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We study the analytic and topological invariants associated 
with complex normal surface singularities. Our goal is to 
provide topological formulae for several discrete analytic 
invariants whenever the analytic structure is generic (with 
respect to a fixed topological type), under the condition that 
the link is a rational homology sphere. The list of analytic 
invariants includes: the geometric genus, the cohomology 
of certain natural line bundles, the cohomology of their 
restrictions on effective cycles (supported on the exceptional 
curve of a resolution), the cohomological cycle of natural 
line bundles, the multivariable Hilbert and Poincaré series 
associated with the divisorial filtration, the analytic semi-
group, the maximal ideal cycle.
The first part contains the definition of ‘generic structure’ 
based on the work of Laufer [14]. The second technical 
ingredient is the Abel map developed in [21].
The results can be compared with certain parallel statements 
from the Brill–Noether theory and from the theory of Abel 
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map associated with projective smooth curves (see e.g. [1]
and [6]), though the tools and machineries are very different.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The main objective. Our major objects in this note are the analytic and topological 
invariants associated with complex normal surface singularity germs. Our goal is to 
provide topological formulae for several discrete analytic invariants whenever the analytic 
structure is generic (with respect to a fixed topological type). Regarding this problem 
very little is known in the present literature. The type of formulae of the topological 
characterizations of the present article are totally new, as well as the methods (based on 
the newly created theory of Abel map).

1.2. Discussion regarding the ‘generic analytic type’. Let us comment first what kind of 
difficulties appear in the definition and study of ‘generic’ analytic type. The point is that 
for a fixed topological type the moduli space of all analytic structures supported by that 
fixed topological type, is not yet described in the literature; hence, we cannot define our 
generic structure as a generic point of such a space. Laufer in [15] characterized those 
topological types which support only one analytic type (or, more generally, countably 
many analytic types), but about the general cases very little is known. Usually, generic 
structures — when they appeared — were introduced by certain ad-hoc definitions, or 
only in particular situations. In a slightly different direction a remarkable progress was 
made by Laufer (see e.g. [14]) when he defined local complete deformations of (resolution 
of) singularities. This parameter space will be the major tool in our working definition 
as well (see 1.5).

However, even if one defines a certain ‘genericity’ notion by eliminating a discriminant 
from a parameter space (consisting of the pathological objects from the point of view 
of the discussion), the next hard major task is to exploit from the genericity some key 
geometric/numerical/cohomological properties. (E.g., in the present article this is done 
via Theorem B below.)

Regarding the problem to find the values of the analytic invariants associated with 
the generic analytic type, a crucial obstruction was (before the present note) the lack of 
examples and experience. E.g., Laufer in [16] proved that a generic elliptic singularity has 
geometric genus pg = 1, but except this, almost no other example is known. Even more, 
using the known statements of the literature, it is almost impossible to guess what are 
the possible topological candidates for the invariants of the generic analytic structure. 
The expectation is that they should be certain sharp topological bounds, but even if 
some topological bound is known, usually there are no tools to prove its realization for 
the generic (or any) analytic structure.



J. Nagy, A. Némethi / Advances in Mathematics 371 (2020) 107268 3
The situation is exemplified rather trustworthily already by the geometric genus. 
Wagreich already in 1970 in [37] defined topologically the arithmetical genus pa of a 
normal surface singularity and for any non–rational germ (that is, when pg �= 0) he 
proved that pa ≤ pg (see [37, p. 425]). Though in some (easy) cases was known that they 
agree, analyzing the existing proofs of the inequality (see e.g. the very short proof in 
[29]), one might think that this inequality for germs with complicated topological types 
probably is extremely week. However, the point is that in the present note we prove 
that (contrary to the first naive judgement) the geometric analytic structure realizes 
exactly this pa. For the other invariants (see Theorem A below) even the corresponding 
candidates were not on the table (but we expect that they will have some relationship 
with lattice cohomology [26]).

In fact, even in this article we make the selection of a package of analytic invariants 
(organized around the cohomology of natural line bundles), for which we present the 
corresponding ‘package of topological expressions’, and we will treat, say, the Hilbert–
Samuel function/multiplicity/embedded-dimension package in a forthcoming manuscript 
(with rather different type of combinatorial answers).

1.3. The technical presentation of the results. In order to formulate the invariants and the 
topological characterizations in a more formal way we need some notation. Let X̃ → X

be a good resolution with irreducible exceptional curves {Ev}v∈V , with resolution graph 
Γ, negative definite intersection lattice L = H2(X̃, Z), dual lattice L′ = H2(X̃, Z) �
H2(X̃, ∂X̃, Z), and discriminant group H = L′/L (for details see 2.1). We assume that 
the link M of (X, o) is a rational homology sphere, that is, Γ is a tree of rational Ev’s. In 
such a case H = H1(M, Z) is finite. Usually Z will denote an effective cycle supported 
on the exceptional curve E. The dual lattice L′ is also the target of the surjective first 
Chern class map c1 : Pic(X̃) → L′, set c−1

1 (l′) = Picl
′
(X̃). For any Chern class one 

defines the ‘natural line bundle’ O
X̃

(l′) ∈ Picl
′
(X̃), and its restrictions OZ(l′), cf. 3.4.

In the sequel we fix a topological type, that is, a resolution graph. The topological 
invariants are read from Γ, or equivalently, from L. The most elementary one is the 
‘Riemann–Roch’ expression χ : L′ → Q given by χ(l′) := −(l′, l′−ZK)/2, where ZK ∈ L′

is the anticanonical cycle defined combinatorially by the adjunction formulae, cf. 2.1.
The list of analytic invariants, associated with a generic analytic type (with respect 

to the fixed graph), which are described in the present article topologically are the 
following: h1(OZ), h1(OZ(l′)) (with certain restriction on the Chern class l′), — this last 
one applied for Z � 0 provides h1(O

X̃
) and h1(O

X̃
(l′)) too —, the cohomological cycle 

of natural line bundles, the multivariable Hilbert and Poincaré series associated with the 
divisorial filtration, the analytic semigroup, the maximal ideal cycle. See [4,5,19,23,25,
28,31,33] for the definitions and relationships between them. Here some definitions will 
be recalled in section 6.

Surprisingly, in all the topological characterization we need to use merely χ, how-
ever, it is really remarkable the level of complexity and subtlety of the combinatorial 
expressions/invariants carried by this ‘simple’ (?) quadratic function. Definitely, this can 
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happen due to the fact that we work over the lattices L and L′, and the position of the 
lattice points with respect to the level sets of χ play the key role. It is a real challenge now 
to interpret these expressions in terms of lattice cohomology [26,27] or other topological 
3–manifold invariants.

Theorem A. Fix a resolution graph and assume that the analytic type of X̃ is generic. 
Then the following identities hold:
(a) For any effective cycle Z ∈ L>0 with |Z| connected

h1(OZ) = 1 − min
0<l≤Z,l∈L

{χ(l)}.

(b) If l′ =
∑

v∈V l′vEv ∈ L′ satisfies l′v < 0 for any Ev in the support of Z then

h1(Z,OZ(l′)) = χ(−l′) − min
0≤l≤Z,l∈L

{χ(−l′ + l)}.

(For a characterization valid for more general Chern classes l′ see section 6.)
(c) If pg(X, o) = h1(X̃, O

X̃
) is the geometric genus of (X, o) then

pg(X, o) = 1 − min
l∈L>0

{χ(l)} = −min
l∈L

{χ(l)} +
{

1 if (X, o) is not rational,
0 else.

(d) More generally, for any l′ ∈ L′

h1(X̃,O
X̃

(l′)) = χ(−l′)− min
l∈L≥0

{χ(−l′+l)}+
{

1 if l′ ∈ L≥0 and (X, o) is not rational,
0 else.

(e) Let H(t) =
∑

l′∈L′ h(l′)tl
′ be the multivariable equivariant Hilbert series associated 

with the divisorial filtration. Write l′ as rh + l0 for some l0 ∈ L and rh ∈ L′ the unique 
representative of h = [l′] in the semi-open cube of L′. Then h(rh) = 0 for l0 = 0. 
Furthermore, for l0 > 0 and h �= 0

h(l′) = min
l∈L≥0

{χ(l′ + l)} − min
l∈L≥0

{χ(rh + l)}.

For h = 0 and l′ = l0 > 0

h(l0) = min
l∈L≥0

{χ(l0 + l)} − min
l∈L≥0

{χ(l)} +
{

1 if (X, o) is not rational,
0 else.

(f) Write the multivariable equivariant Poincaré series P (t) = −H(t) ·
∏

v∈V(1 − t−1
v ) as ∑

l′∈S′ p(l′)tl
′ . It is supported in the Lipman (antinef) cone, in particular in L′

≥0. Then 
p(0) = 1 and for l′ > 0 one has
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p(l′) =
∑
I⊂V

(−1)|I|+1 min
l∈L≥0

χ(l′ + l + EI).

(g) Consider the analytic semigroup S ′
an := {l′ ∈ L′ : O

X̃
(−l′) has no fixed components}. 

Then

S ′
an = {l′ : χ(l′) < χ(l′ + l) for any l ∈ L>0} ∪ {0}.

(h) Assume that Γ is a non–rational graph and set M = {Z ∈ L>0 : χ(Z) =
minl∈L χ(l)}.

Then the unique minimal element of M is the cohomological cycle, while the unique 
maximal element of M is the maximal ideal cycle of X̃.

1.4. The Abel map. The main tool of the present note is the Abel map constructed 
and studied in [21]. Though in [21] we also listed several applications, the present note 
shows its power, its applicability in a really difficult problem, with a priori unexpected 
answers which become totally natural and motivated from the perspective of this new 
approach.

Let us recall shortly this object (for details see [21] or §2 and 3.4 here). Let (X, o), 
X̃ → X, L and L′ as above. Then for any effective cycle Z supported on E and for 
any (possible) Chern class l′ ∈ L′ we consider the space ECal

′
(Z) of effective Cartier 

divisors D supported on Z, whose associated line bundles OZ(D) have first Chern class 
l′. Furthermore, we also consider the Abel map cl

′(Z) : ECal
′
(Z) → Picl

′
(Z), D 	→

OZ(D).
Using the Abel map, in [21, Th. 5.3.1] we have shown that for any analytic singu-

larity and resolution with fixed resolution graph, and for any L ∈ Picl
′
(Z), one has 

h1(Z, L) ≥ χ(−l′) −min0≤l≤Z, l∈L χ(−l′ + l), and equality holds for a generic line bundle 
Lgen ∈ Picl

′
(Z). In particular, for any analytic type, Lgen ∈ Picl

′
(Z) can be expressed 

combinatorially. Now, the expectation and our guiding principle is the following: for a 
generic analytic structure the natural line bundle OZ(l′) should have the same h1 as the 
generic line bundle Lgen ∈ Picl

′
(Z) (associated with any analytic structure). This is the 

key technical statement of the note (for notations see 5.1).

Theorem B. Assume that X̃ is generic. Under some (necessary) negativity restriction on 
the Chern class l′ (see Theorem 5.1.1 and Remark 6.1.1(b)) the following facts hold.

(I) The following facts are equivalent:
(a) OZ(l′) ∈ im(cl̃), where OZ(l′) is the natural line bundle with Chern class l′;
(b) Lgen ∈ im(cl̃), where Lgen is a generic line bundle in Picl̃(Z) (that is, cl̃ is 

dominant);
(c) OZ(l′) ∈ im(cl̃), and for any D ∈ (cl̃)−1(OZ(l′)) the tangent map TDcl̃ :

TDECal̃(Z) → TOZ(l′)Picl̃(Z) is surjective.

(II) hi(Z, OZ(l′)) = hi(Z, Lgen) for i = 0, 1 and for a generic line bundle Lgen ∈ Picl̃(Z).
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The proof is long and technical, it fills in all section 5 (the ‘hard’ part is (a) ⇒ (c)). It 
uses the explicit description of tangent map of cl′ in terms of Laufer duality (integration 
of forms along divisors, cf. 2.2). In this section certain familiarity with [21] might help 
the reading.

By this result, if X̃ has generic analytic structure, then the cohomology of natural 
line bundles can be expressed by the very same topological formula as Lgen with the 
same Chern class. Then all the formulae of Theorem A above follow directly.

In the next paragraph we say a few words about ‘generic analytic type’.

1.5. The working definition of the generic analytic type. Usually when we have a param-
eter space for a family of geometric objects, the ‘generic object’ might depend essentially 
on the fact that what kind of geometrical problem we wish to solve, or, what kind of 
anomalies we wish to avoid. Accordingly, we determine a discriminant space of the non–
wished objects, and generic means its complement. In the present article all the discrete 
analytic invariants we treat are basically guided by the cohomology groups of the natural 
line bundles (for their definition see [24], [30] or 3.4 here, they associate in a canonical 
way a line bundle to any given Chern class). Hence, the discriminant spaces (sitting in 
the base space of complete deformation spaces of Laufer [14]) are defined as the ‘jump 
loci’ of the cohomology groups of the natural line bundles. In section 3 we recall the 
needed results of Laufer regarding complete deformations of some X̃, and we build on 
this our working definition of general analytic type.

Note that the natural line bundles are well–defined only if the link is a rational ho-
mology sphere. Furthermore, this assumption appeared in the theory of Abel maps as 
well. Hence, in the article we also impose this topological restriction.

2. Preliminaries and notations

2.1. Notations regarding a good resolution. [23,24,28,11,21] Let (X, o) be the germ of a 
complex analytic normal surface singularity, and let us fix a good resolution φ : X̃ → X

of (X, o). Let E be the exceptional curve φ−1(0) and ∪v∈VEv be its irreducible decom-
position. Define EI :=

∑
v∈I Ev for any subset I ⊂ V.

We will assume that each Ev is rational, and the dual graph is a tree. This happens 
exactly when the link M of (X, o) is a rational homology sphere.

The Z–module L := H2(X̃, Z) is a lattice endowed with the natural negative definite 
intersection form ( , ). It is freely generated by the classes of {Ev}v∈V . The dual lattice is 
L′ = HomZ(L, Z) = {l′ ∈ L ⊗Q : (l′, L) ∈ Z}. It is generated by the (anti)dual classes 
{E∗

v}v∈V defined by (E∗
v , Ew) = −δvw (where δvw stands for the Kronecker symbol). 

It is also identified with H2(X̃, Z). The anticanonical cycle ZK ∈ L′ is defined via the 
adjunction identities (ZK , Ev) = E2

v + 2 for all v.
All the Ev–coordinates of any E∗

u are strict positive. We define the (rational) Lipman 
cone as S ′ := {l′ ∈ L′ : (l′, Ev) ≤ 0 for all v}. As a monoid it is generated over Z≥0 by 
{E∗

v}v.
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The lattice L embeds into L′ with L′/L � H1(M, Z). The quotient L′/L is abridged 
by H. Each class h ∈ H = L′/L has a unique representative rh ∈ L′ in the semi-open 
cube {

∑
v rvEv ∈ L′ : rv ∈ Q ∩ [0, 1)}, such that its class [rh] is h.

There is a natural (partial) ordering of L′ and L: we write l′1 ≥ l′2 if l′1− l′2 =
∑

v rvEv

with all rv ≥ 0. We set L≥0 = {l ∈ L : l ≥ 0} and L>0 = L≥0 \ {0}.
The support of a cycle l =

∑
nvEv is defined as |l| = ∪nv �=0Ev.

2.2. The Abel map. [21] Let Pic(X̃) = H1(X̃, O∗
X̃

) be the group of isomorphism classes 
of holomorphic line bundles on X̃. The first Chern map c1 : Pic(X̃) → L′ is surjective; 
write Picl

′
(X̃) = c−1

1 (l′). Since H1(M, Q) = 0, by the exponential exact sequence on X̃
one has Pic0(X̃) � H1(X̃, O

X̃
) � Cpg , where pg is the geometric genus.

Similarly, if Z is an effective non–zero integral cycle supported by E, then Pic(Z) =
H1(Z, O∗

Z) denotes the group of isomorphism classes of invertible sheaves on Z. Again, 
it appears in the exact sequence 0 → Pic0(Z) → Pic(Z) c1−→ L′(|Z|) → 0, where Pic0(Z)
is identified with H1(Z, OZ) by the exponential exact sequence. Here L(|Z|) denotes 
the sublattice of L generated by the base element Ev ⊂ |Z|, and L′(|Z|) is its dual 
lattice.

For any Z ∈ L>0 let ECa(Z) be the space of (analytic) effective Cartier divisors 
on Z. Their supports are zero–dimensional in E. Taking the class of a Cartier divisor 
provides the Abel map c : ECa(Z) → Pic(Z). Let ECal̃(Z) be the set of effective Cartier 
divisors with Chern class l̃ ∈ L′(|Z|), i.e. ECal̃(Z) := c−1(Picl̃(Z)). The restriction of c
is denoted by cl̃(Z) : ECal̃(Z) → Picl̃(Z).

We also use the notation ECal
′
(Z) := ECaR(l′)(Z) and Picl

′
(Z) := PicR(l′)(Z) for any 

l′ ∈ L′, where R : L′ → L′(|Z|) is the cohomological restriction, dual to the inclusion 
L(|Z|) ↪→ L. (This means that R(E∗

v ) = the (anti)dual of Ev in the lattice L′(|Z|) if 
Ev ⊂ |Z| and R(E∗

v) = 0 otherwise.)
A line bundle L ∈ Picl̃(Z) is in the image im(cl̃) if and only if it has a section 

without fixed components, that is, if H0(Z, L)reg �= ∅, where H0(Z, L)reg := H0(Z, L) \
∪vH

0(Z − Ev, L(−Ev)). Here the inclusion of H0(Z − Ev, L(−Ev)) into H0(Z, L) is 
given by the long cohomological exact sequence associated with 0 → L(−Ev)|Z−Ev

→
L → L|Ev

→ 0, and it represents the subspace of sections, whose fixed components 
contain Ev.

By this definition (see (3.1.5) of [21] and the discussion before it) ECal̃(Z) �= ∅ if and 
only if −l̃ ∈ S ′(|Z|) \ {0}. It is advantageous to have a similar statement for l̃ = 0 too, 
hence we redefine ECa0(Z) as {∅}, a set/space with one element (the empty divisor), 
and c0 : ECa0(Z) → Pic0(Z) by c0(∅) = OZ . Then

H0(Z,L)reg �= ∅ ⇔ L = OZ ⇔ L ∈ im(c0) (c1(L) = 0). (2.2.1)

Then the ‘extended equivalence’ reads as: ECal̃(Z) �= ∅ if and only if −l̃ ∈ S ′(|Z|). 
In such a case ECal̃(Z) is a smooth complex algebraic variety of dimension (l̃, Z), cf. 
[21, Th. 3.1.10]. Furthermore, the Abel map is an algebraic regular map. It can be 
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described using Laufer’s duality as follows, cf. [13], [16, p. 1281] or [21]. First, by Serre 
duality,

H1(X̃,O
X̃

)∗ � H1
c (X̃,Ω2

X̃
) � H0(X̃ \ E,Ω2

X̃
)/H0(X̃,Ω2

X̃
). (2.2.2)

An element of H0(X̃ \ E, Ω2
X̃

)/H0(X̃, Ω2
X̃

) can be represented by the class of a form 

ω̃ ∈ H0(X̃ \ E, Ω2
X̃

). Furthermore, an element [α] of H1(X̃, O
X̃

) can be represented by 

a Čech cocyle αij ∈ O(Ui ∩ Uj), where {Ui}i is an open cover of E, Ui ∩ Uj ∩ Uk = ∅, 
and each connected component of the intersections Ui ∩ Uj is either a coordinate bidisc 
B = {|u| < 2ε, |v| < 2ε} with coordinates (u, v), such that E ∩ B ⊂ {uv = 0}, 
or a punctured coordinate bidisc B = {ε/2 < |v| < 2ε, |u| < 2ε} with coordi-
nates (u, v), such that E ∩ B = {u = 0}. Then, Laufer’s realization of the duality 
H0(X̃ \ E, Ω2

X̃
)/H0(X̃, Ω2

X̃
) ⊗H1(X̃, O

X̃
) → C is

〈[α], [ω̃]〉 =
∑
B

∫
|u|=ε, |v|=ε

αijω̃. (2.2.3)

In particular, if ω̃ has no pole along E in B, then the B–contribution in the above sum 
is zero.

This duality, via the isomorphism exp : H1(X̃, O
X̃

) → c−1
1 (0) ⊂ H1(X̃, O∗

X̃
) =

Pic(X̃), can be transported as follows, cf. [21]. (Here we present the case of a pecu-
liar divisor due to the fact that this version will be used later.) Consider the following 
situation. We fix a smooth point p on E (p ∈ Ev), a local bidisc B � p with local 
coordinates (u, v) such that B ∩ E = {u = 0}, B = {|u|, |v| < ε}. We assume that a 
certain form ω̃ ∈ H0(X̃ \ E, Ω2

X̃
) has local equation ω̃ =

∑
i∈Z,j≥0 ai,ju

ivjdu ∧ dv in 

B. In the same time, we fix a divisor D̃ on X̃, whose local equation in B is v�, 
 ≥ 1. 
Let D̃t be another divisor, which is the same as D̃ in the complement of B and in B
its local equation is (v + t +

∑
k≥1,l≥0 tk,lu

kvl)�, where all t, tk,l ∈ C and |t|, |tk,l| � 1. 
Then D̃t − D̃ is the divisor D̃′ = div(g), where g := ((v + t +

∑
k≥1,l≥0 tk,lu

kvl)/v)�, 
supported in B. In particular, O(D̃′) ∈ Pic0(X̃) ⊂ H1(X̃, O∗

X̃
) can be represented by 

the cocycle g|B∗ ∈ O∗(B∗), where B∗ = {ε/2 < |v| < ε, |u| < ε}. Therefore, log(g|B∗)
is a cocycle in B∗ representing its lifting into H1(X̃, O

X̃
). This paired with ω̃ gives for 

〈〈D̃t, [ω̃]〉〉 := 〈exp−1 O
X̃

(D̃t − D̃), [ω̃]〉 the expression


 ·
∫

|u|=ε, |v|=ε

log
(
1 +

t +
∑

k,l tk,lu
kvl

v

)
·

∑
i∈Z,j≥0

ai,ju
ivjdu ∧ dv. (2.2.4)

If ω̃ has no pole then 〈〈D̃t, [ω̃]〉〉 = 0. As an example, assume that ω̃ has the form 
(h(u, v)/uo)du ∧ dv with h regular and h(0, 0) �= 0, and o ≥ 1, while g = (v + tuo−1)/v
and 
 = 1, then
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〈〈D̃t, [ω̃]〉〉 =
∫

|u|=ε, |v|=ε

log
(
1+ tuo−1

v

)
· h
uo

du∧dv = c·t+{higher order terms} (c ∈ C∗).

(2.2.5)
If Z � 0 then H0(X̃ \E, Ω2

X̃
)/H0(X̃, Ω2

X̃
) � H0(X̃, Ω2

X̃
(Z))/H0(X̃, Ω2

X̃
). Furthermore, 

if ω̃1, . . . , ̃ωpg
are representatives of a basis of this vector space and D̃t is considered as a 

path in ECa−�E∗
v (Z), then D̃t 	→ (〈〈D̃t, [ω̃1]〉〉, . . . , 〈〈D̃t, [ω̃pg

]〉〉) is the restriction of the 
Abel map to D̃t (associated with Z, and shifted by the image of D̃) (cf. [21]).

3. Resolutions with generic analytic structure

3.1. The setup. We fix a topological type of a normal surface singularity. This means that 
we fix either the C∞ oriented diffeomorphism type of the link, or, equivalently, one of 
the dual graphs of a good resolution (all of them are equivalent up to blowing up/down 
rational (−1)–vertices). We assume that the link is a rational homology sphere, that is, 
the graph is a tree of rational vertices.

Any such topological type might support several analytic structures. The moduli 
space of the possible analytic structures is not described yet in the literature, hence 
we cannot rely on it. In particular, the ‘generic analytic structure’, as a ‘generic’ point 
of this moduli space, in this way is not well–defined. However, in order to run/prove 
the concrete properties regarding generic analytic structures, instead of such theoretical 
definition it would be even much better to consider a definition based on a list of stability 
properties under certain concrete deformations (whose validity could be expected for the 
‘generic’ analytic structure in the presence of a classifying space). Hence, for us in this 
note, a generic analytic structure will be a structure, which will satisfy such stability 
properties. In order to define them it is convenient to fix a resolution graph Γ and treat 
deformation of analytic structures supported on resolution spaces having dual graph Γ.

The type of stability we wish to have is the following. The topological type (or, the 
graph Γ) determines a lower bound for the possible values of the geometric genus (which 
usually depends on the analytic type). Let MIN(Γ) be the unique optimal bound, that 
is, MIN(Γ) ≤ pg(X, o) for any singularity (X, o) which admits Γ as a resolution graph, 
and MIN(Γ) = pg(X, o) for some (X, o). Then one of the requirements for the ‘generic 
analytic structure’ (Xgen, o) is that pg(Xgen, o) = MIN(Γ). (In the body of the paper 
MIN(Γ) will be determined explicitly.) However, we will need several similar stability 
requirements involving other line bundles as well (besides the trivial one, which provides 
pg). For their definition we need a preparation.

3.2. Laufer’s results. In this subsection we review some results of Laufer regarding de-
formations of the analytic structure on a resolution space of a normal surface singularity 
with fixed resolution graph (and deformations of non–reduced analytic spaces supported 
on exceptional curves) [14].

First, let us fix a normal surface singularity (X, o) and a good resolution φ : (X̃, E) →
(X, o) with reduced exceptional curve E = φ−1(o), whose irreducible decomposition is 
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∪v∈VEv and dual graph Γ. Let Iv be the ideal sheaf of Ev ⊂ X̃. Then for arbitrary 
positive integers {rv}v∈V one defines two objects, an analytic one and a topological 
(combinatorial) one. At analytic level, one sets the ideal sheaf I(r) :=

∏
v Irv

v and the 
non–reduces space Z(r) with structure sheaf OZ(r) := O

X̃
/I(r) supported on E.

The topological object is a graph decorated with multiplicities, denoted by Γ(r). As a 
non–decorated graph Γ(r) coincides with the graph Γ without decorations. Additionally 
each vertex v has a ‘multiplicity decoration’ rv, and we put also the self–intersection 
decoration E2

v whenever rv > 1. (Hence, the vertex v does not inherit the self–intersection 
decoration of v if rv = 1.) Note that the abstract 1–dimensional analytic space Z(r)
determines by its reduced structure the shape of the dual graph Γ, and by its non–
reduced structure all the multiplicities {rv}v∈V , and additionally, all the self–intersection 
numbers E2

v for those v’s when rv > 1 (see [14, Lemma 3.1]).
We say that the space Z(r) has topological type Γ(r).
Clearly, the analytic structure of (X, o), hence of X̃ too, determines each 1–dimensional 

non–reduced space Z(r). The converse is also true in the following sense.

Theorem 3.2.1. [12, Th. 6.20], [14, Prop. 3.8] (a) Consider an abstract 1–dimensional 
space Z(r), whose topological type Γ(r) can be completed to a negative definite graph 
Γ (or, lattice L). Then there exists a 2–dimensional manifold X̃ in which Z(r) can be 
embedded with support E such that the intersection matrix inherited from the embedding 
E ⊂ X̃ is the negative definite lattice L. In particular (since by Grauert theorem [7] the 
exceptional locus E in X̃ can be contracted to a normal singularity), any such Z(r) is 
always associated with a normal surface singularity (as above).

(b) Suppose that we have two singularities (X, o) and (X ′, o) with good resolutions as 
above with the same resolution graph Γ. Depending solely on Γ, the integers {rv}v may be 
chosen so large that if OZ(r) � OZ′(r), then E ⊂ X̃ and E′ ⊂ X̃ ′ have biholomorphically 
equivalent neighbourhoods via a map taking E to E′. (For a concrete estimate how large 
r should be see Theorem 6.20 in [12].)

In particular, in the deformation theory of X̃ it is enough to consider the deformations 
of non–reduced spaces of type Z(r).

Fix a non–reduced 1–dimensional space Z = Z(r) with topological type Γ(r). Fol-
lowing Laufer and for technical reasons (partly motivated by further applications in the 
forthcoming continuations of the series of manuscripts) we also choose a closed subspace 
Y of Z (whose support can be smaller, it can be even empty). More precisely, (Z, Y )
locally is isomorphic with (C{x, y}/(xayb), C{x, y}/(xcyd)), where a ≥ c ≥ 0, b ≥ d ≥ 0, 
a > 0. The ideal of Y in OZ is denoted by IY .

Definition 3.2.2. [14, Def. 2.1] A deformation of Z, fixing Y , consists of the following 
data:

(i) There exists an analytic space Z and a proper map λ : Z → Q, where Q is a 
manifold containing a distinguished point 0.



J. Nagy, A. Némethi / Advances in Mathematics 371 (2020) 107268 11
(ii) Over a point q ∈ Q the fiber Zq is the subspace of Z determined by the ideal sheaf 
λ∗(mq) (where mq is the maximal ideal of q). Z is isomorphic with Z0, usually they are 
identified.

(iii) λ is a trivial deformation of Y (that is, there is a closed subspace Y ⊂ Z and the 
restriction of λ to Y is a trivial deformation of Y ).

(iv) λ is locally trivial in a way which extends the trivial deformation λ|Y . This means 
that for ant q ∈ Q and z ∈ Z there exist a neighbourhood W of z in Z, a neighbourhood
V of z in Zq, a neighbourhood U of q in Q, and an isomorphism φ : W → V × U such 
that λ|W = pr2 ◦ φ (compatibly with the trivialization of Y from (iii)), where pr2 is the 
second projection; for more see [14].

One verifies that under deformations (with connected base space) the topological type 
of the fibers Zq, namely Γ(r), remains constant (see [14, Lemma 3.1]).

Definition 3.2.3. [14, Def. 2.4] A deformation λ : Z → Q of Z, fixing Y , is complete at 0
if, given any deformation τ : P → R of Z fixing Y , there is a neighbourhood R′ of 0 in R
and a holomorphic map f : R′ → Q such that τ restricted to τ−1(R′) is the deformation 
f∗λ. Furthermore, λ is complete if it is complete at each point q ∈ Q.

Laufer proved the following results.

Theorem 3.2.4. [14, Theorems 2.1, 2.3, 3.4, 3.6] Let θZ,Y = HomZ(Ω1
Z , IY ) be the sheaf 

of germs of vector fields on Z, which vanish on Y , and let λ : Z → Q be a deformation 
of Z, fixing Y .

(a) If the Kodaira–Spencer map ρ0 : T0Q → H1(Z, θZ,Y ) is surjective then λ is com-
plete at 0.

(b) If ρ0 is surjective then ρq is surjective for all q sufficiently near to 0.
(c) There exists a deformation λ with ρ0 bijective. In such a case in a neighbourhood 

U of 0 the deformation is essentially unique, and the fiber above q is isomorphic to Z
for only at most countably many q in U .

It is worth to stress that any two analytic types on a fixed topological type can be 
connected by a path, which can be covered by finitely many deformations of the above 
type (see [14, Th. 3.2]).

3.2.5. Functoriality. Let Z ′ be a closed subspace of Z such that IZ′ ⊂ IY ⊂ OZ . 
Then there is a natural reduction of pairs (OZ , OY ) → (OZ′ , OY ). Hence, any de-
formation λ : Z → Q of Z fixing Y reduces to a deformation λ′ : Z ′ → Q of Z ′

fixing Y . Furthermore, if λ is complete then λ′ is automatically complete as well (since 
H1(Z, θZ,Y ) → H1(Z ′, θZ′,Y ) is onto).

3.3. The ‘0–generic analytic structure’. We wish to define when is the analytic structure of 
a fiber Zq (q ∈ Q) of a deformation ‘generic’. We proceed in two steps. The ‘0–genericity’ 
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is the first one (corresponding to the Chern class l′ = 0), which will be defined in this 
subsection.

It is rather advantageous to set a definition, which is compatible with respect to all the 
restrictions OZ → OZ′ . In order to do this, let us fix the coefficients r̃ = {r̃v}v so large 
that for them Theorem 3.2.1 is valid. In this way basically we fix a resolution (X̃, E) and 
some large infinitesimal neighbourhood Z(r̃) associated with it. Moreover, let us also fix 
a complete deformation λ(r̃) : Z(r̃) → Q whose fibers have the topological type of Γ(r̃). 
Next, we consider all the other coefficient sets r := {rv}v such that 0 ≤ rv ≤ r̃v for 
all v, not all rv = 0. Such a choice, by restriction as in 3.2.5, automatically provides a 
deformation λ(r) : Z(r) → Q. Then set

Δ(0, r) := {q ∈ Q : hi(Z(r)q,OZ(r)q ) is not constant in a neighbourhood of q

for some i}. (3.3.1)

Then Δ(0, r) is a closed (reduced) proper subspace of Q, see [34,35] (one can use also 
an argument similar to Lemma 3.6.1 written for l′ = 0). Define Δ0(r̃) := ∪rv≤r̃vΔ(0, r). 
Then Δ0(r̃) is also closed and Δ0(r̃) �= Q.

Definition 3.3.2. We say that the fiber Z(r̃)q of λ(r̃) : Z(r̃) → Q is 0–generic if q ∈
Q \ Δ0(r̃).

Next, we wish to generalize this definition for all Chern classes l′ ∈ L′, or, for all 
‘natural line bundles’, as generalizations of the trivial bundle corresponding to l′ = 0.

3.4. Natural line bundles. Let us start again with a good resolution φ : (X̃, E) → (X, o)
of a normal surface singularity with rational homology sphere link, and consider the 
cohomology exact sequence associated with the exponential exact sequence of sheaves

0 → Pic0(X̃) ε−→ Pic(X̃) c1−→ H2(X̃,Z) → 0. (3.4.1)

Here c1(L) ∈ H2(X̃, Z) = L′ is the first Chern class of L. Then, see e.g. [30,24], there 
exists a unique homomorphism (split) s : L′ → Pic(X̃) of c1 such that c1 ◦ s = id and s
restricted to L is l 	→ O

X̃
(l). The line bundles s(l′) are called natural line bundles of X̃, 

and are denoted by O
X̃

(l′). For several definitions of them see [24]. E.g., L is natural if 
and only if one of its power has the form O

X̃
(l) for some integral cycle l ∈ L supported 

on E. Here we recall another construction from [30,24], which will be extended later to 
the deformations space of singularities.

Fix some l′ ∈ L′ and let n be the order of its class in L′/L. Then nl′ is an integral cycle; 
its reinterpretation as a divisor supported on E will be denoted by div(nl′). We claim 
that there exists a divisor D = D(l′) in X̃ such that one has a linear equivalence nD ∼
div(nl′) and c1(OX̃

(D)) = l′. Furthermore, D(l′) is unique up to linear equivalence, 
hence l′ 	→ O˜(D(l′)) is the wished split of (3.4.1). Indeed, since c1 is onto, there exists 
X
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a divisor D1 such that c1(OX̃
(D1)) = l′. Hence O

X̃
(nD1 − div(nl′)) has the form ε(L)

for some L ∈ Pic0(X̃) = H1(X̃, O
X̃

) = Cpg . Define D2 such that O
X̃

(D2) = 1
nL in 

H1(X̃, O
X̃

). Then D1 −D2 works. The uniqueness follows from the fact that Pic0(X̃) is 
torsion free.

The following warning is appropriate. Note that if X̃1 is a connected small convenient 
neighbourhood of the union of some of the exceptional divisors (hence X̃1 also stands 
as the resolution of the singularity obtained by contraction of that union of exceptional 
curves) then one can repeat the definition of natural line bundles at the level of X̃1 as 
well. However, the restriction to X̃1 of a natural line bundle of X̃ (even of type O

X̃
(l) with 

l integral cycle supported on E) usually is not natural on X̃1: OX̃
(l′)|

X̃1
�= O

X̃1
(R(l′))

(where R : H2(X̃, Z) → H2(X̃1, Z) is the natural cohomological restriction), though 
their Chern classes coincide.

In the sequel we will deal with the family of ‘restricted natural line bundles’ obtained 
by restrictions of O

X̃
(l′). Even if we need to descend to a ‘lower level’ X̃1 with smaller 

exceptional curve, or to any cycle Z with support included in E (but not necessarily 
E) our ‘restricted natural line bundles’ will be associated with Chern classes l′ ∈ L′ =
L′(X̃) via the restrictions Pic(X̃) → Pic(X̃1) or Pic(X̃) → Pic(Z) of bundles of type 
O

X̃
(l′) ∈ Pic(X̃). This basically means that we fix a tower of resolution of singularities 

{X̃1}X̃1⊂X̃
, or {OZ}|Z|⊂E , determined by the ‘top level’ X̃, and all the restricted natural 

line bundles, even at intermediate levels, are restrictions from the top level.
We use the notations O

X̃1
(l′) := O

X̃
(l′)|

X̃1
and OZ(l′) := O

X̃
(l′)|Z respectively.

3.5. The universal family of natural line bundles. Next, we wish to extend the definition 
of the line bundles OZ(l′) to the total space of a deformation (at least locally, over small 
balls in the complement of Δ0(r̃)).

We fix some Z = Z(r̃) with all r̃v � 0, supported on E, such that Theorem 3.2.1
is valid (similarly as in 3.3). Fix also some Y ⊂ Z, and a complete deformation λ :
Z(r̃) → Q of (Z, Y ) as in Definition 3.2.2 such that all the fibers have the same fixed 
topological type Γ(r̃). We consider the discriminant Δ0(r̃) ⊂ Q, and we fix some q0 ∈
Q \ Δ0(r̃), and a small ball U , q0 ∈ U ⊂ Q \ Δ0(r̃). Above U the topologically trivial 
family of irreducible exceptional curves form the irreducible divisors {Ev}v, such that 
Ev above any point q ∈ U is the corresponding irreducible exceptional curve Ev,q of 
X̃q. With the notations of the previous paragraph, if nl′ has the form 

∑
v nvEv write 

divλ(nl′) :=
∑

v nvEv for the corresponding divisor in λ−1(U). Since U is contractible, 
one has H2(λ−1(U), Z) = L′ and H1(λ−1(U), Z) = 0, hence the exponential exact 
sequence on λ−1(U) gives

0 → Pic0(λ−1(U)) −→ Pic(λ−1(U)) c1−→ L′ → H2(λ−1(U),Oλ−1(U)). (3.5.1)

Lemma 3.5.2. H2(λ−1(U), Oλ−1(U)) = 0 and the first Chern class morphism c1 in (3.5.1)
is onto.



14 J. Nagy, A. Némethi / Advances in Mathematics 371 (2020) 107268
Proof. We use the Leray spectral sequence. Recall, see e.g. EGA III.2 §7, or [32], that if 
q 	→ hi(Z(r̃)q, OZ(r̃)q ) is constant over some open set U (and all i) then Riλ(r̃)∗OZ(r̃) is 
locally free over U and Riλ(r̃)∗OZ(r̃) ⊗OU

C(q) → Hi(Z(r̃)q, OZ(r̃)q ) is an isomorphism 
for q ∈ U .

Hence, since Riλ∗Oλ−1(U) is locally free, Hi(U, R2−iλ∗Oλ−1(U)) = 0 for i > 0. On the 
other hand, R2λ∗Oλ−1(U) = 0 since R2λ∗Oλ−1(U) ⊗OU

C(q) → H2(Z(r̃)q, OZ(r̃)q ) is an 
isomorphism and H2(Z(r̃)q, OZ(r̃)q) = 0 by dimension argument. �

Then, if in the above construction of the split of c1 in (3.4.1) we replace X̃ by λ−1(U)
and div(nl′) by divλ(nl′), we get the following statement.

Lemma 3.5.3. For any l′ ∈ L′ there exists a divisor Dλ(l′) in λ−1(U) such that one 
has a linear equivalence nDλ(l′) ∼ divλ(nl′) in λ−1(U) and c1(Oλ−1(U)(Dλ(l′)) = l′. 
Furthermore, Dλ(l′) is unique up to linear equivalence, hence l′ 	→ Oλ−1(U)(Dλ(l′)) is a 
split of (3.5.1) which extends the natural split L �

∑
v mvEv 	→ Oλ−1(U)(

∑
v mvEv) over 

L. Since Pic0(λ−1(U)) = H1(λ−1(U), Oλ−1(U)) is torsion free, there exists a unique split 
over L′ with this extension property.

Let us summarize what we obtained: For any q0 ∈ Q \ Δ0(r̃), and small ball U with 
q0 ∈ U ⊂ Q \ Δ0(r̃), we have defined for each l′ ∈ L′ a line bundle Oλ−1(U)(Dλ(l′)) in 
Pic(λ−1(U)), such that its restriction to each fiber Z(r̃)q is the line bundle OZ(r̃)q (l′). 
Let us denote it by Oλ−1(U)(l′).

3.6. The semicontinuity of q �→ h1(Zq, OZq(l′)). We fix a complete deformation λ :
Z(r̃) → Q, and we consider the set of multiplicities rv ≤ r̃v, not all zero, as in 3.3. Then, 
for each r, we have a restricted deformation λ(r) : Z(r) → Q of Z(r) as in 3.5.

Lemma 3.6.1. For any restricted natural line bundle the map q 	→ hi(Z(r)q, OZ(r)q (l′))
is semicontinuous over Q \ Δ0(r̃), for i = 0, 1.

(Note that if each rv > 1 then the intersection form on Γ(r) is well–defined. In 
particular, the semicontinuities of h0 and h1 are equivalent, since h0 − h1 = (Z(r), l′) +
χ(Z(r)) by Riemann–Roch.)

Proof. We fix a small ball U in Q \ Δ0(r̃) as in subsection 3.5, and we run q ∈ U .
Let us denote (as above) the exceptional curves in the fiber λ(r)−1(q) by {Ev,q}v, 

hence the cycle Z(r)q is 
∑

v rvEv,q. Then one has the short exact sequence of sheaves

0 → OZ(r)q ⊗Oλ−1(U)(l′) → ⊕vOrvEv,q
⊗Oλ−1(U)(l′) → ⊕(v,w)C{x, y}/(xrv , yrw) → 0,

where the sum in the last term runs over the edges (v, w) of Γ(r). This gives the Mayer–
Vietoris exact sequence
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0 → H0(Z(r)q,Oλ−1(U)(l′)|Z(r)q ) → ⊕vH
0(rvEv,q,Oλ−1(U)(l′)|rvEv,q

)
δ−→ ⊕(v,w)C{x, y}/(xrv , yrw) → . . .

Next, we analyse the vector space H0(rvEv,q, Oλ−1(U)(l′)|rvEv,q
) for any v. Let us fix 

an arbitrary q0 ∈ U . Note that a singularity with a resolution consisting only one ra-
tional irreducible divisor is taut, see [15], hence the analytic family {Z(r̃)q}q restricted 
to {rvEv,q}v over a small neighbourhood U ′ ⊂ U of q0 can be trivialized. Furthermore, 
Pic0(rvEv,q) = 0, hence the line bundle Oλ−1(U)(l′)|rvEv,q

is uniquely determined topo-
logically by l′ and r. Hence, Oλ−1(U)(l′)|rvEv,q

also can be trivialised over a small U ′. In 
particular, by these trivializations, H0(rvEv,q, Oλ−1(U)(l′)|rvEv,q

) can be replaced by the 
fixed H0(rvEv,q0 , Oλ−1(U)(l′)|rvEv,q0

), and the q–dependence is codified in the restriction 
morphism δ. Hence, there exists a morphism

⊕vH
0(rvEv,q0 ,Oλ−1(U)(l′)|rvEv,q0

) δ(q)−→ ⊕(v,w)C{x, y}/(xrv , yrw) (3.6.2)

whose kernel is H0(Z(r)q, OZ(r)q (l′)). Since the rank of δ(q) is semicontinuous, the 
statement follows for h0. But h1(Z(r)q, OZ(r)q (l′)) = dim coker(δ(q)) + h1(rvEv,q,

Oλ−1(U)(l′)|rvEv,q
), and the second term in this last sum is also topological and con-

stant (by the same argument as above), hence semicontinuity for h1 follows as well. �
3.7. The ‘generic analytic structure’. Now we are ready to give the definition of the 
‘generic structure’. Let us fix a complete deformation λ(r̃) : Z(r̃) → Q as in 3.3 (with 
r̃v large) whose fibers have the topological type of Γ(r̃). Similarly as there, we consider 
all the other coefficient sets r := {rv}v such that rv ≤ r̃v for all v, not all zero, and the 
induced deformations λ(r) : Z(r) → Q. Then for any l′ ∈ L′ consider

MIN(l′, r) := min
q∈Q\Δ0(r̃)

{h1(Z(r)q,OZ(r)q (l
′))} (3.7.1)

and

Δ(l′, r) := closure of {q ∈ Q \ Δ0(r̃) : h1(Z(r)q,OZ(r)q (l
′)) > MIN(l′, r)}. (3.7.2)

Then Δ(l′, r) is a closed (reduced) proper subspace of Q (for this use e.g. an argument as 
in the proof of Lemma 3.6.1, or [34,35]). Then set the countable union of closed proper 
subspaces Δ(r̃) := (∪l′∈L′ ∪rv≤r̃v Δ(l′, r)) ∪ Δ0(r̃). Clearly, Δ(r̃) � Q.

Definition 3.7.3. (a) For a fixed Γ(r̃) and for any complete deformation λ(r̃) : Z(r̃) → Q

(with all r̃v � 0) we say that the fiber Z(r̃)q of λ(r̃) : Z(r̃) → Q is generic if q ∈
Q \ Δ(r̃).

(b) Consider a singularity (X, o) and one of its resolutions X̃ with dual graph Γ. 
We say that the analytic type on X̃ is generic if there exists r̃ � 0, and a complete 
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deformation λ(r̃) : Z(r̃) → Q with fibers of topological type Γ(r̃), and q ∈ Q \Δ(r̃) such 
that λ(r̃)−1(q) is the space with structure sheaf O

X̃
|∑

v r̃vEv
.

Remark 3.7.4. (a) Fix any 1–dimensional space Z with fixed topology Γ(r̃) with all 
r̃v � 0. Then in any complete deformation λ of Z there exists a generic structure 
arbitrary close to Z.

(b) Though the above construction does not automatically imply that Q \Δ(r̃) is open, 
for any q0 ∈ Q \Δ(r̃) and for any finite set FL′ ⊂ L′ there exists a small neighbourhood 
U of q0 such that h1(OZ(r)q , OZ(r)q (l′)) = MIN(l′, r) for any r (as above), l′ ∈ FL′, and 
q ∈ U .

(c) Fix a complete deformation λ : Z(r̃) → Q of some (Z, Y ) with some fixed r̃v � 0
as above. Then, by Theorem 3.2.1(b) for any q ∈ Q the fiber Z(r̃)q determines uniquely 
a holomorphic neighbourhood X̃q of E. (Some {r̃v}v very large works uniformly for all 
fibers, since a convenient {r̃v}v can be chosen topologically.) Furthermore, h1(X̃q, OX̃q

)
can be recovered from λ as h1(Z(r̃)q, OZ(r̃)q ) by the formal function theorem. This is the 

geometric genus of the singularity (Xq, o) obtained by contracting E in this X̃q. Since 
Δ(0, ̃r) = {q ∈ Q : pg(Xq, o) �= MIN(Γ)} is part of the discriminant Δ(r̃) (and it is 
closed), for any ‘generic’ q ∈ Q \ Δ(r̃) there is a ball q ∈ U ⊂ Q \ Δ(0, ̃r) such that λ
simultaneously blows down to a flat family X → U . This follows from [34,35,38] by the 
constancy of Γ and pg.

3.8. Extension of sections. Consider a complete deformation λ(r̃) : Z(r̃) → Q as above, 
and let Z(r̃)q be a generic fiber as in Definition 3.7.3. Let U be a small neighbourhood of q
such that U ⊂ Q \Δ0(r̃). For any l′ ∈ L′ fixed consider the universal family of line bundles 
Oλ−1(U)(Dλ(l′)) constructed in subsection 3.5. Fix also some r := {rv}v (0 ≤ rv ≤ r̃v for 
all v, not all rv = 0, as above). Assume that OZ(r)q(l′) = Oλ−1(U)(Dλ(l′))|Z(r)q admits 
a global section s ∈ H0(Z(r)q, OZ(r)q (l′)) without fixed components.

Lemma 3.8.1. After decreasing U if it necessary, the following facts hold:
(a) the section s has an extension s ∈ H0(λ(r)−1(U), Oλ(r)−1(U)(Dλ(l′)) with sq = s.
(b) sq′ (q′ ∈ U, q′ �= q) has no fixed components either.

Proof. (a) Since Z(r̃)q is generic, q does not sit in the union of the discriminant spaces 
considered in 3.7. In that subsection we considered all the discriminants associated with 
all the Chern classes and the ‘r–tower’, hence, in particular, we had countably many 
discriminant obstructions. By assumption, q is not contained in any of these. In this 
proof we have to concentrate on the Chern class l′ and the tower level Z(r), hence 
only one discriminant. In particular, q ∈ Q has a small neighbourhood which does not 
intersect it. Therefore, decreasing the representative of (Q, q) we get the stability of the 
corresponding h1–cohomology sheaves. Furthermore, λ is proper, Oλ(r)−1(U)(Dλ(l′)) is 
coherent, and q′ 	→ h1(Z(r)q′ , OZ(r) ′ (l′)) is constant. Hence by EGA III.2 §7 (or, see 
q



J. Nagy, A. Némethi / Advances in Mathematics 371 (2020) 107268 17
e.g. [32]), R0λ∗(Oλ(r)−1(U)(Dλ(l′))) is locally free and R0λ∗(Oλ(r)−1(U)(Dλ(l′))) ⊗O(Q,q)

C(q) → H0(Z(r)q, OZ(r)q (l′)) is an isomorphism. �
4. A special 1–parameter deformation

4.1. Next, we describe a special 1–parameter deformation of a fixed resolution of a nor-
mal surface singularity (X, o), which will play a crucial role in the proof of the main 
Theorem 5.1.1.

We choose any good resolution φ : (X̃, E) → (X, o), and write ∪vEv = E = φ−1(o)
as above. Since each Ev is rational, a small tubular neighbourhood of Ev in X̃ can be 
identified with the disc-bundle associated with the total space T (ev) of OP1(ev), where 
ev = E2

v . (We will abridge e := ev.) Recall that T (e) is obtained by gluing Cu0 × Cv0

with Cu1 ×Cv1 via identification C∗
u0

×Cv0 ∼ C∗
u1

×Cv1 , u1 = u−1
0 , v1 = v0u

−e
0 , where 

Cw is the affine line with coordinate w, and C∗
w = Cw \ {0}.

Next, fix any curve Ew of φ−1(o) and also a generic point Pw ∈ Ew. There exists an 
identification of the tubular neighbourhood of Ew via T (e) such that u1 = v1 = 0 is Pw. 
By blowing up Pw ∈ X̃ we get a second resolution ψ : X̃ ′ → X̃; the strict transforms 
of {Ev}’s will be denoted by E′

v, and the new exceptional (−1) curve by Enew. If we 
contract E′

w ∪Enew we get a cyclic quotient singularity, which is taut, hence the tubular 
neighbourhood of E′

w ∪ Enew can be identified with the tubular neighbourhood of the 
union of the zero sections in T (e − 1) ∪ T (−1). Here we represent T (e − 1) as the 
gluing of Cu′

0
× Cv′

0
with Cu′

1
× Cv′

1
by u′

1 = u′ −1
0 , v′1 = v′0u

′ −e+1
0 . Similarly, T (−1) as 

Cβ ×Cα with Cδ ×Cγ by δ = β−1, γ = αβ. Then T (e − 1) and T (−1) are glued along 
Cu′

1
× Cv′

1
∼ Cβ × Cα by u′

1 = α, v′1 = β providing a neighbourhood of E′
w ∪ Enew

in X̃ ′. Then the neighbourhood X̃ ′ of ∪vE
′
v ∪ Enew will be modified by the following 

1–parameter family of spaces: the neighbourhood of ∪vE
′
v will stay unmodified, however 

T (−1), the neighbourhood of Enew will be glued along Cu′
1
×Cv′

1
∼ Cβ×Cα by u′

1+t = α, 
v′1 = β, where t ∈ (C, 0) is a small holomorphic parameter. The smooth complex surface 
obtained in this way will be denoted by X̃ ′

t, and the ‘moved’ (−1)–curve in X̃ ′
t by Enew,t. 

If we blow down Enew,t we obtain the surface X̃t.
By construction, the family of spaces {X̃ ′

t}t∈(C,0) form a smooth 3–fold X̃ ′, together 
with a flat map λ′ : (X̃ ′, X̃ ′) → (C, 0), a C∞ trivial fibration, such that λ′ −1(t) = X̃ ′

t. 
Similarly, the family {X̃t}t∈(C,0) form a smooth 3–fold X̃ , together with a flat map 
λ : (X̃ , X̃) → (C, 0), a C∞ trivial fibration, such that λ−1(t) = X̃t.

Remark 4.1.1. Such a deformation λ : (X̃ , X̃) → (C, 0), reduced to some Γ(r̃), say with 
r̃ � 0, is always the pullback of a complete deformation of O

X̃
|Z(r̃). Hence, if X̃ is 

generic, then the base point q0 corresponding to the fiber O
X̃
|Z(r̃) is in Q \Δ(r̃). Since 

for such q0 there is a ball q ∈ U ⊂ Q \Δ(0, ̃r) such that λ simultaneously blows down to 
a flat family X → U (cf. 3.7.4(c)), the deformation λ : (X̃ , X̃) → (C, 0) also blows down 
to a deformation X → (C, 0) of (X, o). In fact, λ is a weak simultaneous resolution of the 
(topological constant) deformation X → (C, 0), cf. [17,10]. The point is that along the 
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deformation λ automatically we will have the h1–stabilities for any other finitely many 
restricted natural line bundles as well, cf. Remark 3.7.4(b) (that is, for the very same X̃
and its deformation λ, the finitely many Chern classes — whose h1–stability we wish — 
can be chosen arbitrarily, depending on the geometrical situation we treat).

5. The cohomology of restricted natural line bundles

5.1. The setup. We fix a normal surface singularity (X, o) and one of its good resolutions 
X̃ with exceptional divisor E and dual graph Γ. For any integral effective cycle Z = Z(r)
whose support |Z| is included in E (not necessarily the same as E) write V(|Z|) for the 
set of vertices {v : Ev ⊂ |Z|} and S ′(|Z|) ⊂ L′(|Z|) for the Lipman cone associated 
with the induced lattice L(|Z|). As above, for any l′ ∈ L′ we denote the restriction of the 
natural line bundle O

X̃
(l′) to Z by OZ(l′). Denote also by l̃ the cohomological restriction 

R(l′) of l′ ∈ L′ to L′(|Z|). Recall also that for any −l̃ ∈ S ′(|Z|) one has the Abel map 
cl̃ : ECal̃(Z) → Picl̃(Z).

Theorem 5.1.1. Assume that X̃ is generic in the sense of Definition 3.7.3. Fix also some 
Z = Z(r) as above. Choose l′ =

∑
v∈V l′vEv ∈ L′ such that l′v < 0 for any v ∈ V(|Z|). 

Then the following facts hold.

(I) Assume additionally that −l̃ ∈ S ′(|Z|) \ {0}. Then the following facts are equivalent:
(a) OZ(l′) ∈ im(cl̃), that is, H0(Z, OZ(l′))reg �= ∅;
(b) cl̃ is dominant, or equivalently, for a generic line bundle Lgen ∈ Picl̃(Z) one has 

Lgen ∈ im(cl̃) (that is, H0(Z, Lgen)reg �= ∅).
(c) OZ(l′) ∈ im(cl̃), and for any D ∈ (cl̃)−1(OZ(l′)) the tangent map TDcl̃ :

TDECal̃(Z) → TOZ(l′)Picl̃(Z) is surjective.

(II) hi(Z, OZ(l′)) = hi(Z, Lgen) for a generic line bundle Lgen ∈ Picl̃(Z) and i = 0, 1.

(For a remark regarding the assumptions of the theorem see 6.1.1(c).)

Remark 5.1.2. The theorem shows that if we fix Γ(r) then the restrictions of natural 
line bundles of generic singularities cohomologically behave similarly as the generic line 
bundles. This is the main guiding principle of the present article. This principle, in 
general, can be formulated as follows. Fix some invariant associated with line bundles of 
resolutions with fixed graph and fixed Chern class. Then one expects that the invariant 
evaluated on the restricted natural line bundle in the context of the generic singularity 
agrees with the value of the invariant evaluated on the generic bundle with the same 
topological data (associated with an arbitrary fixed analytic type).

Note that by [21, Theorem 5.3.1] the cohomology of the generic line bundles depends 
only on the combinatorics of Γ (for the formula see e.g. the introduction or (6.1.2)).

5.1.3. Starting the proof of Theorem 5.1.1. We use double induction over the cardinality 
of the subset V(|Z|) ⊂ V and 

∑
v rv.
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If |V(|Z|)| = 1 then Pic0(Z) = 0 and all line bundles with the same Chern class are 
isomorphic, hence all the statements are trivially true for any Z and any l′. Hence let us 
fix some virtual support |Z| and assume that all the statements are valid for any cycle 
with support smaller than |Z| and for any l′ with the corresponding restrictions.

Next, we run induction over 
∑

v∈V(|Z|) rv. Assume that rv ≤ 1 for all v. Then 

Pic0(Z) = 0 again and both (I) and (II) hold. Hence, we assume that (I) and (II) 
hold for all cycles with 

∑
v rv < N (and any l′ with the required restrictions) and we 

consider some Z = Z(r) with 
∑

v rv = N .

5.1.4. The first part of the proof of Theorem 5.1.1(I). First we verify the ‘easy’ implica-
tions.

(c) ⇒ (b) Since ECal̃(Z) is smooth (cf. [21, Th. 3.1.10]), by local submersion theorem, 
if TDcl̃ is surjective then the germ cl̃ : (ECal̃(Z), D) → (Picl̃(Z), OZ(l′)) is surjective 
too. Since cl̃ is an algebraic morphism and its image contains a small analytic ball of top 
dimension, cl̃ is dominant.

(b) ⇒ (a) Since H0(Z, Lgen)reg �= ∅, one has h0(Z, Lgen) �= 0, hence by the semicon-
tinuity of L 	→ h0(Z, L) (cf. [21, Lemma 5.2.1]) h0(Z, OZ(l′)) �= 0 too. Next, assume 
that h0(Z, OZ(l′))reg = ∅, that is, there exists v ∈ V(|Z|) such that h0(Z, OZ(l′)) =
h0(Z − Ev, OZ(l′)(−Ev)). Note that OZ(l′)(−Ev)|Z−Ev

is also a restricted natural line 
bundle, it is OZ−Ev

(l′ − Ev). Furthermore, from l′u < 0 for u ∈ V(|Z|) we obtain 
(l′ −Ev)u < 0 too. Therefore, by the inductive step (part II) h0(Z −Ev, OZ(l′ −Ev)) =
h0(Z − Ev, Lgen(−Ev)) and by the assumption h0(Z − Ev, Lgen(−Ev)) < h0(Z, Lgen). 
Thus h0(Z, OZ(l′)) < h0(Z, Lgen), a fact, which contradicts the semicontinuity of 
L 	→ h0(Z, L).

The proof of (a) ⇒ (c) in (I) is much harder and longer, and it is the core of the 
present theorem.

5.2. The proof of (a) ⇒ (c) in short. The detailed proof is presented in 5.3; in this 
subsection we summarize the main steps in order to help the reading of the complete 
proof, though in this way inevitably some repetitions will occur. (Since the idea of the 
proof – based on the construction of the 1–parameter family – is quite fruitful, it will be 
used several times in forthcoming manuscripts as well, hence in the future work we will 
refer to these paragraphs as the basic prototype.)

First we identify Picl̃(Z) with Pic0(Z) by L 	→ L ⊗ OZ(−l′), and Pic0(Z) with 
H1(Z, OZ), and we replace cl̃(Z) with c̃l

′(Z) : ECal̃(Z) → H1(OZ). Therefore, we wish 
to show that for any D ∈ (c̃l′)−1(0) the tangent map TDc̃l

′ : TDECal̃(Z) → T0H
1(OZ)

is surjective.
Assume that this is not happening. Then there exists a linear functional ς ∈ H1(OZ)∗, 

ς �= 0, such that ς|im(TD c̃l′ ) = 0. This lifts to a nonzero functional ς̃ of H1(O
X̃

), which 

necessarily has the form ς̃ = 〈·, [ω̃]〉 for some ω̃ ∈ H0(X̃ \E, Ω2
X̃

), which necessarily must 
have a pole along some Ew. Using [21] one shows that in fact we can choose Ew ⊂ |Z|. 
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Next, we modify X̃ by a sequence of blow ups. First we blow up X̃ at generic point of Ew

creating the new exceptional divisor F1, then we blow up a generic point of F1 creating 
F2, etc. The sequence of n such blow ups will be denoted by bn : X̃n → X̃, which has 
exceptional divisors ∪n

i=1Fi. We define ςn by the composition H1(Ob∗n(Z)) → H1(OZ) ς−→
C (where the first arrow is an isomorphism by Leray spectral sequence); and similarly we 
set ς̃n associated with some Z̃ � 0 (instead of Z). Note that ς̃n◦ c̃−F∗

n (b∗n(Z̃)) corresponds 
to an integration of the 2–form b∗n(ω̃) paired with divisors supported on Fn. Since the 
pole order along Fn of b∗n(ω̃) decreases by one after each blow up, after some steps n it 
will have no pole along Fn, hence ςn◦ c̃−F∗

n (b∗n(Z)) : ECa−F∗
n (b∗n(Z)) → H1(Ob∗n(Z)) → C

is constant. Let k be the smallest integer such that this map is constant. Then b∗k(ω̃) has 
a pole of order one along Fk−1.

Next, let U ⊂ X̃k be a small tubular neighbourhood of the exceptional curve EU :=
E∪(∪k−1

i=1 Fi). Let ΓU be the dual graph of EU . One considers the homological projection 
πU : L(Γ) → L(ΓU ) and the cohomological restriction RU : L′(Γ) → L′(ΓU ) (dual to 
the natural homological injection of cycles). Then first one identifies the germs in the 
corresponding spaces of effective Cartier divisors (ECal̃(Z), D) � (ECab

∗
k(l̃)(b∗k(Z)), D) �

(ECaRU (b∗k(l̃))(πU (b∗k(Z))), D), then one shows that (ECal̃(Z), D) c̃l
′

−→ H1(OZ) ς−→ C

factorizes through 
(
ECaRU (b∗k(l̃))(πU (b∗k(Z))), D

) c̃RUb∗k(l′)
−→ H1(OπU (b∗k(Z))) 

ςUk−→ C. This, 
and the choice of ς show that

(†) ςUk ◦ TD

(
c̃RU (b∗k(l′))(πU (b∗k(Z))

)
= 0.

Now we continue with the key construction of the proof. Using the exceptional divisors 
Fk−1 and Fk we construct the 1–parameter family of deformation {X̃k,t}t of X̃k (by 
moving the intersection point of Fk,t along Fk−1), as in section 4. In this deformation 
one considers the universal family of natural line bundles. Since in the central fiber 
D is the divisor of a section of the corresponding natural line bundle, and along the 
deformation the cohomology groups of the bundles are stable (here we use the genericity), 
by Lemma 3.8.1 this extends to a family of sections. In this way we construct a path in 
ECaRU (b∗k(l̃))(πU (b∗k(Z))

)
at D, t 	→ γ(t) (or, {Dt}t with D0 = D). By the choice of ς

and (†) and the chain rule, ς ◦ c̃ ◦ γ must have zero derivative at t = 0. This is valid even 
for any common multiple of the divisors {Dt}t. On the other hand, this derivative can be 
computed differently by Laufer integration. Indeed, by taking a convenient multiple, the 
corresponding powers of the members of the family of natural line bundles restricted on 
U have the form OπU (b∗k(Z))(

∑
v Nl′vEv +
 

∑k−1
i=1 Fi+
Fk,t) with 
 �= 0. Here 
Fk,t∩Fk−1

is moving divisor along Fk−1. It paired with the differential form of pole one by Laufer 
pairing has a non-trivial linear part, cf. (2.2.5). Hence its derivative at t = 0 is nonzero, 
a fact which contradicts the previous statement.

5.3. The detailed proof of (a) ⇒ (c). Fix any l∗ ∈ L′ and write l ∈ L′(|Z|) for 
its restriction. Then there is a canonical identification of Picl(Z) with Pic0(Z) by 
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L 	→ L ⊗ OZ(−l∗). Also, Pic0(Z) identifies with H1(Z, OZ) by the inverse of the ex-
ponential map such that OZ is identified with 0. In particular, cl(Z) : ECal(Z) →
Picl(Z) can be identified with its composition with the above two maps, namely with 
c̃l

∗(Z) : ECal(Z) → H1(OZ). In the sequel l∗ stands either for l′ or for different cycles 
of type E∗

u with Eu ∈ |Z|. In this latter case, the restriction of E∗
u ∈ L′ is E∗

u(|Z|), where 
this second dual is considered in L′(|Z|). We use sometimes the same notation E∗

u for 
both of them, from the context will be clear which one is considered.

Therefore, the wished statement (a) ⇒ (c) transforms into the following: If D ∈
(c̃l′)−1(0) then the tangent map TDc̃l

′ : TDECal̃(Z) → T0H
1(OZ) is surjective (under 

the assumptions of part (I)).
Assume that this is not the case for some D. Then there exists a linear functional ς ∈

H1(OZ)∗, ς �= 0, such that ς|im(TD c̃l′ ) = 0. During the proof we fix such a D ∈ (c̃l′)−1(0)
and ς.

First, we concentrate on ς.

Lemma 5.3.1. For any ς ∈ H1(OZ)∗, ς �= 0, there exists Ew ⊂ |Z| such that ς ◦ c̃−E∗
w :

ECa−E∗
w(Z) → C is not constant.

Proof. Let Z̃ =
∑

v r̃vEv be a large cycle with all r̃v � 0 (v ∈ V) so that h1(OZ̃) =
h1(O

X̃
). Define ς̃ by the composition H1(OZ̃) ρ−→ H1(OZ) ς−→ C. Since ρ is onto, ς̃ �= 0

too. Recall that any functional on H1(O
X̃

) has the form ς̃ = 〈·, [ω̃]〉, cf. (2.2.3), for some 
ω̃ ∈ H0(X̃\E, Ω2

X̃
). Since ς̃ �= 0 the form necessarily must have a pole along some Ew. By 

combination of Theorems 6.1.9(d) and 8.1.3 of [21] we know that the kernel of ρ is dual 
with the subspace of forms which have no pole along |Z|. Therefore, ω̃ must have a pole 
along some Ew ⊂ |Z|. Since ECa−E∗

w(Z) is the space of effective Cartier divisors of X̃
(up to the equation of Z), which intersect (transversally) only Ew, again by local nature 
of the integration formula, ς̃ ◦ c̃−E∗

w(Z̃) : ECa−E∗
w(Z̃) → C is nonconstant, cf. (2.2.5). 

But ς ◦ c̃−E∗
w(Z) composed with R : ECa−E∗

w(Z̃) → ECa−E∗
w(Z) is exactly this map 

ς̃ ◦ c̃−E∗
w(Z̃). Since R is surjective (cf. [21, Theorem 3.1.10]), ς ◦ c̃−E∗

w(Z) is nonconstant 
too. �
5.3.2. Let Z, ς and Ew ⊂ |Z| be as in Lemma 5.3.1, and ω̃ as in its proof, ς̃ = 〈·, [ω̃]〉. We 
wish to modify the resolution X̃ (and the space Z) dictated by a certain property of ω̃. 
For this we blow up X̃ at generic point of Ew creating the new exceptional divisor F1, 
then we blow up a generic point of F1 creating the new exceptional divisor F2, etc. The 
sequence of n such blow ups will be denoted by bn : X̃n → X̃, which has exceptional 
divisors ∪n

i=1Fi. Note also that H1(Ob∗n(Z)) → H1(OZ) is an isomorphism (use Leray 

spectral sequence). We define ςn by the composition H1(Ob∗n(Z)) → H1(OZ) ς−→ C.

Lemma 5.3.3. For n sufficiently large the next morphism is constant:

ςn ◦ c̃−F∗
n (b∗n(Z)) : ECa−F∗

n (b∗n(Z)) → H1(Ob∗ (Z)) → C. (5.3.4)

n
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Proof. Consider Z̃ and the notations of the proof of Lemma 5.3.1, and the composition 
ς̃n ◦ c̃−F∗

n (b∗n(Z̃)), similar to (5.3.4), but with Z̃ instead of Z. This for any n gives the 
diagram

ECa−F∗
n (b∗n(Z̃)) c̃−F∗

n−→ H1(Ob∗n(Z̃))
ς̃n−→ C

ECa−F∗
n (b∗n(Z)) c̃−F∗

n−→ H1(Ob∗n(Z))
ςn−→ C

↓↓Rn ↓↓ ↓ � (5.3.5)

Note that ς̃n ◦ c̃−F∗
n (b∗n(Z̃)) corresponds to an integration of the 2–form b∗n(ω̃) paired 

with a divisor supported on Fn (cf. 2.2). Since the pole order along Fn of b∗n(ω̃) decreases 
by one after each blow up, after some steps n it will have no pole along Fn, hence 
ς̃n ◦ c̃−F∗

n (b∗n(Z̃)) = ςn ◦ c̃−F∗
n (b∗n(Z)) ◦Rn is constant. Since Rn is surjective (see e.g. [21, 

Theorem 3.1.10]), the statement follows. �
5.3.6. In the sequel, let k ≥ 1 be the smallest integer such that ςk ◦ c̃−F∗

k (b∗k(Z)) is con-
stant. Consider again Z̃ as in the proof of Lemmas 5.3.1 and 5.3.3. The functionals 
ςk−1, ςk, ς̃k−1 and ς̃k (as in 5.3.2 and (5.3.5)) form the following commutative dia-
gram:

H1(Ob∗k(Z̃))

−→ H1(Ob∗k−1(Z̃))

ς̃k−1−→ C

H1(Ob∗k(Z))

−→ H1(Ob∗k−1(Z))

ςk−1−→ C

↓↓ ↓↓ ↓ �

��
ς̃k

��
ςk

(5.3.7)

By the choice of k and by the diagrams (5.3.5)–(5.3.7) ς̃k−1 ◦ c̃−F∗
k−1(b∗k(Z̃)) is noncon-

stant, while ς̃k ◦ c̃−F∗
k (b∗k(Z̃)) is constant. Therefore, b∗k(ω̃) has a pole of order one along 

Fk−1. In particular, the maps ECa−F∗
k−1(b∗k(V )) → H1(Ob∗k(V )) → C (where V is either 

Z̃ or Z) depend only on the reduced structure of b∗k(V ) along Fk−1, and they all can be 
identified with the map represented by Laufer’s integration pairing. (For this check the 
integrals from 2.2 for a 2–form with pole of order one.)

5.3.8. In Lemma 5.3.3 and in the discussion from 5.3.6 one can replace in ECa−F∗
k−1 and in 

ECa−F∗
k the cycles F ∗

k−1 and F ∗
k by any multiple of them: NF ∗

k−1 and NF ∗
k respectively, 

for any N ∈ Z>0. Indeed, the space of divisors has a natural ‘additive’ structure, namely 
a dominant map sl

′
1,l

′
2(V ) : ECal

′
1(V ) ×ECal

′
2(V ) → ECal

′
1+l′2(V ) which satisfies c̃l′1+l′2 ◦

sl
′
1,l

′
2 = c̃l

′
1 + c̃l

′
2 . Therefore, if for n = k − 1 or n = k the image im(c̃−F∗

n ) belongs to an 
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affine subspace A of H1(Ob∗n(Z)), then im(c̃−NF∗
n ) belongs to NA := A + · · ·+A too. In 

particular, ςk−1 ◦ c̃−NF∗
k−1(b∗k(Z)) is nonconstant, while ςk ◦ c̃−NF∗

k (b∗k(Z)) is constant. 
(Compare also with the 
–dependence in (2.2.4).) Furthermore, the discussion from 5.3.6
can be repeated for any N , the composed maps depend only on the reduced structure 
of b∗k(Z), hence Z can be replaced by any large Z̃, in which case the composition can be 
computed by Laufer’s integration duality formula.

This shows that one has a factorization (where V = Z̃ or Z, and ςV,k = ς̃k or ςk
respectively)

ECa−NF∗
k−1(b∗k(V )) c̃

−NF∗
k−1−→ H1(Ob∗k(V ))

ςV,k−→ C

ECa−NF∗
k−1(Fk−1)

↓↓
��

(5.3.9)

Though in (5.3.9) this factorization through ECa−NF∗
k−1(Fk−1) exists (and it is non-

constant), a factorization through ECa−NF∗
k−1(Fk−1) → H1(OFk−1) definitely does not 

exist (because, e.g., H1(OFk−1) = 0). On the other hand, a factorization through a non-
trivial quotient of H1(Ob∗k(V )) = H1(OV ) does exist, a fact which will be crucial later. 
This is what we explain next.

5.3.10. In the space of resolution X̃k let U ⊂ X̃k be a small tubular neighbourhood of 
the exceptional curve EU := E ∪ (∪k−1

i=1 Fi). Let ΓU be the dual graph of EU . (Note that 
contracting EU in U provides a singularity with different topological type than Γ, one of 
its dual graphs is ΓU .) One can restrict sheaves/bundles from X̃k to U . At cycle level one 
has the homological projection πU(

∑
v nvEv +

∑k
i=1 miFi) :=

∑
v nvEv +

∑k−1
i=1 miFi. 

One also has the cohomological restriction RU : L′(Γ) → L′(ΓU ) (dual to the natural 
homological injection of cycles); e.g. the restriction RU (F ∗

k−1) of F ∗
k−1 is the antidual ra-

tional cycle F ∗
k−1(ΓU ) associated with Fk−1 in the lattice of ΓU . Then, for both V = Z̃ or 

Z, one has the natural injection (which, for V = Z̃ and Z fit in a commutative diagram): 
ECa−NF∗

k−1(b∗k(V )) is a Zariski open set in ECa−NRU (F∗
k−1)

(
πU (b∗k(V ))

)
. Indeed, both of 

them depend only on the multiplicity mk−1 of Fk−1 in b∗k(V ) and πU (b∗k(V )) (which are 
equal), the second set contains divisors up to the equation of mk−1Fk−1 supported on 
Fk−1 \ Fk−2 with total multiplicity N , while in the first set consists of those divisors of 
the second set whose support does not contain Fk−1 ∩ Fk.

On the other hand, the natural epimorphism ρV : H1(Ob∗k(V )) → H1(OπU (b∗k(V )))
usually is not a monomorphism. However, one has the following fact.

Lemma 5.3.11. ςV,k : H1(Ob∗k(V )) → C factors through ρV : H1(Ob∗k(V )) →
H1(OπU (b∗k(V ))).

Proof. First, we concentrate on the map c̃−F∗
k : ECa−F∗

k (b∗k(V )) → H1(Ob∗k(V )). Let A
be the smallest affine subspace of H1(Ob∗(V )) which contains im(c̃−F∗

k ), and let A0 be the 

k
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parallel linear subspace of the same dimension. As above, we denote the sum A + · · ·+A

(m times) by mA, clearly all of these affine subspaces have the same dimension, and are 
parallel to each other. Next, consider also the ‘multiples’ c̃−mF∗

k : ECa−mF∗
k (b∗k(V )) →

H1(Ob∗k(V )) (cf. [21, §6], or see 5.3.8). Therefore, im(c̃−mF∗
k ) ⊂ mA, and in fact, by 

[21, Theorem 6.1.9], for m � 0, they agree. Furthermore, by the same theorem, A0 =
ker(ρV ).

By the choice of k, ςV,k restricted on the image of c̃−F∗
k is constant, which means 

that ςV,k|A is constant, or A0 ⊂ ker(ςV,k). Hence ker(ρV ) ⊂ ker(ςV,k), and ςUV,k with 
ςUV,k ◦ ρV = ςV,k exists. �

This lemma has the following geometric interpretation. If ςV,k = 〈·, [b∗kω̃]〉 (at the level 
of V or X̃k), then ςUV,k = 〈·, [b∗kω̃|U ]〉 at the level of U . The form b∗kω̃|U again has order 
one along Fk−1 and all the local integration formulas along EU are the same.

5.3.12. Next, we concentrate on the divisor D ∈ ECal̃(Z) and on the line bundle OZ(l′) =
OZ(D). As the center of blow up of b1 is generic on Ew, we can assume that it is 
not in the support of D. This guarantees that the divisor D lifts canonically into any 
of the spaces ECab

∗
k(l̃)(b∗k(Z)) (still denoted by D), and the germs (ECal̃(Z), D) and 

(ECab
∗
k(l̃)(b∗k(Z)), D) are canonically isomorphic.

Furthermore, this germ is preserved under the restriction to U (see also the argu-
ment from 5.3.10), hence all these facts together with the existence of factorization from 
Lemma 5.3.11 can be inserted in the following commutative diagram:

(
ECal̃(Z), D

) c̃l
′

−→ H1(OZ) ς−→ C

(
ECab

∗
k(l̃)(b∗k(Z)), D

) c̃b
∗
k(l′)
−→ H1(Ob∗k(Z))

ςk−→ C

↑ b′n �� ↑ ↑�

↓ ρZ� ↓ ↓�(
ECaRU (b∗k(l̃))(πU (b∗k(Z))), D

) c̃RUb∗k(l′)
−→ H1(OπU (b∗k(Z)))

ςUk−→ C

(5.3.13)

This diagram shows that ςk ◦ TD(c̃b∗k(l′)(b∗k(Z))) = 0 and also

ςUk ◦ TD

(
c̃RU (b∗k(l′))(πU (b∗k(Z))

)
= 0. (5.3.14)

5.3.15. On b∗k(Z) now we have the pullback line bundle b∗k(OZ(l′)) = b∗k(OZ(D)) =
Ob∗k(Z)(D).

Lemma 5.3.16. b∗k(OX̃
(l′)) = O

X̃k
(b∗k(l′)), that is, the pullback of the natural line bun-

dle O
X̃

(l′) is the natural line bundle associated with the Chern class b∗k(l′). Therefore, 
b∗k(OZ(l′)) = O˜ (b∗k(l′)|b∗(Z)) (which will be denoted by Ob∗(Z)(b∗k(l′))).
Xk k k
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Proof. A bundle is natural if one of its power has the form O(l) for some integral cycle l. 
In this case the Chern classes of the two bundles agree. Furthermore, if nl′ is integral for 
certain n ∈ Z>0, then b∗k(OX̃

(l′)⊗n) = O
X̃k

(b∗k(nl′)), hence b∗k(OX̃
(l′)) is natural with 

Chern class b∗k(l′). �
After all these preparations, we start with the key construction of the proof. We will 

construct a path in ECaRU (b∗k(l̃))(πU (b∗k(Z))) at D, t 	→ γ(t) (or, {Dt}t with D0 = D) 
with the following properties. Firstly, by the choice of ς and (5.3.14) ς ◦ c̃ ◦ γ must have 
zero derivative at t = 0. On the other hand, we will compute by integration explicitly 
ς ◦ c̃ ◦ γ and we will show that its linear part is nontrivial, hence its derivative at t = 0
is nonzero, a fact which leads to a contradiction.

The local path of divisors will be constructed via a deformation, based on section 4.

5.3.17. A special deformation of the analytic structure of OX̃k
. Let (X̃k, E ∪∪k

i=1Fi) be 
the resolution as in 5.3.2, with the choice of k as in 5.3.6. Here we concentrate on the 
exceptional components Fk−1 and Fk, where Fk is obtained by blowing up a generic point 
P . (If k = 1 then Fk−1 = Ew.) Then for the pair (Fk−1, Fk) we apply the construction 
of section 4, that is, we move Fk and its intersection point with Fk−1 locally along 
Fk−1. In this way we obtain a 1–parameter family of deformations of the resolution X̃k, 
denoted by λk : (X̃k, X̃k) → (C, 0), with fibers X̃k,t. In X̃k,t the exceptional curve has 
components E ∪ ∪k−1

i=1 Fi ∪ Fk,t. If we blow down the F–type curves in X̃k,t we get a 
resolution X̃t, they form a family (X̃ , X̃). If we contract all the exceptional curves we 
get a family of singularities {(Xt, o)}t. Since the analytic structure we started with is 
generic, the geometric genus h1(O

X̃k,t
) stays constant and the deformation blows down 

to a deformation (X , X) → (C, 0) with fibers Xt (cf. 4). We denote the contraction 
X̃k → X̃ by the same symbol bk.

We assume that the base space of λ is so small that the universal map (C, 0) → Q

to the base space of a complete deformation omits the discriminant Δ(r̃); this fact is 
guaranteed by the choice of the generic structure of the singularity.

Therefore, for the very same l′ ∈ L′ (which provides the bundle OZ(l′)) we can consider 
the universal line bundles constructed in Lemma 3.5.3, namely OX̃k

(b∗k(l′)) ∈ Pic(X̃k)
and OX̃ (l′) ∈ Pic(X̃ ). By similar argument as in Lemma 5.3.16 we have b∗k(OX̃ (l′)) =
OX̃k

(b∗k(l′)). The restriction to the fibers of the deformations are the natural line bundles 
of the fibers.

Corresponding to the irreducible exceptional curves {Ev}v and {Fi}ki=1 in X̃k we 
have the irreducible exceptional surfaces {Ev}v and {Fi}ki=1 in X̃k. (Here (Fn)t = Fn for 
n < k but (Fk)t = Fk,t.) If Z =

∑
v rvEv then b∗k(Z) =

∑
v rvEv + rw

∑k
i=1 Fi. Let us 

set b∗k(Z) =
∑

v∈V rvEv + rw
∑k

i=1 Fi. Then we restrict OX̃k
(b∗k(l′)) to b∗k(Z) and we get 

Ob∗k(Z)(b∗k(l′)) ∈ Pic(b∗k(Z)).
Let λ : b∗k(Z) → (C, 0) be the projection of the deformation. The central fiber is 

Ob∗(Z)(b∗k(l′)). In particular, over t = 0 the bundle Ob∗(Z)(b∗k(l′)) has a global section s

k k
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whose divisor is D (by the definition of D from 5.3 and identification (5.3.13)). Then 
Lemma 3.8.1 implies the following fact.

Lemma 5.3.18. There exists an extension s ∈ H0(b∗k(Z), Ob∗k(Z)(b∗k(l′))
)

of s ∈ H0(b∗k(Z),
Ob∗k(Z)(b∗k(l′))

)
such that s0 = s. Furthermore, st has no fixed component either.

Let Dt be the restriction of the divisor of s to the fiber over t.
Since the support of D = D0 is disjoint with the center of b1, the same is true for 

each Dt (for |t| � 1). Hence, in this way we get a path germ {γt}t = {Dt}t, each Dt

being a divisor of the bundle Ob∗k(Z)t(Dt) = Ob∗k,t(Z)(Dt) = Ob∗k,t(Z)(b∗k,t(l′)), where bk,t
is the contraction/blow up X̃k,t → X̃t.

Note also that in the cycles b∗k,t(Z) the curve Fk,t (with its stable multiplicity) is 
‘moving’ along the deformation, the other components with their multiplicities are stable, 
and the divisors Dt are supported by this stable part (but they might move). More 
precisely, by the construction from 5.3.17 we obtain that πU (b∗k(Z)t) is t–independent, 
and it equals πU (b∗k(Z)). (It is worth to mention that πU (b∗k(Z)) is not the same as 
b∗k−1(Z), they differ even topologically at Euler number level.)

Then, by the choice of ς and D and the chain rule (compare also with (5.3.13) and 
(5.3.14):

d

dt

∣∣∣
t=0

(
ςk ◦ c̃b∗k,t(l

′)(b∗k,t(Z))(γ(t))
) (1)== d

dt

∣∣∣
t=0

(
ςUk ◦ c̃RU (b∗k,t(l

′))(πU (b∗k,t(Z)))(γ(t))
) (2)==

TD

(
ςUk ◦ c̃RU (b∗k(l′))(πU (b∗k(Z)))

)(dγ
dt

∣∣∣
t=0

) (3)==

ςUk ◦ TD

(
c̃RU (b∗k(l′))(πU (b∗k(Z)))

)(dγ
dt

∣∣∣
t=0

) (4)== 0.
(5.3.19)

Above, (1) follows from the fact that the support of each Dt is in U , (2) from the 
definition of TD, (3) from the chain rule and from the fact that ςUk is linear, and (4) from 
(5.3.14).

The same is valid if we replace the family Dt by any of its multiple N ·Dt.

5.3.20. Let us summarize what we have. On each b∗k,t(Z) we can consider the restricted 
natural line bundle Ob∗k,t(Z)(b∗k,t(l′)). Then, if we take its restriction to U , namely 
Ob∗k,t(Z)(b∗k,t(l′))|U ∈ Pic(πU (b∗k(Z))) and we shift it back with the natural line bun-
dle OπU (b∗k(Z))(RU (b∗k(l′)))−1 we get a path in Pic0(πU (b∗k(Z))) = H1(OπU (b∗k(Z))), whose 
differential at t = 0 is in the kernel of ςUk .

Now, let us compute these objects directly, in fact, for a certain N–multiple of 
the corresponding bundles. Let N be an integer so that Nl′ =

∑
v Nl′vEv is an 

integral cycle and write 
 := Nl′w. Then, Nb∗k(l′) =
∑

v Nl′vEv + 
 
∑k

i=1 Fi. Fur-
thermore, (Ob∗k,t(Z)(b∗k,t(l′)))N , being natural with integral Chern class, should equal 
Ob∗ (Z)(

∑
v Nl′vEv + 
 

∑k
i=1 Fi,t) and its restriction to U is OπU (b∗(Z))(

∑
v Nl′vEv +
k,t k
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∑k−1

i=1 Fi+
Fk,t). By the same reason, OπU (b∗k(Z))(RU (b∗k(l′)))−N is OπU (b∗k(Z))(
∑

vNl′vEv

+ 
 
∑k

i=1 Fi). Hence, the N–multiple of the path is OπU (b∗k(Z))(
(Pt − P )), where 
Pt = Fk,t ∩ Fk−1, P = Fk ∩ Fk−1 as above. By assumption on l′w we have 
 �= 0.

That is, OπU (b∗k(Z))(
Pt − 
P ) is a path in H1(OπU (b∗k(Z))) and (5.3.19) reads as

d

dt

∣∣∣
t=0

(
ςUk (OπU (b∗k(Z))(
Pt − 
P )

)
= 0. (5.3.21)

Next we compute the left hand side of (5.3.21) in a different way.
By Lemma 5.3.11 (and comment after it) ςUk = 〈·, [b∗kω̃|U 〉, and the form b∗kω̃|U has 

a pole of order one along Fk−1. Moreover, P is a generic point of Fk−1 and in a local 
neighbourhood B of P in local coordinates (u, v) one has Fk−1 ∩ B = {u = 0}, Pt =
{v + t = 0}. Hence (2.2.5) with o = 1 reads as

ςUk
(
OπU (b∗k(Z))(
Pt − 
P )

)
= t
c + {higher order terms} (c ∈ C∗), (5.3.22)

whose derivative at t = 0 is non–zero. This contradicts (5.3.21).

5.4. The proof of part (II). Note that the equalities for i = 0 and i = 1 are equivalent 
by Riemann–Roch. We will prove (II) in three steps.

5.4.1. The proof of part (II), case 1. Assume that l′v < 0 for any v ∈ V(|Z|) and −l̃ ∈
S ′(|Z|) \ {0}.

Then part (I) — already proved — can be applied.
First assume that the equivalent assumptions (a)-(b)-(c) of (I) are satisfied. Then 

by [21, Th. 4.1.1] h1(Z, Lgen) = 0. Hence we have to show that h1(Z, OZ(l′)) = 0
too. Choose an element s ∈ H0(Z, OZ(l′))reg with divisor D and consider the exact 
sequence of sheaves 0 → OZ

×s−→ OZ(l′) → OD(D) → 0 (where the second morphism is 
multiplication by s).

Then one has the cohomology exact sequence

H0(Z,OZ(l′)) → OD(D) δ−→ H1(OZ) → H1(Z,OZ(l′)) → 0.

Then δ can be identified with TD(cl̃) (see [21, Prop. 3.2.2], or [20, p. 164], [8, Remark 
5.18], [9, §5]). Since TD(cl̃) is onto by (I)(c), h1(Z, OZ(l′)) = 0 follows.

Next, assume that the equivalent assumptions of (I) are not satisfied. That 
is, H0(Z, OZ(l′))reg = H0(Z, Lgen)reg = ∅. These facts read as h0(Z, OZ(l′)) =
maxv{h0(Z − Ev, OZ(l′ − Ev))} and h0(Z, Lgen) = maxv{h0(Z − Ev, Lgen(−Ev))}. 
But, by induction (applied for part (II) similarly as in the proof of case (b) ⇒ (c) in 
5.1.4, see also 5.1.3) maxv{h0(Z −Ev, OZ(l′ −Ev))} = maxv{h0(Z −Ev, Lgen(−Ev))}, 
hence h0(Z, OZ(l′)) = h0(Z, Lgen) follows too.
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5.4.2. The proof of part (II), case 2. Assume that l′v < 0 for any v ∈ V(|Z|) and l̃ = 0. 
(If this happens then necessarily |Z| < E. Recall also that OZ(l′) is the restriction of 
the natural line bundle O

X̃
(l′) to Z.)

If h1(OZ) = 0 then Lgen = OZ(l′), hence the statement follows. If h0(OZ(l′)) = 0
then by the semicontinuity of L 	→ h0(Z, L) (cf. [21, Lemma 5.2.1]) h0(Lgen) = 0 too.

In the sequel we assume that h1(OZ) �= 0 and h0(OZ(l′)) �= 0.
Assume that H0(Z, OZ(l′))reg �= ∅, that is, OZ(l′) has a section without fixed 

components. But, then by Chern class computation, this section has no zeros, hence 
OZ(l′) = OZ , see also (2.2.1).

We claim that this identity OZ(l′) = OZ cannot happen for generic (X, o).
The argument runs similarly as the proof of (a) ⇒ (c) in (I).
Since h1(OZ) �= 0 we can choose a nonzero functional ω ∈ H1(O)∗ for which we 

can repeat the arguments from 5.3. In particular, there exists Ew ⊂ |Z| which satis-
fies Lemma 5.3.1, we can consider the sequence of blow ups as in 5.3.2, and we can 
choose k as in 5.3.6. Finally we consider the deformation of singularities as in 5.3.17. In 
this way we get a family of restricted line bundles Ob∗k,t(Z)(b∗k,t(l′)), so that for t = 0
the corresponding bundle is the trivial one. We wish to show that for generic t the 
corresponding term cannot be the trivial bundle. Indeed, as in (5.3.22) we get that 
t 	→ Ob∗k,t(Z)(b∗k,t(l′))|U ∈ Pic(πU (b∗k(Z))) is not constant. This implies that the path 
t 	→ b∗k,t(OZ(l′)) = Ob∗k,t(Z)(b∗k,t(l′)) cannot give for all t the trivial bundle either since 
otherwise its restriction to πU (b∗k(Z)) would be constant (since the restriction of the struc-
tures sheaf is the t–independent constant structure sheave). In particular, for generic t
we have OZt

(l′) �= OZt
.

However, we can prove that in this situation necessarily h1(OZt
(l′)) < h1(OZt

) for 
generic t (though the Chern classes agree), hence t = 0 is a jumping discriminant point 
of l′ 	→ h1(OZt

(l′)), a fact which contradict the genericity.
Indeed, since OZt

(l′) �= OZt
for generic t (and H1(OZt

) is constant nonzero), OZt
(l′)

must have fix components (use c1(OZt
(l′)) = 0 and (2.2.1)). Let Eu ∈ |Z| be a fix com-

ponent. Then H0(Zt, OZt
) → H0(Eu, OZt

) = C is surjective, while H0(Zt, OZt
(l′)) →

H0(Eu, OZt
(l′)) = C is zero. Since their kernels have the same h0 by the inductive step, 

h0(OZt
(l′)) < h0(OZt

), hence the inequality follows by Riemann–Roch. This proves the 
claim.

After this discussion we can assume that h1(OZ) �= 0, h0(OZ(l′)) �= 0, but 
H0(Z, OZ(l′))reg = ∅. By (2.2.1) Lgen �= OZ (since Pic0(OZ) �= 0), hence H0(Z,
Lgen)reg = ∅ too. Then we proceed as in the last paragraph of 5.4.1, induction shows 
that h0(Z, OZ(l′)) = h0(Z, Lgen).

5.4.3. The proof of part (II), case 3. Finally, assume that l′v < 0 for all v ∈ V(|Z|), and 
−l̃ /∈ S ′(|Z|). Then there exists Ev in the support of Z such that (l′, Ev) = (l̃, Ev) < 0. 
Hence for any L ∈ Picl̃(Z) the exact sequence 0 → L(−Ev)|Z−Ev

→ L → L|Ev
→ 0 and 

vanishing H0(L|Ev
) = 0 give h0(Z − Ev, L(−Ev)) = h0(Z, L). By this step we replaced 

the Chern class l̃ by l̃ − Ev. After finitely many such steps we necessarily get a new 
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Chern class in the corresponding Lipman cone (see e.g. [24, Prop. 4.3.3]). Hence, in this 
way we reduced this third case to the first two cases.

6. Applications. Analytic invariants

6.1. In this section we will fix a resolution graph Γ (hence, the lattice L associated with 
it as well), and we treat singularities (X, o), together with their resolution X̃ whose dual 
graph is Γ. The goal is to list some consequences of Theorem 5.1.1: hence we will assume 
that X̃ is generic, and we will provide combinatorial expressions for several analytic 
invariants in terms of L. We will use the notations from the setup of 5.1.

The first group of results provides topological formulae for the cohomology of certain
natural line bundles over an arbitrary Z > 0.

Remark 6.1.1. (a) By [21, Theorem 5.3.1] for any l′ ∈ L′ and Lgen generic in PicR(l′)(Z)

h1(Z,Lgen) = χ(−l′) − min
0≤l≤Z,l∈L

{χ(−l′ + l)}. (6.1.2)

In particular, if l′ =
∑

v∈V l′vEv ∈ L′ satisfies l′v < 0 for any v ∈ V(|Z|) and X̃ is generic 
then Theorem 5.1.1 gives the following topological characterization for the cohomology 
of OZ(l′)

h1(Z,OZ(l′)) = χ(−l′) − min
0≤l≤Z,l∈L

{χ(−l′ + l)}. (6.1.3)

This will be extended in Theorem 6.1.5 for a larger family of l′–values.
(b) Note that the identity h1(Z, OZ(l′)) = h1(Z, Lgen) (hence (6.1.3) too), in general, 

does not hold for an arbitrary l′ (that is, without some negativity condition regarding the 
coefficients of l′). Indeed, assume e.g. that |Z| = E and all the coefficients of Z are very 
large, and l′ = 0. Then using the quadratic form of χ one has min0≤l≤Z,l∈L {χ(l)} =
minl∈L≥0 {χ(l)}, hence h1(Z, Lgen) = − minl∈L≥0 {χ(l)} by (6.1.2). But h1(Z, OZ) =
1 − minl∈L≥0 {χ(l)} whenever (X, o) is not rational, see Corollary 6.2.4.

(c) Recall that if −l′ ∈ S ′ \ {0} then all the coefficients l′v of l′ are strictly negative. 
However, if the support of |Z| is strict smaller than E, then −R(l′) ∈ S ′(|Z|) \ {0} does 
not necessarily imply that l′v < 0 for v ∈ V(|Z|). (Take e.g. Z = Ev a (−2)–curve, choose 
Eu an adjacent vertex with it and set l′ = Ev+3Eu. Then −R(l′) ∈ S ′(Ev) \{0} however 
l′v = 1.)

6.1.4. The setup for generalization. We construct the following ‘Laufer type computation 
sequence’ (see e.g. [13] or [24, Prop. 4.3.3]). We start with a class l′ ∈ L′ and an effective 
cycle Z with |Z| ⊂ E. Let l̃ ∈ L′(|Z|) be the restriction of l′ as in Theorem 5.1.1.

Assume that −l̃ /∈ S ′(|Z|). Then there exists Ew ⊂ |Z| so that (l′, Ew) < 0. Then, for 
both line bundles L = Lgen and L = OZ(l′) of Picl̃(Z) one can consider the exact se-
quence 0 → L(−Ew)|Z−Ew

→ L → L|Ew
→ 0, hence h0(L(−Ew)|Z−Ew

) = h0(L). Hence 
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whenever h0(OZ(l′ − Ew)|Z−Ew
) = h0(Lgen(−Ew)|Z−Ew

) one also has h0(OZ(l′)) =
h0(Lgen).

Let us construct the following sequence of pairs (l′k, Zk)tk=0. By definition, (l′0, Z0) =
(l′, Z) the objects we started with. If −l̃ = −R(l′) /∈ S ′(|Z|), then define (l′1, Z1) :=
(l′ − Ew, Z − Ew) for some Ew ⊂ |Z| with (Ew, l′) < 0. If −l̃1 := −R(l′1) /∈ S ′(|Z1|)
we repeat the procedure, otherwise we stop. After finitely many steps necessarily −l̃t :=
−R(l′t) ∈ S ′(|Zt|) (here Zt = 0 is also possible). (The choice of the sequence is not 
unique, however by similar argument as in [13] or [24, Prop. 4.3.3]) one can show that 
the last term (l′t, Zt) of the sequence is independent of all the choices: it is the unique 
(l′−D, Z−D) with D minimal such that Z ≥ D ≥ 0, D ∈ L, and −(l′−D) ∈ S ′(|Z−D|).)

Theorem 6.1.5. Assume that X̃ is generic with fixed dual graph Γ, and we choose an effec-
tive cycle Z and l′ ∈ L′. Assume that the last term (l′t, Zt) of the Laufer type computation 
sequence {(l′k, Zk)}tk=0 has the following property: if l′t =

∑
v l

′
t,vEv, then l′t,v < 0 for any 

v ∈ V(|Zt|). Then hi(Z, OZ(l′)) = hi(Z, Lgen) for a generic line bundle Lgen ∈ Picl̃(Z)
(i = 0, 1), i.e. (6.1.3) holds.

Proof. Use Theorem 5.1.1(II) and the discussion from 6.1.4. �
Example 6.1.6. Let X̃ be generic, Z an effective cycle and l′ ∈ L′. Assume that l′v ≤ 0 for 
all v ∈ V(|Z|) and for any connected component Zcon of Z there exists v ∈ V adjacent 
with Zcon with l′v < 0. (The adjacent condition is |Zcon| ∩Ev �= ∅.) Then the conditions 
from Theorem 6.1.5 are satisfied, hence hi(Z, OZ(l′)) = hi(Z, Lgen) and (6.1.3) holds.

Indeed, first note that if for some vertex with l′v = 0 one has (l′, Ev) ≥ 0 then l′u = 0
for all adjacent vertices u of v. Hence, (l′, Ev) ≥ 0 for all vertices v with l′v = 0 contradicts 
the assumption. That is, there exists v ∈ V(|Z|) so that l′v = 0 and (l′, Ev) < 0.

Then we construct the computation sequence as follows. At the first part of the 
computation sequence, at step (l′k, Zk) we choose Ew(k) so that Ew(k) ⊂ |Zk|, the 
Ew(k)–coefficient of l′k is zero, and (Ew(k), l′k) < 0. After finitely many such steps we 
arrive to the situation when along the support of Zk′ all the coefficients of l′k′ will be 
strict negative. Then we can continue the algorithm arbitrarily.

Corollary 6.1.7. If X̃ is generic with dual graph Γ and |Z| is connected then

h1(OZ) = 1 − min
0<l≤Z,l∈L

{χ(l)} = 1 − min
|Z|≤l≤Z,l∈L

{χ(l)}. (6.1.8)

Proof. For D = |Z| or D = Ev for any Ev ⊂ |Z| one has

0 → H0(Z −D,OZ(−D)) → H0(OZ) δ→ H0(OD) → H1(Z −D,OZ(−D)) ι→ H1(OZ)

→ 0. (6.1.9)
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Since δ is onto ι is an isomorphism. But for h1(Z − D, OZ(−D)) Example 6.1.6 and 
(6.1.3) hold. �
6.2. The cohomology of natural line bundles over X̃. Next we apply the results of the 
previous subsection for a cycle Z with all its coefficients very large. Recall that by 
Artin’s Criterion pg = 0 (that is, (X, o) is rational) if and only if minl∈L>0{χ(l)} = 1
[2,3]. Furthermore, for any singularity minl∈L≥0{χ(l)} = minl∈L{χ(l)}, see e.g. [24, Prop. 
4.3.3].

Corollary 6.2.1.

pg(X, o) = 1 − min
l∈L>0

{χ(l)} = −min
l∈L

{χ(l)} +
{

1 if (X, o) is not rational,
0 else.

(6.2.2)

Proof. For the first identity use (6.1.8), for the second one use Artin’s Criterion for 
rationality. �
Remark 6.2.3. (a) For any non–rational analytic structure (X, o) one has pg(X, o) ≥
1 − minl∈L{χ(l)} [37,29]. The above corollary shows that this topological bound in fact 
is optimal.

(b) If (X, o) is elliptic then minl∈L>0{χ(l)} = 0. Hence, if the analytic structure is 
generic then pg = 1 −minl∈L>0{χ(l)} = 1. This was proved (even without the assumption 
that the link is a rational homology sphere) by Laufer in [16].

Corollary 6.2.4. Assume that X̃ is generic with dual graph Γ. Choose any l′ ∈ L′ and 
consider O

X̃
(l′), the natural line bundle on X̃. Then

h1(X̃,O
X̃

(l′)) = χ(−l′) − min
l∈L≥0

{χ(−l′ + l)} + ε(l′), (6.2.5)

where

ε(l′) =
{

1 if l′ ∈ L, l′ ≥ 0, and (X, o) is not rational,
0 else.

Proof. For any effective cycle Z (with |Z| = E) and l′ ∈ L′ let us write Δ(Z, l′) :=
h1(Z, OZ(l′)) − χ(−l′) + min0≤l≤Z,l∈L {χ(−l′ + l)}. In order to compute h1(X̃, O

X̃
(l′))

let us fix some Z with all its coefficients very large. Then, if we start with the pair 
(l′, Z), the Laufer sequence from 6.1.4 ends with some (l′t, Zt) with Zt ≥ E (still 
with large coefficients), and −l′t ∈ S ′. We claim that Δ(Zk, l′k) is constant along the 
computation sequence. Indeed, from the cohomological exact sequence used in 6.1.4
(for k = 0) h1(Z, O(l′)) = h1(Z − Ew, O(l′ − Ew)) − 1 − (Ew, l′). Then, we compare 
min0≤l≤Z χ(−l′+ l) and min0≤l≤Z−Ew

χ(−l′+Ew+ l). Since for any x ≥ 0 with Ew /∈ |x|
we have χ(−l′ +Ew +x) ≤ χ(−l′ +x), these two minima agree. Hence the claim follows.
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Now, for the pair (l′t, Zt), with −l′t ∈ S ′, we distinguish two cases. The case l′t = 0
occurs exactly when l′ ∈ L≥0 (because l′t is the largest element of (−S ′) ∩ (l′ − L≥0), 
cf. [24, Prop. 4.3.3]). In this case Δ(Zt, l′t) can be computed from (6.2.2). Or, l′t �= 0. 
In this case all the coefficients of l′t are strict negative (use e.g. Remark 6.1.1(c)), and 
Δ(Zt, l′t) = 0 by (6.1.3). �
Example 6.2.6. For any h ∈ H define kh := −ZK + 2rh and

χkh
(x) := −(x, x + kh)/2 = χ(x) − (x, rh) = χ(x + rh) − χ(rh).

(For the definition of rh see 2.1.) It is known (use e.g. the algorithm from [24, Prop. 
4.3.3]) that for any h ∈ H one has minl∈L≥0 χ(rh + l) = minl∈L χ(rh + l). Therefore, for 
h �= 0 one has

h1(X̃,O
X̃

(−rh)) = χ(rh) − min
l∈L

χ(rh + l) = −min
l∈L

{χkh
(l)} = − min

l∈L≥0
{χkh

(l)}. (6.2.7)

Remark 6.2.8. (a) Let (Xab, o) be the universal abelian covering of (X, o). Then

pg(Xab, 0) =
∑
h∈H

h1(X̃,O
X̃

(−rh)),

see e.g. [24]. Hence pg(Xab, 0) is topologically (and explicitly) computable by (6.2.2) and 
(6.2.7).

(b) For a conjectural identity which connects minl∈L χ(rh+l) with the Heegaard Floer 
d–invariant associated with the link of the singularity and the spinc–structure attached 
to the characteristic element kh see [26, §5.2].

6.3. The cohomological cycle of X̃. For any non–rational germ and fixed resolution the 
set {Z ∈ L>0 : h1(OZ) = pg(X, o)} has a unique minimal element Zcoh, called the 
cohomological cycle. It also satisfies the next property: h1(OZ) < pg for any Z � Zcoh, 
Z > 0 (see e.g. [33, 4.8]).

In parallel, let us mention the following topological statement. For any fixed non–
rational resolution graph, M := {Z ∈ L>0 : χ(Z) = minl∈L χ(l)} has a unique minimal 
and a unique maximal element. Indeed, if l1, l2 ∈ M, then for m := min{l1, l2} and 
M := max{l1, l2} one has χ(M) + χ(m) = χ(l1) + χ(l2) − (l1 − m, l2 − m) ≤ 2 minχ, 
hence χ(m) = χ(M) = minχ. Hence, M ∈ M always, and m ∈ M whenever m �= 0. 
However, if m = 0 then the germ is elliptic and M admits a minimal element, namely 
the minimally elliptic cycle [16,22,23].

Corollary 6.3.1. Assume that X̃ is generic with a non–rational dual graph Γ. Then the 
cohomological cycle Zcoh := min{Z ∈ L>0 : h1(OZ) = pg(X, o)}, is min{Z ∈ L>0 :
χ(Z) = minl∈L χ(l)}.
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6.4. The cohomological cycle of a line bundle. For any L ∈ Pic(X̃) with h1(X̃, L) > 0
the set LL := {l ∈ L>0 : h1(l, L) = h1(X̃, L)} has a unique minimal element, denoted 
by Zcoh(L), called the cohomological cycle of L (and of φ). Similarly, for any Z > 0 and 
L ∈ Pic(Z) with h1(Z, L) > 0 the set LZ,L := {l ∈ L, 0 < l ≤ Z : h1(l, L) = h1(Z, L)}
has a unique minimal element, denoted by Zcoh(Z, L), called the cohomological cycle of 
(Z, L). (For detail see e.g. [21, 5.5].)

Corollary 6.4.1. Assume that X̃ is generic.
(a) Fix any l′ ∈ L′ with h1(X̃, O

X̃
(l′)) �= 0. Then the set

Ll′ := {lmin ∈ L≥0 | χ(−l′ + lmin) = min
l∈L≥0

χ(−l′ + l)}

has a unique minimal element Zcoh(l′), which coincides with the cohomological cycle of 
O

X̃
(l′).

(b) For any Z > 0 and l′ ∈ L′ with h1(Z, O
X̃

(l′)) �= 0 the set

LZ,l′ := {lmin ∈ L, 0 ≤ lmin ≤ Z, | χ(−l′ + lmin) = min
0≤l≤Z, l∈L

χ(−l′ + l)},

has a unique minimal element Zcoh(Z, l′), which coincides with the cohomological cycle 
of O

X̃
(l′)|Z .

Remark 6.4.2. [21, 5.5] For any analytic structure (X, o) supported on the fixed topo-
logical type and for any resolution φ, fix l′ such that for the generic line bundle 
Lgen ∈ Picl

′
(X̃) one has h1(X̃, Lgen) �= 0. Then the cohomology cycle of Lgen is Zcoh(l′)

(independently of the analytic structure). Similarly, if h1(Z, Lgen) �= 0 for the generic 
Lgen ∈ Picl

′
(Z) then the cohomological cycle of the pair (Z, Lgen) is Zcoh(Z, l′).

6.5. The Hilbert series. Fix X̃ generic and let H(t) be the multivariable (equivariant) 
Hilbert series associated with the divisorial filtration of the local algebra of the universal 
abelian covering of (X, o) associated with divisors supported on all irreducible exceptional 
divisors of X̃; for details see e.g. [4,5,28]. Write H(t) =

∑
l′∈L′ h(l′)tl

′ . (Here if l′ =∑
v l

′
vEv then tl′ =

∏
v t

l′v
v .) It is known that for any l′ there exists a unique s(l′) ∈ S ′

such that s(l′) − l′ ∈ L≥0, and s(l′) is minimal with these properties. Furthermore, for 
any l′ ∈ L′ one has h(l′) = h(s(l′)). Hence it is enough to determine h(l′) for the (closed) 
first quadrant (because S ′ ⊂ L′

≥0).
Write l′ as rh + l0 for some l0 ∈ L≥0 (and h = [l′]). Recall that h(l′) is the dimension 

of H0(O
X̃

(−rh))/H0(O
X̃

(−l0 − rh)), see e.g. [28, (2.3.3)]. Therefore, for l0 = 0 we get 
h(rh) = 0.

Proposition 6.5.1. Assume that l′ = rh + l0 with l0 > 0. Then for h �= 0

h(l′) = min {χ(l′ + l)}− min {χ(rh + l)} = min {χkh
(l0 + l)}− min {χkh

(l)}. (6.5.2)

l∈L≥0 l∈L≥0 l∈L≥0 l∈L≥0
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For h = 0 (i.e. when rh = 0 and l′ = l0 > 0)

h(l0) = min
l∈L≥0

{χ(l0 + l)} − min
l∈L≥0

{χ(l)} +
{

1 if (X, o) is not rational,
0 else.

(6.5.3)

Proof. Use the exact sequence 0 → O(−rh − l0) → O(−rh) → Ol0(−rh) → 0 and 
Corollary 6.2.4. �
Remark 6.5.4. Proposition 6.5.1 via (6.2.7) and Corollary 6.2.1 can be written h–uniform-
ly:

h(rh + l0) = min
l∈L≥0

{χkh
(l0 + l)} + h1(X̃,O

X̃
(−rh)) (∀ h ∈ H, l0 ∈ L>0).

6.6. The Poincaré series. Let P (t) be the multivariable equivariant Poincaré series 
associated with (X, o) and its fixed resolution, cf. [4,5,28]. It is defined as P (t) =
−H(t) ·

∏
v∈V(1 − t−1

v ). It is known that it is supported on S ′. Proposition 6.5.1 im-
plies the following.

Corollary 6.6.1. Write P (t) =
∑

l′∈S′ p(l′)tl
′ . Then p(0) = 1 and for l′ > 0 one has

p(l′) =
∑
I⊂V

(−1)|I|+1 min
l∈L≥0

χ(l′ + l + EI).

6.7. The analytic semigroup. The analytic semigroup is defined as

S ′
an := {l′ : H0(X̃,O

X̃
(−l′))reg �= ∅} = {l′ : h(l′) < h(l′ + Ev) for any v ∈ V}.

Corollary 6.7.1. If (X, o) is generic then S ′
an = {l′ : χ(l′) < χ(l′ + l) for any l ∈ L>0} ∪

{0} and h1(X̃, O
X̃

(−l′)) = 0 for any l′ ∈ S ′
an \ {0}.

Proof. Use Corollary 6.2.4 and Proposition 6.5.1. �
Remark 6.7.2. (a) This formula emphasizes once more the parallelism between generic 
line bundles (associated with an arbitrary analytic structure) and the natural line bundles 
associated with a generic analytic structure, cf. 5.1.2 and 6.4.2. To explain this in the 
present situation, consider first an arbitrary analytic structure, a resolution with fixed 
graph Γ, and an effective cycle |Z| as usual. By [21, §4] the fact that the Abel map 
cl

′ : ECal
′
(Z) → Picl

′
(Z) is dominant is independent of the analytic structure, and it 

has a purely combinatorial description: χ(−l′) < χ(−l′ + l) for any l ∈ L, 0 < l ≤ Z}. 
Assume that Z � 0 and l′ �= 0. Then a generic line bundle Lgen ∈ Picl

′
(Z) is in im(cl′)

if and only if −l′ ∈ S ′
dom := {−l′ : χ(−l′) < χ(−l′ + l) for any l ∈ L>0}. On the other 

hand, by Corollary 6.7.1, in the context of a generic analytic type, this happens exactly 
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when the natural line OZ(l′) is in the image of im(cl′) (that is, OZ(l′) behaves as a 
generic line bundle). In particular, for generic X̃, S ′

an = S ′
dom ∪ {0}.

(b) In [21, §4] several combinatorial properties of S ′
dom are listed.

(c) Corollary 6.7.1 can be compared with the definition of S ′ = {l′ : χ(l′) < χ(l′ +
Ev) for any v ∈ V}.

6.7.3. San := S ′
an∩L is the semigroup of divisors (restricted to E) of functions φ∗O(X,o). 

Let Zmax be the maximal ideal cycle (of S. S.-T. Yau [39]), that is, the divisorial part of 
φ∗(m(X,o)) (here m(X,o) is the maximal ideal of O(X,o)). It is the unique smallest nonzero 
element of San.

Corollary 6.7.4. Assume that X̃ is generic with non–rational graph Γ. Then M = {Z ∈
L>0 : χ(Z) = minl∈L χ(l)} has a unique maximal element and Zmax = maxM.

Proof. For the first part see the second paragraph of 6.3. maxM ∈ San by the right hand 
side of 6.7.1, but minSan cannot be smaller than maxM by the very same identity. �
Remark 6.7.5. Recall that the fundamental (or minimal, or Artin) cycle Zmin :=
min{S ′∩L>0} has the property h0(OZmin

) = 1, hence h1(OZmin
) = 1 −χ(Zmin) (see e.g. 

[23]). For X̃ generic and (X, o) non–rational any cycle Z ∈ M (in particular Zmax too) 
has this property. Indeed, h1(OZ) = 1 − min0<l≤Z χ(l) = 1 − χ(Z), hence h0(OZ) = 1
too.

Corollary 6.7.6. For (X, o) generic one has Zmax ≥ Zcoh. If additionally (X, o) is nu-
merically Gorenstein then Zcoh + Zmax = ZK .

6.8. The O(X,o)–multiplication on H1(X̃, OX̃). Assume that pg > 0. On H1(X̃, O
X̃

)
the O(X,o)–module multiplication transforms on the dual vector space H1(X̃, O

X̃
)∗ =

H0(X̃ \E, Ω2
X̃

)/H0(X̃, Ω2
X̃

) into the multiplication of forms by functions. The filtration 

on H1(X̃, O
X̃

) induced by the powers of the maximal ideal agrees with the filtration 
associated by the nilpotent operator determined by multiplication by a generic element 
of m(X,o). For details see e.g. [36].

The poles of forms are bounded by Zcoh. Indeed, by the exact sequence 0 → Ω2 →
Ω2(Zcoh) → OZcoh

(Zcoh +K
X̃

) → 0 and from the vanishing h1(Ω2) = 0 (and from Serre 
duality) we have dimH0(Ω2(Zcoh))/H0(Ω2) = h0(OZcoh

(Zcoh+K
X̃

)) = h1(OZcoh
) = pg. 

Hence the subspace H0(Ω2(Zcoh))/H0(Ω2) ⊂ H0(X̃ \ E, Ω2)/H0(Ω2) has codimension 
zero, hence the spaces agree.

Corollary 6.8.1. If X̃ is generic then m(X,o) · H1(X̃, O
X̃

) = 0. In particular, the 
O(X,o)–module multiplication factorizes to the C = O(X,o)/m(X,o)–vector space struc-
ture.
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Proof. Since Zmax ≥ Zcoh, cf. 6.7.6, m(X,o) ·H0(Ω2(Zcoh)) ⊂ H0(Ω2(−Zmax + Zcoh)) ⊂
H0(Ω2). �
6.9. Generic Q–Gorenstein singularities. Recall that a singularity (X, o) is Gorenstein 
if the anticanonical cycle ZK is integral, and Ω2

X̃
= O

X̃
(K

X̃
) equals O

X̃
(−ZK). Hence 

in this case O
X̃

(K
X̃

) is natural. Recall, that more generally, a line bundle L is natural 
if and only if one of its powers has the form O

X̃
(l) for some l ∈ L, or equivalently, if 

and only if its restriction L|
X̃\E ∈ Pic(X̃ \ E) = Cl(X, o) has finite order (that is, it 

is Q–Cartier). In particular, (X, o) is Q–Gorenstein if and only if O
X̃

(K
X̃

) is a natural 
line bundle, which automatically should agree with O

X̃
(−ZK).

Proposition 6.9.1. If a Q–Gorenstein singularity (X, o) admits a resolution X̃ with 
generic analytic structure, then (X, o) is either rational of minimally elliptic.

Proof. Step 1. Let us fix a resolution X̃ of a normal surface singularity (X, o). We claim 
that if (X, o) is neither rational nor minimally elliptic then there exists an effective cycle 
Z > 0, |Z| ⊂ E, with Z � ZK and with h1(OZ) > 0.

Assume first that X̃ = X̃min is a minimal resolution. Then ZK ≥ 0 (by adjunction 
formulae, see also [18]). By vanishing h1(O

X̃
(−�ZK�)) = 0 we get that h1(O�ZK) = pg. 

Since (X, o) is not rational, necessarily �ZK� > 0. Hence, if �ZK� < ZK then Z = �ZK�
works.

Assume that �ZK� = ZK . Then ZK ∈ L and ZK > 0 (since pg > 0) hence necessarily 
ZK ≥ E (see [18]). For any v ∈ V consider the exacts sequence 0 → OEv

(−ZK +Ev) →
OZK

→ OZK−Ev
→ 0. If h1(OZK−Ev

) > 0 for some v then we take Z = ZK − Ev. 
Otherwise, h1(OZK−Ev

) = 0 for every v. Since h1(OEv
(−ZK + Ev)) = 1 we get that 

pg = 1 and ZK = Zcoh. Then the geometric genus of the singularities obtained by 
contracting any E \Ev is rational, hence (X, o) is minimally elliptic (for details see [16]
or [33]).

Finally, let X̃ be arbitrary and let π : X̃ → X̃min be the corresponding modification 
of the minimal one. Let 0 < Z < ZK be the cycle obtained previously for X̃min. Then 
π∗(Z) works in X̃.

Step 2. Fix the generic resolution X̃. Assume that (X, o) is neither rational nor mini-
mally elliptic. Chose a cycle Z as in Step 1. Using 0 → Ω2

X̃
→ Ω2

X̃
(Z) → OZ(Z+K

X̃
) →

0, we get that h1(Ω2
X̃

(Z)) = h1(OZ(Z + K
X̃

)) = h0(OZ). Since (X, o) is Q–Gorenstein, 
Ω2

X̃
(Z) = O

X̃
(Z − ZK), hence h1(O

X̃
(Z − ZK)) = h0(OZ) = χ(Z) + h1(OZ). Now we 

apply (6.2.5) and (6.1.8), and we get

χ(ZK − Z) − min
l≥0

{χ(ZK − Z + l)} = χ(Z) + 1 − min
0<l≤Z

{χ(l)}.

Since χ(D) = χ(ZK − D) this transforms into − minl≤Z{χ(l)} = 1 − min0<l≤Z{χ(l)}. 
Next we claim that minl≤Z{χ(l)} = min0≤l≤Z{χ(l)}. Indeed, if l = l+−l− with l+, l− ≥ 0
and with different supports, then there exists Ev ∈ |l−| such that (Ev, l−) < 0; then by 
a computation χ(l + Ev) ≤ χ(l). Hence inductively χ(l+) ≤ χ(l). Therefore,
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− min
0≤l≤Z

{χ(l)} = 1 − min
0<l≤Z

{χ(l)}.

This means that min0≤l≤Z{χ(l)} cannot be realized by an element l > 0, hence 
0 = χ(0) < min0<l≤Z{χ(l)}. But this implies h1(OZ) = 0 (see [21, Example 4.1.3]), 
a contradiction. �
Remark 6.9.2. Proposition 6.9.1 generalizes the following result of Laufer [16, Th. 4.3]
whenever the link is rational homology sphere (with a different proof): if the generic 
analytic structure of a numerically Gorenstein topological type is Gorenstein then the 
topological type is either Klein or minimally elliptic. (Recall that the Klein — or ADE

— singularities are exactly the Gorenstein rational singularities.) Laufer’s proof works 
without the QHS3–assumption.
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