixed. He also treated the case when µ and ν + 1

2
are both purely imaginary. Olver [15, §12 and §13] also gave uniform asymptotic expansions
with error bounds for Pµν (z), Qµν (z), Pµν (x) and Qµν (x) with the assumptions that z is complex,
−1 < x < 1, µ is real and fixed and ν is a large positive real number (see also [20]). Similar
results were obtained by Shivakumar and Wong [17] for Pµν (z) and by Frenzen [9] for Qµν (z)
under the conditions that z ≥ 1, µ < 1

2 is bounded and ν is a large positive real number. Their
expansions are also supplied with computable error bounds. Dunster [5] completed the works
of Thorne and Olver by deriving uniform asymptotic expansions for the Legendre and Ferrers
functions with the assumptions that ν + 1

2 is real and positive, µ is a large negative real number

and −µ/
(
ν + 1

2

)
> 1. Recently, Cohl et al. [1] gave uniform asymptotic approximations for the

Legendre and Ferrers functions under the conditions that µ is real and bounded, ν is large and
is either real and positive or ν + 1

2 is purely imaginary.

2. Hypergeometric function for large c and fixed a, b: error bounds

In the following two theorems, we provide computable error bounds for the hypergeometric
series. The results in Theorem 2.1 are especially useful when <c → +∞ and =c is bounded,
whereas that in Theorem 2.2 is useful when |c| → +∞ in the larger domain | arg c| ≤ π−δ (< π).

Theorem 2.1. Let N be an arbitrary non-negative integer. Let a, b and c be complex numbers
satisfying N > max(−<a,−<b), <c > <b and c /∈ Z≤0. Then

(2.1) F

(
a, b

c
; z

)
= Γ(c)F

(
a, b

c
; z

)
=

N−1∑
n=0

(a)n (b)n
(c)n n!

zn +R
(F )
N (z, a, b, c),

where the remainder term satisfies the estimate

(2.2)
∣∣∣R(F )

N (z, a, b, c)
∣∣∣ ≤ ∣∣∣∣Γ(<b+N)Γ(c+N)Γ(<c−<b)

Γ(b+N)Γ(<c+N)Γ(c− b)

∣∣∣∣ ∣∣∣∣ (a)N (b)N
(c)N N !

zN
∣∣∣∣max(1, e(=a) arg(−z)),

provided <z ≤ 0 and with the convention |arg(−z)| ≤ π
2 . With the extra assumption <a < 1, we

also have ∣∣∣R(F )
N (z, a, b, c)

∣∣∣ ≤ ∣∣∣∣ sin(πa)

sin(π<a)

∣∣∣∣ ∣∣∣∣Γ(<b)Γ(c)Γ(<c−<b)
Γ(b)Γ(<c)Γ(c− b)

∣∣∣∣
×
∣∣∣∣ (<a)N (<b)N

(<c)NN !
zN
∣∣∣∣×


1 if <z ≤ 0,∣∣ z
=z
∣∣ if 0 < <z ≤ |z|2 ,

1
|1−z| if <z > |z|2 ,

(2.3)

http://dlmf.nist.gov/14.9.i
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provided z ∈ C \ [1,+∞). If <a is an integer or <b is a non-positive integer, then the limiting

value has to be taken in this bound. In addition, the remainder term R
(F )
N (z, a, b, c) does not

exceed the corresponding first neglected term in absolute value and has the same sign provided
that z is negative, a, b and c are real, and N > max(−a,−b), c > b and c /∈ Z≤0.

Theorem 2.2. Let z be a complex number such that <z ≤ 1
2 , and N be an arbitrary non-negative

integer. Let a, b and c be complex numbers satisfying <a > 0, N > −<b, | arg(c − b)| < π and
c /∈ Z≤0. Then the expansion (2.1) holds with the remainder estimate∣∣∣R(F )

N (z, a, b, c)
∣∣∣ ≤ AN ∣∣∣∣ (a)N (b)N

(c)N N !
zN
∣∣∣∣ .

Here

AN = AN (z, a, b, c, σ) =

∣∣∣∣Na
∣∣∣∣+

∣∣∣∣∣Γ(<b+N)Γ(c+N)

Γ(b+N)Γ(c− b)
eπ|=a|+|σ||=b|

(
1 + N

a

)
K<a

((c− b) cos(θ + σ))
<b+N

∣∣∣∣∣ ,
in which θ = arg(c− b), |θ + σ| < π

2 , |σ| ≤ π
2 and

K = K(z, σ) = min

 2

cosσ
,max

1,

√
(=z)2 + 1

4

1
2 −<z

 .

In the case that |θ| < π
2 we take θ + σ = 0, that is, cos(θ + σ) = 1. Note that AN = O(1) as

|c| → +∞.

3. Legendre functions for large ν and fixed µ: error bounds

In the following two theorems, we provide computable error bounds for the inverse factorial
expansions (1.10) and (1.11) of the associated Legendre functions Pµν (z) and Qµν (z), respectively.
For the definition of the domain D1, see (1.8).

Theorem 3.1. Let ξ ∈ D1 and N , M be arbitrary non-negative integers. Let µ and ν be complex
numbers satisfying |<µ| < min

(
N + 1

2 ,M + 1
2

)
and <ν > max

(
N − 1

2 ,M − 1
2

)
. Then

Pµν (cosh ξ) =
e(ν+ 1

2 )ξ

Γ(ν − µ+ 1)
√

2π sinh ξ

(
N−1∑
n=0

an(µ)Γ
(
ν − n+ 1

2

)(−e−ξ

sinh ξ

)n
+R

(P1)
N (ξ, µ, ν)

)

+
C(ξ, µ)e−(ν+ 1

2 )ξ

Γ(ν − µ+ 1)
√

2π sinh ξ

(
M−1∑
m=0

am(µ)Γ
(
ν −m+ 1

2

)( eξ

sinh ξ

)m
+R

(P2)
M (ξ, µ, ν)

)
,

(3.1)

where C(ξ, µ) is defined in (1.9), and the remainder terms satisfy the estimates∣∣∣R(P1)
N (ξ, µ, ν)

∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN (<µ)|Γ
(
<ν −N + 1

2

) ∣∣∣∣ e−ξ

sinh ξ

∣∣∣∣N
×
{

1 if <(e2ξ) ≤ 1,

min
( ∣∣1− e−2ξ

∣∣ |csc(2=ξ)| , 1 + χ
(
N + 1

2

))
if <(e2ξ) > 1,

and ∣∣∣R(P2)
M (ξ, µ, ν)

∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aM (<µ)|Γ
(
<ν −M + 1

2

) ∣∣∣∣ eξ

sinh ξ

∣∣∣∣M .

If 2<µ is an odd integer, then the limiting values have to be taken in these bounds. The square
roots are defined to be positive for positive real ξ and are defined by continuity elsewhere. In

addition, the remainder term R
(P2)
M (ξ, µ, ν) does not exceed the corresponding first neglected term
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in absolute value and has the same sign provided that ξ is positive, µ and ν are real, and |µ| <
M + 1

2 and ν > M − 1
2 .

Theorem 3.2. Let ξ ∈ D1 and N be an arbitrary non-negative integer. Let µ and ν be complex
numbers satisfying |<µ| < N + 1

2 and <ν > N − 1
2 . Then

(3.2)

e−πiµQµν (cosh ξ) =

√
π

2 sinh ξ e−(ν+ 1
2 )ξ

Γ(ν − µ+ 1)

(
N−1∑
n=0

an(µ)Γ
(
ν − n+ 1

2

)( eξ

sinh ξ

)n
+R

(Q)
N (ξ, µ, ν)

)
,

where the remainder term satisfies the estimate

(3.3)
∣∣∣R(Q)

N (ξ, µ, ν)
∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN (<µ)|Γ
(
<ν −N + 1

2

) ∣∣∣∣ eξ

sinh ξ

∣∣∣∣N .
If 2<µ is an odd integer, then the limiting value has to be taken in this bound. The square root is
defined to be positive for positive real ξ and is defined by continuity elsewhere. In addition, the

remainder term R
(Q)
N (ξ, µ, ν) does not exceed the corresponding first neglected term in absolute

value and has the same sign provided that ξ is positive, µ and ν are real, and |µ| < N + 1
2 and

ν > N − 1
2 .

A combination of Theorems 2.1 and 2.2 with the representation (1.7) leads to error bounds for
the factorial expansion (1.12) of the associated Legendre function Qµν (z) as given in the following
two theorems.

Theorem 3.3. Let N be an arbitrary non-negative integer. Let µ and ν be complex numbers
satisfying |<µ| < N + 1

2 and <ν > −<µ− 1. Then
(3.4)

e−πiµQµν (cosh ξ) =

√
π

2 sinh ξ
e−(ν+ 1

2 )ξΓ(ν+µ+1)

(
N−1∑
n=0

an(µ)

Γ
(
ν + 3

2 + n
) ( e−ξ

sinh ξ

)n
+ R̂

(Q)
N (ξ, µ, ν)

)
,

where the remainder term satisfies the estimate∣∣∣R̂(Q)
N (ξ, µ, ν)

∣∣∣ ≤ ∣∣∣∣∣Γ
(
1
2 −<µ+N

)
Γ (<ν + <µ+ 1)

Γ
(
1
2 − µ+N

)
Γ (ν + µ+ 1)

∣∣∣∣∣max
(

1, e(=µ) arg(e
ξ sinh ξ)

)
× |aN (µ)|

Γ
(
<ν + 3

2 +N
) ∣∣∣∣ e−ξ

sinh ξ

∣∣∣∣N ,
provided <(e2ξ) ≥ 1 and with the convention

∣∣arg(eξ sinh ξ)
∣∣ ≤ π

2 . With the extra assumption

<µ < 1
2 , we also have∣∣∣R̂(Q)
N (ξ, µ, ν)

∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣
∣∣∣∣∣Γ
(
1
2 −<µ

)
Γ(<ν + <µ+ 1)

Γ
(
1
2 − µ

)
Γ(ν + µ+ 1)

∣∣∣∣∣ |aN (<µ)|
Γ
(
<ν + 3

2 +N
) ∣∣∣∣ e−ξ

sinh ξ

∣∣∣∣N

×


1 if <(e2ξ) ≥ 1,∣∣1− e−2ξ

∣∣ |csc(2=ξ)| if 0 < <(e2ξ) < 1,

|1− e−2ξ| if
√

2| cos=ξ| < 1,

provided ξ ∈ D1. If 2<µ is an odd integer, then the limiting value has to be taken in this bound.
The square root is defined to be positive for positive real ξ and is defined by continuity elsewhere.

In addition, the remainder term R̂
(Q)
N (ξ, µ, ν) does not exceed the corresponding first neglected

term in absolute value and has the same sign provided that ξ is positive, µ and ν are real, and
|µ| < N + 1

2 and ν > −µ− 1.
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Theorem 3.4. Let ξ ∈ D1 and N be an arbitrary non-negative integer. Let µ and ν be complex
numbers satisfying − 1

2 < <µ < N + 1
2 and | arg(ν + µ+ 1)| < π. Then the expansion (3.4) holds

with the remainder estimate

(3.5)
∣∣∣R̂(Q)

N (ξ, µ, ν)
∣∣∣ ≤ BN

∣∣∣∣∣ aN (µ)

Γ
(
ν + 3

2 +N
) ( e−ξ

sinh ξ

)N ∣∣∣∣∣ .
Here

BN = BN (ξ, µ, ν, σ) =

∣∣∣∣ N
1
2 + µ

∣∣∣∣+
∣∣∣∣∣∣Γ
(
N + 1

2 −<µ
)

Γ
(
ν + 3

2 +N
)

Γ
(
N + 1

2 − µ
)

Γ(ν + µ+ 1)

e(π+|σ|)|=µ|
(

1 + N
1
2+µ

)
L

1
2+<µ

((ν + µ+ 1) cos(θ + σ))
N+ 1

2−<µ

∣∣∣∣∣∣ ,
in which θ = arg(ν + µ+ 1), |θ + σ| < π

2 , |σ| ≤ π
2 and

L = L(ξ, σ) = min

 2

cosσ
,max

1,

√
1 + (= coth ξ)

2

< coth ξ

 .

The fractional powers are taking their principal values. In the case that |θ| < π
2 we take θ+σ = 0,

that is, cos(θ + σ) = 1. Note that BN = O(1) as |ν| → +∞.

4. Ferrers functions for large ν and fixed µ: error bounds

In the following theorem, we give computable error bounds for the inverse factorial expansions
(1.20) and (1.21) of the Ferrers functions.

Theorem 4.1. Let 0 < ζ < π and N be an arbitrary non-negative integer. Let µ and ν be
complex numbers satisfying |<µ| < N + 1

2 and <ν > N − 1
2 . Then

Pµν (cos ζ) =

√
2

π sin ζ

Γ(ν − µ+ 1)

(
N−1∑
n=0

an(µ)Γ
(
ν − n+ 1

2

) cos(αµ,ν,n)

sinn ζ
+R

(P)
N (ζ, µ, ν)

)
,(4.1)

Qµν (cos ζ) =
−
√

π
2 sin ζ

Γ(ν − µ+ 1)

(
N−1∑
n=0

an(µ)Γ
(
ν − n+ 1

2

) sin(αµ,ν,n)

sinn ζ
+R

(Q)
N (ζ, µ, ν)

)
,(4.2)

where αµ,ν,n is defined in (1.19), and the remainder terms satisfy the estimate

(4.3)
∣∣∣R(P)

N (ζ, µ, ν)
∣∣∣ , ∣∣∣R(Q)

N (ζ, µ, ν)
∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN (<µ)|Γ
(
<ν −N + 1

2

) cosh(=(αµ,ν,N ))

sinN ζ
.

With the modified conditions |<µ| < N + 1
2 and <ν > N + 1

2 , we also have∣∣∣R(P)
N (ζ, µ, ν)

∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN (<µ)|Γ
(
<ν −N + 1

2

) | cos(αµ,ν,N )|
sinN ζ

+

∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN+1(<µ)|Γ
(
<ν −N − 1

2

) | sin(αµ,ν,N )|
sinN+1 ζ

(4.4)

and ∣∣∣R(Q)
N (ζ, µ, ν)

∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN (<µ)|Γ
(
<ν −N + 1

2

) | sin(αµ,ν,N )|
sinN ζ

+

∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN+1(<µ)|Γ
(
<ν −N − 1

2

) | cos(αµ,ν,N )|
sinN+1 ζ

.

(4.5)

If 2<µ is an odd integer, then the limiting values have to be taken in these bounds.
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In the following two theorems, we give computable error bounds for the factorial expansions
(1.22) and (1.23) of the Ferrers functions. The results in Theorem 4.2 are especially useful when
<ν → +∞ and =ν is bounded, whereas those in Theorem 4.3 are useful when |ν| → +∞ in the
larger domain | arg ν| ≤ π − δ (< π).

Theorem 4.2. Let 0 < ζ < π and N be an arbitrary non-negative integer. Let µ and ν be
complex numbers satisfying −N − 1

2 < <µ < 1
2 and <ν > −<µ− 1. Then

Pµν (cos ζ) =

√
2

π sin ζ
Γ(ν + µ+ 1)

(
N−1∑
n=0

an(µ) cos(βµ,ν,n)

Γ
(
ν + 3

2 + n
)

sinn ζ
+ R̂

(P)
N (ζ, µ, ν)

)
,(4.6)

Qµν (cos ζ) = −
√

π

2 sin ζ
Γ(ν + µ+ 1)

(
N−1∑
n=0

an(µ) sin(βµ,ν,n)

Γ
(
ν + 3

2 + n
)

sinn ζ
+ R̂

(Q)
N (ζ, µ, ν)

)
,(4.7)

where βµ,ν,n is defined in (1.19), and the remainder terms satisfy the estimates∣∣∣R̂(P)
N (ζ, µ, ν)

∣∣∣ , ∣∣∣R̂(Q)
N (ζ, µ, ν)

∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣
∣∣∣∣∣Γ
(
1
2 −<µ

)
Γ(<ν + <µ+ 1)

Γ
(
1
2 − µ

)
Γ(ν + µ+ 1)

∣∣∣∣∣
× |aN (<µ)| cosh(=(βµ,ν,N ))

Γ
(
<ν + 3

2 +N
)

sinN ζ
×
{
|sec ζ| if 0 < ζ ≤ π

4 or 3π
4 ≤ ζ < π,

2 sin ζ if π
4 < ζ < 3π

4 ,

(4.8)

∣∣∣R̂(P)
N (ζ, µ, ν)

∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣
∣∣∣∣∣Γ
(
1
2 −<µ

)
Γ(<ν + <µ+ 1)

Γ
(
1
2 − µ

)
Γ(ν + µ+ 1)

∣∣∣∣∣
(
|aN (<µ) cos(βµ,ν,N )|

Γ
(
<ν + 3

2 +N
)

sinN ζ

+
|aN+1(<µ) sin(βµ,ν,N )|

Γ
(
<ν + 5

2 +N
)

sinN+1 ζ

)
×
{
|sec ζ| if 0 < ζ ≤ π

4 or 3π
4 ≤ ζ < π,

2 sin ζ if π
4 < ζ < 3π

4 ,

(4.9)

and

∣∣∣R̂(Q)
N (ζ, µ, ν)

∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣
∣∣∣∣∣Γ
(
1
2 −<µ

)
Γ(<ν + <µ+ 1)

Γ
(
1
2 − µ

)
Γ(ν + µ+ 1)

∣∣∣∣∣
(
|aN (<µ) sin(βµ,ν,N )|

Γ
(
<ν + 3

2 +N
)

sinN ζ

+
|aN+1(<µ) cos(βµ,ν,N )|

Γ
(
<ν + 5

2 +N
)

sinN+1 ζ

)
×
{
|sec ζ| if 0 < ζ ≤ π

4 or 3π
4 ≤ ζ < π,

2 sin ζ if π
4 < ζ < 3π

4 .

(4.10)

If 2<µ is an odd integer, then the limiting values have to be taken in these bounds.

Theorem 4.3. Let 0 < ζ < π and N be an arbitrary non-negative integer. Let µ and ν be
complex numbers satisfying − 1

2 < <µ < N + 1
2 and | arg(ν + µ + 1)| < π. Then the expansions

(4.6) and (4.7) hold with the remainder estimates

(4.11)
∣∣∣R̂(P)

N (ζ, µ, ν)
∣∣∣ , ∣∣∣R̂(Q)

N (ζ, µ, ν)
∣∣∣ ≤ BN

∣∣∣∣∣aN (µ) cosh(=(βµ,ν,N ))

Γ(ν + 3
2 +N) sinN ζ

∣∣∣∣∣ ,
(4.12)

∣∣∣R̂(P)
N (ζ, µ, ν)

∣∣∣ ≤ BN
∣∣∣∣∣ aN (µ) cos(βµ,ν,N )

Γ
(
ν + 3

2 +N
)

sinN ζ

∣∣∣∣∣+BN+1

∣∣∣∣∣ aN+1(µ) sin(βµ,ν,N )

Γ
(
ν + 5

2 +N
)

sinN+1 ζ

∣∣∣∣∣
and

(4.13)
∣∣∣R̂(Q)

N (ζ, µ, ν)
∣∣∣ ≤ BN

∣∣∣∣∣ aN (µ) sin(βµ,ν,N )

Γ
(
ν + 3

2 +N
)

sinN ζ

∣∣∣∣∣+BN+1

∣∣∣∣∣ aN+1(µ) cos(βµ,ν,N )

Γ
(
ν + 5

2 +N
)

sinN+1 ζ

∣∣∣∣∣ .
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Here

BN = BN (µ, ν, σ) =

∣∣∣∣ N
1
2 + µ

∣∣∣∣+
∣∣∣∣∣∣Γ
(
N + 1

2 −<µ
)

Γ
(
ν + 3

2 +N
)

Γ
(
N + 1

2 − µ
)

Γ(ν + µ+ 1)

e(π+|σ|)|=µ|
(

1 + N
1
2+µ

) (
1
2 cosσ

)− 1
2−<µ

((ν + µ+ 1) cos(θ + σ))
N+ 1

2−<µ

∣∣∣∣∣∣ ,
in which θ = arg(ν+µ+1), |θ+σ| < π

2 , |σ| < π
2 . The fractional powers are taking their principal

values. In the case that |θ| < π
2 we take θ+σ = 0, that is, cos(θ+σ) = 1. Note that BN = O(1)

as |ν| → +∞.

5. Gegenbauer function for large ν and fixed λ: error bounds

As a corollary of Theorem 3.1 and the relation (1.4), we provide error bounds for the inverse
factorial expansion (1.27) of the Gegenbauer function as given in the following theorem.

Corollary 5.1. Let ξ ∈ D1 and N , M be arbitrary non-negative integers. Let λ and ν be complex
numbers satisfying

∣∣<λ− 1
2

∣∣ < min
(
N + 1

2 ,M + 1
2

)
and <ν > max (N −<λ,M −<λ). Then

C(λ)
ν (cosh ξ) =

eξ(ν+λ)

Γ(λ) (2 sinh ξ)
λ

(
N−1∑
n=0

an
(
λ− 1

2

) Γ(ν + λ− n)

Γ(ν + 1)

(−e−ξ

sinh ξ

)n
+R

(C1)
N (ξ, λ, ν)

)

+K(ξ, λ)
e−ξ(ν+λ)

Γ(λ) (2 sinh ξ)
λ

(
M−1∑
m=0

am
(
λ− 1

2

) Γ(ν + λ−m)

Γ(ν + 1)

(
eξ

sinh ξ

)m
+R

(C2)
M (ξ, λ, ν)

)
,

(5.1)

where K(ξ, λ) is defined in (1.26), and the remainder terms satisfy the estimates∣∣∣R(C1)
N (ξ, λ, ν)

∣∣∣ ≤ ∣∣∣∣ sin(πλ)

sin(π<λ)

∣∣∣∣ ∣∣aN(<λ− 1
2

)∣∣ Γ (<ν + <λ−N)

|Γ(ν + 1)|

∣∣∣∣ e−ξ

sinh ξ

∣∣∣∣N
×
{

1 if <(e2ξ) ≤ 1,

min
( ∣∣1− e−2ξ

∣∣ |csc(2=ξ)| , 1 + χ
(
N + 1

2

))
if <(e2ξ) > 1,

and ∣∣∣R(C2)
M (ξ, λ, ν)

∣∣∣ ≤ ∣∣∣∣ sin(πλ)

sin(π<λ)

∣∣∣∣ ∣∣aM(<λ− 1
2

)∣∣ Γ (<ν + <λ−M)

|Γ(ν + 1)|

∣∣∣∣ eξ

sinh ξ

∣∣∣∣M .

If <λ is an integer, then the limiting values have to be taken in these bounds. The fractional
powers are defined to be positive for positive real ξ and are defined by continuity elsewhere.

In addition, the remainder term R
(C2)
M (ξ, λ, ν) does not exceed the corresponding first neglected

term in absolute value and has the same sign provided that ξ is positive, λ and ν are real, and∣∣λ− 1
2

∣∣ < M + 1
2 and ν > M − λ.

Note that if ν is a positive integer, C
(λ)
ν (cosh ξ) is a polynomial in cosh ξ. Thus, we can extend

this result to the larger set D̃1 = {ξ : <ξ > 0,−π < =ξ ≤ π}. The function cosh ξ is a continuous

bijection between D̃1 and C \ [−1, 1].
An immediate corollary of Theorem 4.1 and the relation (1.5) are the following error bounds

for the inverse factorial expansion (1.28) of the Gegenbauer function.

Corollary 5.2. Let 0 < ζ < π and N be an arbitrary non-negative integer. Let λ and ν be
complex numbers satisfying

∣∣<λ− 1
2

∣∣ < N + 1
2 and <ν > N −<λ. Then

(5.2) C(λ)
ν (cos ζ) =

2

Γ(λ) (2 sin ζ)
λ

(
N−1∑
n=0

an
(
λ− 1

2

) Γ(ν + λ− n)

Γ(ν + 1)

cos(γλ,ν,n)

sinn ζ
+R

(C)
N (ζ, λ, ν)

)
,
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where γλ,ν,n is defined in (1.26), and the remainder term satisfies the estimate∣∣∣R(C)
N (ζ, λ, ν)

∣∣∣ ≤ ∣∣∣∣ sin(πλ)

sin(π<λ)

∣∣∣∣ ∣∣aN(<λ− 1
2

)∣∣ Γ(<ν + <λ−N)

|Γ(ν + 1)|
cosh(=(γλ,ν,N ))

sinN ζ
.

With the modified conditions
∣∣<λ− 1

2

∣∣ < N + 1
2 and <ν > N −<λ+ 1, we also have∣∣∣R(C)

N (ζ, λ, ν)
∣∣∣ ≤ ∣∣∣∣ sin(πλ)

sin(π<λ)

∣∣∣∣ ∣∣aN(<λ− 1
2

)∣∣ Γ(<ν + <λ−N)

|Γ(ν + 1)|
|cos(γλ,ν,N )|

sinN ζ

+

∣∣∣∣ sin(πλ)

sin(π<λ)

∣∣∣∣ ∣∣aN+1

(
<λ− 1

2

)∣∣ Γ(<ν + <λ−N − 1)

|Γ(ν + 1)|
|sin(γλ,ν,N )|

sinN+1 ζ
.

If <λ is an integer, then the limiting values have to be taken in these bounds.

An immediate corollary of Theorems 4.2, 4.3 and the relation (1.5) are the following error
bounds for the factorial expansion (1.29) of the Gegenbauer function.

Corollary 5.3. Let 0 < ζ < π and N be an arbitrary non-negative integer. Let λ and ν be
complex numbers satisfying 0 < <λ < N + 1 and <ν > −1. Then
(5.3)

C(λ)
ν (cos ζ) =

2

Γ(λ)(2 sin ζ)λ

(
N−1∑
n=0

an
(
λ− 1

2

) Γ(ν + 2λ)

Γ (ν + λ+ n+ 1)

cos(δλ,ν,n)

sinn ζ
+ R̂

(C)
N (ζ, λ, ν)

)
,

where δλ,ν,n is defined in (1.26), and the remainder term satisfies the estimates∣∣∣R̂(C)
N (ζ, λ, ν)

∣∣∣ ≤ ∣∣∣∣ sin(πλ)

sin(π<λ)

∣∣∣∣ ∣∣∣∣Γ(<λ)Γ(<ν + 1)

Γ(λ)Γ(ν + 1)

∣∣∣∣ ∣∣aN(<λ− 1
2

)∣∣ |Γ(ν + 2λ)|
Γ (<ν + <λ+N + 1)

× cosh(=(δλ,ν,N ))

sinN ζ
×
{
|sec ζ| if 0 < ζ ≤ π

4 or 3π
4 ≤ ζ < π,

2 sin ζ if π
4 < ζ < 3π

4 ,

(5.4)

and∣∣∣R̂(C)
N (ζ, λ, ν)

∣∣∣ ≤ ∣∣∣∣ sin(πλ)

sin(π<λ)

∣∣∣∣ ∣∣∣∣Γ(<λ)Γ(<ν + 1)

Γ(λ)Γ(ν + 1)

∣∣∣∣ (∣∣aN(<λ− 1
2

)∣∣ |Γ(ν + 2λ)|
Γ (<ν + <λ+N + 1)

| cos(δλ,ν,N )|
sinN ζ

+
∣∣aN+1

(
<λ− 1

2

)∣∣ |Γ(ν + 2λ)|
Γ (<ν + <λ+N + 2)

| sin(δλ,ν,N )|
sinN+1 ζ

)
×
{
|sec ζ| if 0 < ζ ≤ π

4 or 3π
4 ≤ ζ < π,

2 sin ζ if π
4 < ζ < 3π

4 .

If <λ is an integer, then the limiting values have to be taken in these bounds.

Corollary 5.4. Let 0 < ζ < π and N be an arbitrary non-negative integer. Let λ and ν be
complex numbers satisfying −N < <λ < 1 and | arg(ν + 1)| < π. Then the expansion (5.3) holds
with the remainder estimates∣∣∣R̂(C)

N (ζ, λ, ν)
∣∣∣ ≤ KN

∣∣∣∣aN(λ− 1
2

) Γ(ν + 2λ)

Γ(ν + λ+N + 1)

cosh(=(δλ,ν,N ))

sinN ζ

∣∣∣∣
and ∣∣∣R̂(C)

N (ζ, λ, ν)
∣∣∣ ≤ KN

∣∣∣∣aN(λ− 1
2

) Γ(ν + 2λ)

Γ(ν + λ+N + 1)

cos(δλ,ν,N )

sinN ζ

∣∣∣∣
+KN+1

∣∣∣∣aN+1

(
λ− 1

2

) Γ(ν + 2λ)

Γ(ν + λ+N + 2)

sin(δλ,ν,N )

sinN+1 ζ

∣∣∣∣ .



16 G. NEMES AND A. B. OLDE DAALHUIS

Here

KN = KN (λ, ν, σ) =

∣∣∣∣ N

1− λ

∣∣∣∣+
∣∣∣∣∣∣Γ(<λ+N)Γ(ν + λ+N + 1)

Γ(λ+N)Γ(ν + 1)

e(π+|σ|)|=λ|
(

1 + N
1−λ

) (
1
2 cosσ

)<λ−1
((ν + 1) cos(θ + σ))<λ+N

∣∣∣∣∣∣ ,
in which θ = arg(ν + 1), |θ + σ| < π

2 , |σ| < π
2 . The fractional powers are taking their principal

values. In the case that |θ| < π
2 we take θ+σ = 0, that is, cos(θ+σ) = 1. Note that KN = O(1)

as |ν| → +∞.

6. Proof of Theorems 2.1 and 2.2

In this section, we prove the bounds for the large-c expansion of the hypergeometric function
given in Theorems 2.1–2.2. Throughout the section, we will assume that c is not zero or a
negative integer. We begin with the proof of the estimate (2.2). Starting with the standard
integral representation [4, Eq. 15.6.1] and using Taylor’s formula with integral remainder for

(1− zt)−a, we obtain the truncated expansion (2.1) with

R
(F )
N (a, b, c, z) =

(a)N (b)N
(c)NN !

zN
NΓ(c+N)

Γ(b+N)Γ(c− b)

×
∫ 1

0

tb+N−1(1− t)c−b−1
∫ 1

0

(1− u)N−1

(1− ztu)a+N
dudt,

(6.1)

provided that <c > <b, N > −<b, |arg(−z)| < π. With the added conditions N > −<a,
|arg(−z)| ≤ π

2 , we find∣∣∣∣∫ 1

0

(1− u)N−1

(1− ztu)a+N
du

∣∣∣∣ ≤ ∫ 1

0

(1− u)N−1

|1− ztu|<a+N
e(=a) arg(1−ztu)du

≤
∫ 1

0

(1− u)N−1du sup
r>0

e(=a) arg(1+re
i arg(−z)) ≤ max(1, e(=a) arg(−z))

N
.

Thus ∣∣∣∣ NΓ(c+N)

Γ(b+N)Γ(c− b)

∫ 1

0

tb+N−1(1− t)c−b−1
∫ 1

0

(1− u)N−1

(1− ztu)a+N
dudt

∣∣∣∣
≤
∣∣∣∣ Γ(c+N)

Γ(b+N)Γ(c− b)

∣∣∣∣ ∫ 1

0

t<b+N−1(1− t)<c−<b−1dtmax(1, e(=a) arg(−z))

=

∣∣∣∣Γ(<b+N)Γ(c+N)Γ(<c−<b)
Γ(b+N)Γ(<c+N)Γ(c− b)

∣∣∣∣max(1, e(=a) arg(−z)).

In arriving at the penultimate expression, use has been made of the standard integral represen-
tation of the beta function [4, Eq. 5.12.1]. This completes the proof of (2.2).

Now suppose that z < 0, a, b and c are real, and N > max(−a,−b) and c > b. From (6.1)
and the mean value theorem of integration, we can assert that

R
(F )
N (a, b, c, z) =

(a)N (b)N
(c)NN !

zN
NΓ(c+N)

Γ(b+N)Γ(c− b)

×
∫ 1

0

tb+N−1(1− t)c−b−1θN (t, z, a)

∫ 1

0

(1− u)N−1dudt

=
(a)N (b)N
(c)NN !

zN
Γ(c+N)

Γ(b+N)Γ(c− b)

∫ 1

0

tb+N−1(1− t)c−b−1θN (t, z, a)dt

=
(a)N (b)N
(c)NN !

zNΘN (z, a, b, c),

https://dlmf.nist.gov/15.6.E1
https://dlmf.nist.gov/5.12.E1
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where 0 < θN (t, z, a) < 1 and 0 < ΘN (z, a, b, c) < 1. Thus, under these assumptions, the

remainder term R
(F )
N (a, b, c, z) does not exceed the corresponding first neglected term in absolute

value and has the same sign.
We continue with the proof of the inequality (2.3). An integral representation for the beta

function [4, Eq. 5.12.2] gives

(6.2)
(a)n
n!

=
2 sin(πa)

π

∫ π/2

0

tan2a−1 u sin2n udu,

provided n > −<a and <a < 1. Hence, by summation and analytic continuation, we have

(1− zt)−a =

N−1∑
n=0

(a)n
n!

tnzn + zN tN
2 sin(πa)

π

∫ π/2

0

tan2a−1 u sin2N u

1− zt sin2 u
du

provided that z ∈ C \ [1,+∞), N > −<a and <a < 1. Substitution into the standard integral
representation [4, Eq. 15.6.1] followed by term-by-term integration, yields (2.1) with

R
(F )
N (z, a, b, c) =

2 sin(πa)

π

Γ(c)

Γ(b)Γ(c− b)z
N

∫ 1

0

tb+N−1(1− t)c−b−1
∫ π/2

0

tan2a−1 u sin2N u

1− zt sin2 u
dudt,

under the assumptions that z ∈ C \ [1,+∞), N > max(−<a,−<b), <a < 1 and <c > <b. Note
that for 0 < s < 1,

|1− zs|2 = |z|2 s2 − 2(<z)s+ 1 ≥


1 if <z ≤ 0,
(=z)2
|z|2 if 0 < <z ≤ |z|2 ,
|1− z|2 if <z > |z|2 .

Consequently,

∣∣∣R(F )
N (z, a, b, c)

∣∣∣ ≤ 2 |sin(πa)|
π

∣∣∣∣ Γ(c)

Γ(b)Γ(c− b)z
N

∣∣∣∣ ∫ 1

0

t<b+N−1(1− t)<c−<b−1dt

×
∫ π/2

0

tan2<a−1 u sin2N udu×


1 if <z ≤ 0,∣∣ z
=z
∣∣ if 0 < <z ≤ |z|2 ,

1
|1−z| if <z > |z|2 .

The t-integral can be computed using the standard formula for the beta function [4, Eq. 5.12.1],
and the explicit form of the u-integral follows from (6.2). This completes the proof of the bound
(2.3).

We conclude this section with the proof of Theorem 2.2. We will focus on the closed half-plane
<z ≤ 1

2 . Combining formula (6.1) with the identity

R
(F )
N (a, b, c, z) =

(a)N (b)N
(c)NN !

zN +R
(F )
N+1(a, b, c, z)

and the standard integral representation [4, Eq. 15.6.1], we obtain the truncated expansion (2.1),
in which we present the remainder term as

R
(F )
N (z, a, b, c) =

(a)N (b)N
(c)N N !

zN+
Γ(c) (a)N+1 z

N+1

Γ(b)Γ(c− b)(N + 1)!

∫ 1

0

(1− t)c−b−1 tb+NF
(
a+N + 1, 1

N + 2
; zt

)
dt,

https://dlmf.nist.gov/5.12.E2
https://dlmf.nist.gov/15.6.E1
https://dlmf.nist.gov/5.12.E1
https://dlmf.nist.gov/15.6.E1
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provided that N > −<b− 1 and <c > <b. Using the identities

F

(
a+N + 1, 1

N + 2
; zt

)
= (1− zt)−a F

(
1− a,N + 1

N + 2
; zt

)
=
N + 1

azt
(1− zt)−a

(
F

(−a,N
N + 1

; zt

)
− F

(−a,N + 1

N + 1
; zt

))
=
N + 1

azt

(
(1− zt)−a F

(−a,N
N + 1

; zt

)
− 1

)
,

we decompose the remainder R
(F )
N (z, a, b, c) as follows:

R
(F )
N (z, a, b, c) =

(a)N (b)N
(c)N N !

zN − (a+ 1)N (b)N
(c)N N !

zN + R̃
(F )
N (z, a, b, c)

=
−N
a

(a)N (b)N
(c)N N !

zN + R̃
(F )
N (z, a, b, c),

with

R̃
(F )
N (z, a, b, c) =

Γ(c) (a+ 1)N
Γ(b)Γ(c− b)N !

zN
∫ 1

0

(1− t)c−b−1 tb+N−1
(1− zt)a F

(−a,N
N + 1

; zt

)
dt.

The integral on the right-hand side is convergent provided that N > −<b and <c > <b. Now,
by employing the substitution t = 1− e−τ , we deduce

R̃
(F )
N (z, a, b, c) =

Γ(c) (a+ 1)N
Γ(b)Γ(c− b)N !

zN
∫ +∞

0

e(b−c)τ (1− e−τ )
b+N−1

(1− z (1− e−τ ))
a F

(−a,N
N + 1

; z
(
1− e−τ

))
dτ.

With this integral representation one can show that R
(F )
N (z, a, b, c) = O

(
|c|−N

)
as |c| → +∞

in the sector |arg c| < π
2 . To extend this result to the larger sector |arg c| < π, we deform the

contour of integration by rotating it through an angle σ, |σ| ≤ π
2 . Thus, by writing τ = teiσ, we

arrive at

R̃
(F )
N (z, a, b, c) =

Γ(c) (a+ 1)N
Γ(b)Γ(c− b)N !

zN
∫ +∞

0

e(b−c)te
iσ

tb+N−1f(t)dt,

with

f(t) = eiσ

(
1− e−te

iσ

t

)b+N−1 (
1− z

(
1− e−te

iσ
))−a

F

(−a,N
N + 1

; z
(

1− e−te
iσ
))

.

Let θ = arg(c− b) ∈ (−π, π), |θ + σ| < π
2 . Since |σ| ≤ π

2 , we have∣∣∣∣∣1− e−te
iσ

t

∣∣∣∣∣ =

∣∣∣∣eiσt
∫ t

0

e−τe
iσ

dτ

∣∣∣∣ ≤ 1,

and hence ∣∣∣∣∣∣
(

1− e−te
iσ

t

)b+N−1∣∣∣∣∣∣ ≤ exp
(
−(=b) arg

(
1− e−te

iσ
))

≤ exp
(
|=b|

∣∣∣arg
(

1− e−te
iσ
)∣∣∣) ≤ exp (|=b| |σ|) .
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The last inequality may be proved as follows. Assume that |σ| < π
2 and t > 0. Then∣∣∣arg

(
1− e−te

iσ
)∣∣∣ = arctan

∣∣∣∣ sin(t sin |σ|)
et cos|σ| − cos(t sin |σ|)

∣∣∣∣ ≤ arctan

∣∣∣∣ sin(t sin |σ|)
et cos|σ| − 1

∣∣∣∣
≤ arctan

(
t sin |σ|

et cos|σ| − 1

)
= arctan

(
t cos |σ|

et cos|σ| − 1
tan |σ|

)
≤ arctan(tan |σ|) = |σ| .

The case |σ| = π
2 follows by continuity. For the hypergeometric function, we use the integral

representation
(6.3)(

1− z
(

1− e−te
iσ
))−a

F

(−a,N
N + 1

; z
(

1− e−te
iσ
))

= N

∫ 1

0

τN−1

1− τz
(

1− e−te
iσ
)

1− z
(
1− e−teiσ

)
a

dτ.

Since |σ| ≤ π
2 , we have∣∣∣∣∣∣

1− τz
(

1− e−te
iσ
)

1− z
(
1− e−teiσ

)
a∣∣∣∣∣∣ =

∣∣∣∣∣∣
1− τz

(
1− e−te

iσ
)

1− z
(
1− e−teiσ

)
∣∣∣∣∣∣
<a

exp

−(=a) arg

1− τz
(

1− e−te
iσ
)

1− z
(
1− e−teiσ

)


≤

∣∣∣∣∣∣
1− τz

(
1− e−te

iσ
)

1− z
(
1− e−teiσ

)
∣∣∣∣∣∣
<a

e|=a|π.

We continue bounding the last expression under the assumption that <a > 0. For fixed complex
w and 0 ≤ τ ≤ 1, the function τ 7→ |1− τw| has only one critical point, a local minimum. Hence,
max0≤τ≤1 |1− τw| = max(1, |1− w|). Consequently,∣∣∣∣∣∣

1− τz
(

1− e−te
iσ
)

1− z
(
1− e−teiσ

)
∣∣∣∣∣∣ ≤ max

(
1,
∣∣∣1− z (1− e−te

iσ
)∣∣∣−1) .

Since t ≥ 0 and |σ| ≤ π
2 , we have for w = 1− e−te

iσ

that |w − 1| ≤ 1. Taking <z ≤ 1
2 , it follows

that 1 − zw = 0 can only happen in the two extreme cases, <z = 1
2 and |σ| = π

2 . We consider
these two cases separately.

(1) In the case that <z < 1
2 , it follows from the maximum modulus principle that the minimum

of |1− zw| occurs when |σ| = π
2 . We consider the case σ = π

2 and take

G(x, y, t) =
∣∣1− (x+ iy)(1− e−it)

∣∣2 = 2(1− cos t)

((
1
2 − x

)2
+

(
y +

sin t

2(1− cos t)

)2
)
.

The minimum occurs at y = − sin t
2(1−cos t) , that is, 1− cos t = 2

4y2+1 . Hence,

G(x, y, t) ≥
(
1
2 − x

)2
y2 + 1

4

.

Thus ∣∣∣1− z (1− e−te
iσ
)∣∣∣−1 ≤

√
(=z)2 + 1

4

1
2 −<z

,

which holds for |σ| ≤ π
2 and tends to infinity when z approaches the boundary <z = 1

2 .
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(2) In the case that |σ| < π
2 , it follows from maximum modulus principle that the minimum

of |1− zw| occurs when <z = 1
2 . We take z = 1

2 + iy and

H(y, t, σ) =
∣∣∣1− ( 1

2 + iy)(1− e−te
iσ

)
∣∣∣2 .

We expand the right-hand side, obtain a quadratic expression in y and, hence, the minimum

H(y, t, σ) ≥
(
1− e−2t cosσ

)2
4 (1− 2 cos(t sinσ)e−t cosσ + e−2t cosσ)

.

Note that
(
1− e−2t cosσ

)2
= (1− e−t cosσ)

2
(1 + e−t cosσ)

2 ≥ (1− e−t cosσ)
2
. Thus

4H(y, t, σ) ≥ et cosσ − 2 + e−t cosσ

et cosσ − 2 cos(t sinσ) + e−t cosσ
≥ cos2 σ,

where the second inequality can be proved as follows. The inequality is equivalent to

cos2 σ cos(t sinσ)− 1 + sin2 σ cosh(t cosσ) ≥ 0.

Using 1 = cos2 σ + sin2 σ we can re-write this inequality as

sin2 σ sinh2
(
1
2 t cosσ

)
≥ cos2 σ sin2

(
1
2 t sinσ

)
,

which holds since for all positive A and B we have sinh2 A
A2 ≥ 1 ≥ sin2 B

B2 . Thus 4H(y, t, σ) ≥ cos2 σ,
that is, ∣∣∣1− z (1− e−te

iσ
)∣∣∣−1 ≤ 2

cosσ
,

which holds for <z ≤ 1
2 and tends to infinity when σ approaches the boundary |σ| = π

2 .

Therefore, in summary, the absolute value of the left-hand side of (6.3) is at most K<ae|=a|π,
in which we can take

K = max

1,

√
(=z)2 + 1

4

1
2 −<z

 or K =
2

cosσ
.

Consequently,∣∣∣R̃(F )
N (z, a, b, c)

∣∣∣ ≤ ∣∣∣∣ Γ(c)(a+ 1)N
Γ(b)Γ(c− b)N !

zN
∣∣∣∣ ∫ +∞

0

e−|c−b|t cos(θ+σ)t<b+N−1 |f(t)|dt

≤
∣∣∣∣ Γ(c)(a+ 1)N
Γ(b)Γ(c− b)N !

zN
∣∣∣∣ ∫ +∞

0

e−|c−b|t cos(θ+σ)t<b+N−1eπ|=a|+|σ||=b|K<adt

= eπ|=a|+|σ||=b|
∣∣∣∣ Γ(<b+N)Γ(c)(a+ 1)N
Γ(b)Γ(c− b)N !((c− b) cos(θ + σ))<b+N

zN
∣∣∣∣K<a,

and therefore,∣∣∣R(F )
N (z, a, b, c)

∣∣∣ ≤ ∣∣∣∣Na (a)N (b)N
(c)NN !

zN
∣∣∣∣+
∣∣∣R̃(F )

N (z, a, b, c)
∣∣∣

≤
∣∣∣∣Na (a)N (b)N

(c)NN !
zN
∣∣∣∣+ eπ|=a|+|σ||=b|

∣∣∣∣ Γ(<b+N)Γ(c)(a+ 1)N
Γ(b)Γ(c− b)N !((c− b) cos(θ + σ))<b+N

zN
∣∣∣∣K<a

=

(∣∣∣∣Na
∣∣∣∣+

∣∣∣∣∣Γ(<b+N)Γ(c+N)

Γ(b+N)Γ(c− b)
eπ|=a|+|σ||=b|

(
1 + N

a

)
K<a

((c− b) cos(θ + σ))<b+N

∣∣∣∣∣
) ∣∣∣∣ (a)N (b)N

(c)NN !
zN
∣∣∣∣ .
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7. Proof of Theorems 3.1 and 3.2

In this section, we prove the error bounds stated in Theorems 3.1–3.2. To this end, we require
an estimate for the remainder term of the well-known asymptotic expansion of the modified
Bessel function of the second kind given in the following lemma.

Lemma 7.1. Let N be a non-negative integer and let µ be an arbitrary complex number such
that |<µ| < N + 1

2 . Then

(7.1) K±µ(w) =

√
π

2w
e−w

(
N−1∑
n=0

an(µ)

wn
+ r

(K)
N (w, µ)

)
,

where the remainder term satisfies the estimate∣∣∣r(K)
N (w, µ)

∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN (<µ)|
|w|N

×
{

1 if | argw| ≤ π
2 ,

min
(
|csc(argw)| , 1 + χ

(
N + 1

2

))
if π

2 < | argw| ≤ π.
If 2<µ is an odd integer, then the limiting value has to be taken in this bound. In addition,

the remainder term r
(K)
N (w, µ) does not exceed the corresponding first neglected term in absolute

value and has the same sign provided that w is positive, µ is real, and |µ| < N + 1
2 .

Proof. The statement for complex variables follows from Theorem 1.8 and Propositions B.1 and
B.3 of the paper [11]. For the real case, see, e.g., [22, pp. 206–207]. �

We continue with the proof of Theorem 3.1. The associated Legendre function of the first
kind can be represented in terms of the modified Bessel function of the first kind as

(7.2) Pµν (cosh ξ) =
1

Γ(ν − µ+ 1)

∫ +∞

0

tνe−t cosh ξI−µ(t sinh ξ)dt,

provided ξ > 0 and <ν > <µ− 1 [12, p. 214, Ent. 6.52]. The growth rate of the modified Bessel
function of the first kind at infinity (see, e.g., [4, Eq. 10.30.4]) and analytic continuation show
that this representation is actually valid in the larger domain D 1

2
.

Now, suppose that | argw| < 2π. Under this assumption, we have the following relations
between the modified Bessel functions:

I−µ(w) = ∓ i

π
K−µ(we∓πi)± i

π
e∓πiµK−µ(w),

when 0 < ± argw < 2π, and

I−µ(w) =
i

2π

(
K−µ

(
weπi

)
−K−µ

(
we−πi

))
+

sin(πµ)

π
K−µ(w),

when argw = 0 (cf. [4, Eq. 10.34.3]). The combination of these functional equations with the
expression (7.1) yields
(7.3)

I−µ(w) =
ew√
2πw

(
N−1∑
n=0

(−1)n
an(µ)

wn
+ r̃

(K)
N (w, µ)

)
+C̃(argw, µ)

e−w√
2πw

(
M−1∑
m=0

am(µ)

wm
+ r

(K)
M (w, µ)

)
,

with

(7.4) C̃(argw, µ) =

{
sin(πµ) if argw = 0,

±ie∓πiµ if 0 < ± argw < 2π,

and

(7.5) r̃
(K)
N (w, µ) =

{
1
2 (r

(K)
N (weπi, µ) + r

(K)
N (we−πi, µ)) if argw = 0,

r
(K)
N (we∓πi, µ) if 0 < ± argw < 2π.

http://dlmf.nist.gov/10.30.E4
https://dlmf.nist.gov/10.34.E3
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Here N and M are arbitrary non-negative integers. Assuming that <ν > max
(
N − 1

2 ,M − 1
2

)
,

the substitution of (7.3) (with w = t sinh ξ) into (7.2) gives (3.1) with C(ξ, µ) = C̃(arg(sinh ξ), µ)
and

R
(P1)
N (ξ, µ, ν) = e−(ν+ 1

2 )ξ
∫ +∞

0

tν−
1
2 e−te

−ξ
r̃
(K)
N (t sinh ξ, µ)dt,

R
(P2)
M (ξ, µ, ν) = e(ν+ 1

2 )ξ
∫ +∞

0

tν−
1
2 e−te

ξ

r
(K)
M (t sinh ξ, µ)dt.

We perform a change of integration variable from t to s by t = seξ in the case of the first integral
and by t = se−ξ in the case of the second integral. By an application of Cauchy’s theorem, the
contours of integration can then be deformed back into the positive real axis and we arrive at
the representations

(7.6) R
(P1)
N (ξ, µ, ν) =

∫ +∞

0

sν−
1
2 e−sr̃(K)

N

(
seξ sinh ξ, µ

)
ds

and

(7.7) R
(P2)
M (ξ, µ, ν) =

∫ +∞

0

sν−
1
2 e−sr(K)

M

(
se−ξ sinh ξ, µ

)
ds,

respectively. Now observe that the function eξ sinh ξ can be regarded as an analytic function from
the domain D1 to the sector

{
z : | arg z| < 2π and

∣∣z + 1
2

∣∣ > 1
2

}
. It maps the part of D1 lying

in the upper half-plane into the sector
{
z : 0 < arg z < 2π and

∣∣z + 1
2

∣∣ > 1
2

}
, and it maps the

part of D1 lying in the lower half-plane into the sector
{
z : −2π < arg z < 0 and

∣∣z + 1
2

∣∣ > 1
2

}
.

Similarly, the function e−ξ sinh ξ can be viewed as an analytic function from the domain D1

to the disk
{
z :
∣∣z − 1

2

∣∣ < 1
2

}
. Thus, we can employ analytic continuation in ξ to extend our

results into the domain D1. The formula (1.9) for C(ξ, µ) follows immediately from (7.4) and
the properties of the hyperbolic sine function.

By Lemma 7.1 and the properties of the function e−ξ sinh ξ, we can assert that∣∣∣R(P2)
M (ξ, µ, ν)

∣∣∣ ≤ ∫ +∞

0

s<ν−
1
2 e−s

∣∣∣r(K)
M (se−ξ sinh ξ, µ)

∣∣∣ds
≤
∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aM (<µ)|Γ
(
<ν −M + 1

2

) ∣∣∣∣ eξ

sinh ξ

∣∣∣∣M ,

provided that ξ ∈ D1, |<µ| < M+ 1
2 and <ν > M− 1

2 . If 2<µ is an odd integer, then the limiting
value has to be taken in this bound. Similarly, by Lemma 7.1 and the properties of the function
eξ sinh ξ, we can infer that∣∣∣R(P1)

N (ξ, µ, ν)
∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN (<µ)|Γ
(
<ν −N + 1

2

) ∣∣∣∣ e−ξ

sinh ξ

∣∣∣∣N
×
{

1 if π
2 ≤ |ϑ mod 2π| ≤ π,

min
(
|cscϑ| , 1 + χ

(
N + 1

2

))
if |ϑ mod 2π| < π

2 ,

with ϑ = arg(eξ sinh ξ) ∈ (−2π, 2π), provided that ξ ∈ D1, |<µ| < N + 1
2 and <ν > N − 1

2 .
Again, if 2<µ is an odd integer, then the limiting value has to be taken in this bound. Since

|tanϑ| =
∣∣∣∣=(eξ sinh ξ)

<(eξ sinh ξ)

∣∣∣∣ =

∣∣∣∣ e2<ξ sin(2=ξ)
e2<ξ cos(2=ξ)− 1

∣∣∣∣ ,
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whenever e2<ξ cos(2=ξ) 6= 1 (i.e., ϑ 6≡ π
2 mod π), and

|cscϑ| =
√

1 + tan2 ϑ

|tanϑ| ,

it follows that |cscϑ| =
∣∣1− e−2ξ

∣∣ |csc(2=ξ)|. Finally, π
2 ≤ |ϑ mod 2π| ≤ π occurs whenever

<(eξ sinh ξ) ≤ 0, i.e., <(e2ξ) ≤ 1, and |ϑ mod 2π| < π
2 occurs whenever <(eξ sinh ξ) > 0, i.e.,

<(e2ξ) > 1.
Now assume that ξ > 0, µ and ν are real, and |µ| < M + 1

2 and ν > M − 1
2 . From Lemma 7.1

and the mean value theorem of integration, we can infer that

R
(P2)
M (ξ, µ, ν) =

∫ +∞

0

sν−
1
2 e−s

aM (ν)

(se−ξ sinh ξ)M
θM (ξ, µ)ds

= aM (ν)Γ
(
ν −M + 1

2

)( eξ

sinh ξ

)M
ΘM (ξ, µ, ν),

where 0 < θM (ξ, µ) < 1 and 0 < ΘM (ξ, µ, ν) < 1. This completes the proof of Theorem 3.1.
We conclude this section with the proof of Theorem 3.2. Let N be an arbitrary non-negative

integer. Assuming that <ν > N − 1
2 , the substitution of (7.3) (with w = t sinh ξ) into (1.6) gives

(3.2) with

R
(Q)
N (ξ, µ, ν) = e(ν+ 1

2 )ξ
∫ +∞

0

tν−
1
2 e−te

ξ

r
(K)
N (t sinh ξ, µ)dt.

Hence, R
(Q)
N (ξ, µ, ν) = R

(P2)
N (ξ, µ, ν) and the estimates for R

(Q)
N (ξ, µ, ν) follow from those for

R
(P2)
N (ξ, µ, ν).

8. Proof of Theorem 4.1

In this section, we prove the error bounds stated in Theorem 4.1. The Ferrers function of the
first kind is related to the associated Legendre function of the first kind via the limit

(8.1) Pµν (x) = lim
ε→0+

e
π
2 iµPµν (x+ iε),

where −1 < x < 1 [4, Eq. 14.23.1]. Suppose that 0 < ζ < π. Since

(8.2) cosh(ε+ iζ) = cosh ε cos ζ + i sinh ε sin ζ,

we obtain, using (8.1), that

(8.3) Pµν (cos ζ) = lim
ε→0+

e
π
2 iµPµν (cosh(ε+ iζ)).

Assuming that <ν > <µ − 1 and <ν > N − 1
2 , and taking into account (7.5), (7.6) and (7.7),

the substitution of (3.1) (with M = N) into the right-hand side of (8.3) yields (4.1) with

R
(P)
N (ζ, µ, ν) = 1

2e((ν+ 1
2 )ζ+(µ− 1

2 )π2 )i lim
ε→0+

R
(P1)
N

(
ε+ e

π
2 iζ, µ, ν

)
+ 1

2e−((ν+ 1
2 )ζ+(µ− 1

2 )π2 )i lim
ε→0+

R
(P2)
N

(
ε+ e

π
2 iζ, µ, ν

)
= 1

2e((ν+ 1
2 )ζ+(µ− 1

2 )π2 )i
∫ +∞

0

sν−
1
2 e−sr(K)

N (se(ζ−π2 )i sin ζ, µ)ds

+ 1
2e−((ν+ 1

2 )ζ+(µ− 1
2 )π2 )i

∫ +∞

0

sν−
1
2 e−sr(K)

N (se−(ζ−π2 )i sin ζ, µ)ds.

(8.4)

http://dlmf.nist.gov/14.23.E1
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It follows from Lemma 7.1 that∣∣∣R(P)
N (ζ, µ, ν)

∣∣∣ ≤ 1
2e−=(αµ,ν,N )

∫ +∞

0

s<ν−
1
2 e−s

∣∣∣r(K)
N (se(ζ−π2 )i sin ζ, µ)

∣∣∣ ds
+ 1

2e=(αµ,ν,N )

∫ +∞

0

s<ν−
1
2 e−s

∣∣∣r(K)
N (se−(ζ−π2 )i sin ζ, µ)

∣∣∣ds
≤
∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN (<µ)|Γ
(
<ν −N + 1

2

) cosh(=(αµ,ν,N ))

sinN ζ
,

(8.5)

provided that 0 < ζ < π, |<µ| < N + 1
2 and <ν > N − 1

2 . If 2<µ is an odd integer, then the

limiting value has to be taken in this bound. This proves (4.3) for R
(P)
N (ζ, µ, ν). To prove (4.4),

we first re-write (8.4) in the form

R
(P)
N (ζ, µ, ν) = 1

2 cos(αµ,ν,N )

∫ +∞

0

sν−
1
2 e−s

(
eiζN (−i)Nr

(K)
N (se(ζ−π2 )i sin ζ, µ)

+e−iζN iNr
(K)
N (se−(ζ−π2 )i sin ζ, µ)

)
ds

+ i
2 sin(αµ,ν,N )

∫ +∞

0

sν−
1
2 e−s

(
eiζN (−i)Nr

(K)
N (se(ζ−π2 )i sin ζ, µ)

−e−iζN iNr
(K)
N (se−(ζ−π2 )i sin ζ, µ)

)
ds.

Suppose that <ν > N + 1
2 . Next, we employ the relation r

(K)
N (w, µ) = aN (µ)w−N + r

(K)
N+1(w, µ)

inside the second integral, to obtain

R
(P)
N (ζ, µ, ν) = 1

2 cos(αµ,ν,N )

∫ +∞

0

sν−
1
2 e−s

(
eiζN (−i)Nr

(K)
N (se(ζ−π2 )i sin ζ, µ)

+e−iζN iNr
(K)
N (se−(ζ−π2 )i sin ζ, µ)

)
ds

+ i
2 sin(αµ,ν,N )

∫ +∞

0

sν−
1
2 e−s

(
eiζN (−i)Nr

(K)
N+1(se(ζ−π2 )i sin ζ, µ)

−e−iζN iNr
(K)
N+1(se−(ζ−π2 )i sin ζ, µ)

)
ds.

It follows from Lemma 7.1 that∣∣∣R(P)
N (ζ, µ, ν)

∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN (<µ)|Γ
(
<ν −N + 1

2

) | cos(αµ,ν,N )|
sinN ζ

+

∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣ |aN+1(<µ)|Γ
(
<ν −N − 1

2

) | sin(αµ,ν,N )|
sinN+1 ζ

,

(8.6)

provided that 0 < ζ < π, |<µ| < N + 1
2 and <ν > N + 1

2 . Again, if 2<µ is an odd integer, then
the limiting value has to be taken in this bound.

The Ferrers function of the second kind is related to the associated Legendre function of the
second kind via the limit

(8.7) Qµν (x) = lim
ε→0+

1
2e−πiµ

(
e−

π
2 iµQµν (x+ iε) + e

π
2 iµQµν (x− iε)

)
,

where −1 < x < 1 (combine [4, Eq. 14.23.5] with [4, Eq. 14.3.10]). Suppose that 0 < ζ < π.
From (8.2) and (8.7), we can assert that

(8.8) Qµν (cos ζ) = lim
ε→0+

1
2e−πiµ

(
e−

π
2 iµQµν (cosh(ε+ iζ)) + e

π
2 iµQµν (cosh(ε− iζ))

)
.

http://dlmf.nist.gov/14.23.E5
http://dlmf.nist.gov/14.3.E10
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Assuming that <ν > <µ− 1 and <ν > N − 1
2 , and taking into account (7.7), the substitution of

(3.2) into the right-hand side of (8.8) yields (4.2) with

R
(Q)
N (ζ, µ, ν) =− 1

2e−((ν+ 1
2 )ζ+(µ+ 1

2 )π2 )i lim
ε→0+

R
(Q)
N (ε+ e

π
2 iζ, µ, ν)

− 1
2e((ν+ 1

2 )ζ+(µ+ 1
2 )π2 )i lim

ε→0+
R

(Q)
N (ε+ e−

π
2 iζ, µ, ν)

=− 1
2e−((ν+ 1

2 )ζ+(µ+ 1
2 )π2 )i

∫ +∞

0

sν−
1
2 e−sr(K)

N (se−(ζ−π2 )i sin ζ, µ)ds

− 1
2e((ν+ 1

2 )ζ+(µ+ 1
2 )π2 )i

∫ +∞

0

sν−
1
2 e−sr(K)

N (se(ζ−π2 )i sin ζ, µ)ds.

(8.9)

Now, a procedure analogous to (8.5) yields the estimate (4.3) for R
(Q)
N (ζ, µ, ν). To prove (4.5),

we first re-write (8.9) in the form

R
(Q)
N (ζ, µ, ν) = 1

2 sin(αµ,ν,N )

∫ +∞

0

sν−
1
2 e−s

(
e−iNζ iNr(K)

N (se−(ζ−π2 )i sin ζ, µ)

+eiNζ(−i)Nr
(K)
N (se(ζ−π2 )i sin ζ, µ)

)
ds

+ i
2 cos(αµ,ν,N )

∫ +∞

0

sν−
1
2 e−s

(
e−iNζ iNr(K)

N (se−(ζ−π2 )i sin ζ, µ)

−eiNζ(−i)Nr
(K)
N (se(ζ−π2 )i sin ζ, µ)

)
ds.

Suppose that <ν > N + 1
2 . Next, we employ the relation r

(K)
N (w, µ) = aN (µ)w−N + r

(K)
N+1(w, µ)

inside the second integral, to obtain

R
(Q)
N (ζ, µ, ν) = 1

2 sin(αµ,ν,N )

∫ +∞

0

sν−
1
2 e−s

(
e−iNζ iNr(K)

N (se−(ζ−π2 )i sin ζ, µ)

+eiNζ(−i)Nr
(K)
N (se(ζ−π2 )i sin ζ, µ)

)
ds

+ i
2 cos(αµ,ν,N )

∫ +∞

0

sν−
1
2 e−s

(
e−iNζ iNr(K)

N+1(se−(ζ−π2 )i sin ζ, µ)

−eiNζ(−i)Nr
(K)
N+1(se(ζ−π2 )i sin ζ, µ)

)
ds.

Now, a procedure analogous to (8.6) gives the bound (4.5) for R
(Q)
N (ζ, µ, ν).

9. Proof of Theorems 4.2 and 4.3

In this section, we prove the error bounds stated in Theorems 4.2 and 4.3. The associated
Legendre function of the first kind can be expressed in terms of the hypergeometric function as
follows:

√
2π sinh ξ

Γ(µ+ ν + 1)
Pµν (cosh ξ) = e±( 1

2−µ)πi−(ν+ 1
2 )ξF

(
1
2 + µ, 12 − µ

ν + 3
2

;
−e−ξ

2 sinh ξ

)

+ e(ν+ 1
2 )ξF

(
1
2 + µ, 12 − µ

ν + 3
2

;
eξ

2 sinh ξ

)
,

(9.1)

for ξ ∈ D1 \ (0,+∞). The upper or lower sign is taken in (9.1) according as ξ is in the upper or
lower half-plane (combine [4, Eq. 14.9.12] with (1.7) and connection formula [4, Eq. 15.10.21]).

http://dlmf.nist.gov/14.9.E12
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Assume that 0 < ζ < π. From (9.1) and (8.3), we deduce

Pµν (cos ζ) =
Γ(ν + µ+ 1)√

2π sin ζ

(
e−((ν+ 1

2 )ζ+(µ− 1
2 )π2 )iF

(
1
2 + µ, 12 − µ

ν + 3
2

;
ie−iζ

2 sin ζ

)

+e((ν+ 1
2 )ζ+(µ− 1

2 )π2 )iF

(
1
2 + µ, 12 − µ

ν + 3
2

;
−ieiζ

2 sin ζ

))
(cf. [10, p. 168]). We now substitute the hypergeometric functions by means of the truncated
expansion (2.1). In this way, we obtain (4.6) with

R̂
(P)
N (ζ, µ, ν) =

e−((ν+ 1
2 )ζ+(µ− 1

2 )π2 )i

2Γ
(
ν + 3

2

) R
(F )
N

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)

+
e((ν+ 1

2 )ζ+(µ− 1
2 )π2 )i

2Γ
(
ν + 3

2

) R
(F )
N

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)
.

(9.2)

Consequently,∣∣∣R̂(P)
N (ζ, µ, ν)

∣∣∣ ≤ e=(βµ,ν,N )

2
∣∣Γ (ν + 3

2

)∣∣
∣∣∣∣R(F )

N

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)∣∣∣∣
+

e−=(βµ,ν,N )

2
∣∣Γ (ν + 3

2

)∣∣
∣∣∣∣R(F )

N

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)∣∣∣∣ .(9.3)

Now, under the assumptions of Theorem 4.2, we can apply (2.3) of Theorem 2.1 to the right-hand
side of this inequality to obtain∣∣∣R̂(P)

N (ζ, µ, ν)
∣∣∣ ≤ ∣∣∣∣ cos(πµ)

cos(π<µ)

∣∣∣∣
∣∣∣∣∣Γ
(
1
2 −<µ

)
Γ(<ν + <µ+ 1)

Γ
(
1
2 − µ

)
Γ(ν + µ+ 1)

∣∣∣∣∣
× |aN (<µ)| cosh(=(βµ,ν,N ))

Γ
(
<ν + 3

2 +N
)

sinN ζ
×
{
|sec ζ| if 2 sin2 ζ ≤ 1,

2 sin ζ if 2 sin2 ζ > 1.

Noting that 2 sin2 ζ ≤ 1 occurs whenever 0 < ζ ≤ π
4 or 3π

4 ≤ ζ < π, and 2 sin2 ζ > 1 occurs

whenever π
4 < ζ < 3π

4 , the proof of the estimate (4.8) for R̂
(P)
N (ζ, µ, ν) is complete. With the

assumptions of Theorem 4.3, Theorem 2.2 is applicable to the right-hand side of the inequality

(9.3), and yields the estimate (4.11) for R̂
(P)
N (ζ, µ, ν).

To prove (4.9) and (4.12), we first re-write (9.2) in the form

R̂
(P)
N (ζ, µ, ν) =

cos(βµ,ν,N )

2Γ
(
ν + 3

2

) (eiζN iNR
(F )
N

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)
+e−iζN (−i)NR

(F )
N

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

))
− i sin(βµ,ν,N )

2Γ
(
ν + 3

2

) (eiζN iNR
(F )
N

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)
−e−iζN (−i)NR

(F )
N

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

))
.

Next, we employ the relation

(9.4) R
(F )
N

(
w, 12 + µ, 12 − µ, ν + 3

2

)
= (−2)N

aN (µ)(
ν + 3

2

)
N

wN +R
(F )
N+1

(
w, 12 + µ, 12 − µ, ν + 3

2

)
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inside the second large parenthesis, to deduce

R̂
(P)
N (ζ, µ, ν) =

cos(βµ,ν,N )

2Γ
(
ν + 3

2

) (eiζN iNR
(F )
N

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)
+e−iζN (−i)NR

(F )
N

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

))
− i sin(βµ,ν,N )

2Γ
(
ν + 3

2

) (eiζN iNR
(F )
N+1

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)
−e−iζN (−i)NR

(F )
N+1

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

))
.

Thus,

∣∣∣R̂(P)
N (ζ, µ, ν)

∣∣∣ ≤ |cos(βµ,ν,N )|
2
∣∣Γ (ν + 3

2

)∣∣
(∣∣∣∣R(F )

N

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)∣∣∣∣
+

∣∣∣∣R(F )
N

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)∣∣∣∣)
+
|sin(βµ,ν,N )|
2
∣∣Γ (ν + 3

2

)∣∣
(∣∣∣∣R(F )

N+1

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)∣∣∣∣
+

∣∣∣∣R(F )
N+1

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)∣∣∣∣) .
(9.5)

Under the assumptions of Theorem 4.2, we can apply (2.3) of Theorem 2.1 to the right-hand side
of this inequality to obtain the bound (4.9). With the assumptions of Theorem 4.3, Theorem 2.2
is applicable to the right-hand side of the inequality (9.5), leading to the estimate (4.12).

We conclude this section with the proof of the estimates for the reminder term R̂
(Q)
N (ζ, µ, ν).

From (1.7) and (8.8), we deduce

Qµν (cos ζ) = − i

2

√
π

2 sin ζ
Γ(ν + µ+ 1)

(
e−((ν+ 1

2 )ζ+(µ− 1
2 )π2 )iF

(
1
2 + µ, 12 − µ

ν + 3
2

;
ie−iζ

2 sin ζ

)

−e((ν+ 1
2 )ζ+(µ− 1

2 )π2 )iF

(
1
2 + µ, 12 − µ

ν + 3
2

;
−ieiζ

2 sin ζ

))

(cf. [10, p. 168]). We now substitute the hypergeometric functions by means of the truncated
expansion (2.1). In this way, we obtain (4.7) with

R̂
(Q)
N (ζ, µ, ν) =

ie−((ν+ 1
2 )ζ+(µ− 1

2 )π2 )i

2Γ
(
ν + 3

2

) R
(F )
N

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)

− ie((ν+ 1
2 )ζ+(µ− 1

2 )π2 )i

2Γ
(
ν + 3

2

) R
(F )
N

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)
.

(9.6)
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We can now proceed analogously to the case of R̂
(P)
N (ζ, µ, ν) and derive the bounds (4.8) and

(4.11) for R̂
(Q)
N (ζ, µ, ν). To prove (4.10) and (4.13), we first re-write (9.6) in the form

R̂
(Q)
N (ζ, µ, ν) =

sin(βµ,ν,N )

2Γ
(
ν + 3

2

) (eiζN iNR
(F )
N

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)
+e−iζN (−i)NR

(F )
N

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

))
+

i cos(βµ,ν,N )

2Γ
(
ν + 3

2

) (eiζN iNR
(F )
N

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)
−e−iζN (−i)NR

(F )
N

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

))
.

Next, we employ the relation (9.4) inside the second large parenthesis, to deduce

R̂
(Q)
N (ζ, µ, ν) =

sin(βµ,ν,N )

2Γ
(
ν + 3

2

) (eiζN iNR
(F )
N

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)
+e−iζN (−i)NR

(F )
N

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

))
+

i cos(βµ,ν,N )

2Γ
(
ν + 3

2

) (eiζN iNR
(F )
N+1

(
ie−iζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

)
−e−iζN (−i)NR

(F )
N+1

( −ieiζ

2 sin ζ
, 12 + µ, 12 − µ, ν + 3

2

))
.

We can now proceed similarly to the case of R̂
(P)
N (ζ, µ, ν) and derive the bounds (4.10) and (4.13)

for R̂
(Q)
N (ζ, µ, ν).

10. Ferrers functions for large µ and fixed ν: proof

To obtain large-µ asymptotic expansions for the Ferrers functions, we can combine the expan-
sions (1.10) and (1.11) with the identities

Pµν (cos ζ) =
e

2µ−4ν−3
4 πi

Γ(ν − µ+ 1)

√
2

π sin ζ
Q
ν+ 1

2

−µ− 1
2

(−i cot ζ)

= sin(πµ)e
2µ−1

4 πiΓ(µ− ν)

√
2

π sin ζ
P
ν+ 1

2

µ− 1
2

(−i cot ζ)

− sin(π(ν + µ))

π
e

2µ−4ν−3
4 πiΓ(µ− ν)

√
2

π sin ζ
Q
ν+ 1

2

µ− 1
2

(−i cot ζ),

Qµν (cos ζ) = Γ(ν + µ+ 1)

√
π

8 sin ζ

(
e−

2µ+1
4 πiP

−ν− 1
2

µ− 1
2

(−i cot ζ) + e
2µ+1

4 πiP
−ν− 1

2

µ− 1
2

(i cot ζ)
)

= Γ(µ− ν)

√
π

8 sin ζ

(
e−

2µ+1
4 πiP

ν+ 1
2

µ− 1
2

(−i cot ζ) + e
2µ+1

4 πiP
ν+ 1

2

µ− 1
2

(i cot ζ)
)

+ Γ(µ− ν) cos(πν)
e−(ν+

1
2 )πi√

2π sin ζ

(
e

3−2µ
4 πiQ

ν+ 1
2

µ− 1
2

(−i cot ζ) + e
2µ−3

4 πiQ
ν+ 1

2

µ− 1
2

(i cot ζ)
)
.

These identities follow by combining (8.1) and (8.7) with Whipple’s formulae (1.13) and (1.14)
and then using the connection formulae [4, Eq. 14.9.12] and [4, Eq. 14.9.15].

http://dlmf.nist.gov/14.9.E12
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Let ε be an arbitrary fixed positive number. Since ±i cot ζ = cosh
(
log
(
cot
(
1
2ζ
))
± π

2 i
)
, it

follows from the expansions (1.10) and (1.11) that for ε ≤ ζ < π
2 , the asymptotic expansions

(1.24) and (1.25) hold as <µ → +∞, with =µ being bounded. Examination of the remainder
terms in the limiting case ζ → π

2 (using Theorems 3.1 and 3.2), shows that these inverse factorial
expansions are actually valid for ε ≤ ζ ≤ π

2 . To extend these expansions to the larger interval
ε ≤ ζ ≤ π − ε, we can proceed as follows. The Ferrers functions satisfy the connection relations

Pµν (−x) = cos(π(ν + µ))Pµν (x)− 2
π sin(π(ν + µ))Qµν (x),

Qµν (−x) = − cos(π(ν + µ))Qµν (x)− π
2 sin(π(ν + µ))Pµν (x),

for 0 ≤ x < 1 (see, for example, [4, Eq. 14.9.8] and [4, Eq. 14.9.10]). We employ these relations
with x = − cos ζ = cos(π − ζ), π

2 < ζ ≤ π − ε, and use the previously established asymptotic
expansions for the right-hand sides of the resulting equalities. After simplification, we find that
Pµν (cos ζ) and Qµν (cos ζ), π

2 < ζ ≤ π − ε, possess the same asymptotic expansions as they do for
ε ≤ ζ ≤ π

2 .

11. Numerical examples

In this section, we provide some numerical examples to demonstrate the sharpness of our
error bounds and the accuracy of our asymptotic approximations. Taking ν = 10, µ = 6

5 and

ξ = 4
5 , we obtain e−πiµQµν (cosh ξ) ≈ 0.00168049. If we take N = 2 terms on the right-hand

side (RHS) of (1.11), we obtain the approximation 0.00169164, that is, in Theorem 3.2 we

have R
(Q)
N (ξ, µ, ν) ≈ 8642.4139, and the RHS of (3.3) is approximately 10618.854. Note that

8642/10619 ≈ 0.81, which is close to 1, demonstrating the sharpness of the error bound (3.3).

Figure 2. (LHS of (3.3))/(RHS of (3.3)) for the cases ν = 10 + 5it, µ = 6
5 ,

ξ = 4
5 and N = 1 (black) and N = 5 (grey).

In Figure 2, we take ν = 10 + 5it, µ = 6
5 and ξ = 4

5 , and plot (LHS of (3.3))/(RHS of (3.3))
in the cases that N = 1 (black) and N = 5 (grey), respectively. The graph illustrates that our
error bound (3.3) is sharp, and that the result in Theorem 3.2 is indeed useful when <ν → +∞.

In Figure 3, we take ν = 10eiψ, µ = 6
5 and ξ = 4

5 , and plot (LHS of (3.5))/(RHS of (3.5))
in the cases that N = 1 (black) and N = 5 (grey), respectively. The graph illustrates that our
error bound (3.5) is reasonably sharp, and that the result in Theorem 3.4 holds when |ν| → +∞
in large sectors of the form | arg ν| ≤ π − δ (< π).

In Figure 4, we take µ = 6
5 , ξ = 0.01 + it and N = 1, and plot (LHS of (3.5))/(RHS of (3.5))

in the cases that ν = 10 (black) and ν = 10e2i (grey). These are extreme cases. We observe that
when ν = 10, the error bound is still sharp. Even in the case that ν = 10e2i, we see that the
bound is realistic near the endpoints ξ = 0,±πi.

In Figure 5, we illustrate how the accuracy of the large-ν approximations (3.1) and (3.2)
for the associated Legendre functions Pµν (z) and Qµν (z) diminishes as z approaches 1, but they

http://dlmf.nist.gov/14.9.E8
http://dlmf.nist.gov/14.9.E10
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Figure 3. (LHS of (3.5))/(RHS of (3.5)) for the cases ν = 10eiψ, µ = 6
5 , ξ = 4

5
and N = 1 (black) and N = 5 (grey).

Figure 4. (LHS of (3.5))/(RHS of (3.5)) for the cases µ = 6
5 , ξ = 0.01 + it,

N = 1 and ν = 10 (black) and ν = 10e2i (grey).

are uniformly valid for z ≥ 1 + ε (> 1). Likewise, in Figure 6, we illustrate how the accuracy
of the large-µ approximation (1.16) for the associated Legendre function Qµν (z) decreases as z
approaches +∞, but is uniformly valid for z ∈ (1, Z]. Similarly, in Table 1, we illustrate how
the accuracy of the large-ν approximations (4.1) and (4.2) for the Ferrers functions Pµν (x) and
Qµν (x) diminishes as x approaches 1.

10�4

10�3

10�2

10�1

100

1

2

10�10

10�8

10�6

10�4

10�2

100

Figure 5. Relative errors of the approximations (3.1) (black) and (3.2) (grey)
for the cases ν = 10, µ = 6

5 , N = M = 2, z = cosh ξ ∈ (1, 2) (left) and
z = cosh ξ ∈ (1, 50) (right).
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3

10�4

10�3

10�2

10�1

100

Figure 6. Relative error of the approximation (1.16) for the case ν = 6
5 , µ = 10,

z = coth ξ ∈ (1, 10) and taking 2 terms in both sums on the right-hand side of
(1.16).

x = cos ζ Pµν (cos ζ) RHS of (4.1) relative error Qµν (cos ζ) RHS of (4.2) relative error

0.9 −5.58976 −5.57356 0.00291 13.1050 13.1067 0.00013

0.95 1.86065 1.82948 0.01704 −18.4721 −18.4407 0.00170

0.99 −8.96386 −8.72156 0.02778 24.8288 24.7007 0.00519

0.999 −31.5013 −32.1480 0.02012 −35.7525 −30.3175 0.17927

Table 1. Relative errors of the approximations (4.1) and (4.2) for the case
ν = 20, µ = 6

5 and N = 2.
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