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NEW BOUNDS ON EVEN CYCLE CREATING HAMILTONIAN

PATHS USING EXPANDER GRAPHS

GERGELY HARCOS AND DANIEL SOLTÉSZ

Abstract. We say that two graphs on the same vertex set are G-creating if their union
(the union of their edges) contains G as a subgraph. Let Hn(G) be the maximum number
of pairwise G-creating Hamiltonian paths of Kn. Cohen, Fachini and Körner proved

n
1
2
n−o(n) ≤ Hn(C4) ≤ n

3
4
n+o(n).

In this paper we close the superexponential gap between their lower and upper bounds
by proving

n
1
2
n− 1

2
n

log n
−O(1) ≤ Hn(C4) ≤ n

1
2
n+o( n

log n
).

We also improve the previously established upper bounds on Hn(C2k) for k > 3, and we
present a small improvement on the lower bound of Füredi, Kantor, Monti and Sinaimeri
on the maximum number of so-called pairwise reversing permutations. One of our main
tools is a theorem of Krivelevich, which roughly states that (certain kinds of) good
expanders contain many Hamiltonian paths.

1. Introduction

There are many results concerning the size of the largest set of permutations that
satisfy some prescribed binary relation, see [2,4,7,8,10,17,18]. There is a natural (2-to-1)
correspondence between permutations of [n] and (undirected) Hamiltonian paths of the
complete graph Kn. The main questions studied in this paper are among the first natural
questions that arise when one considers irreflexive relations between Hamiltonian paths
of Kn.

Definition 1.1. We say that two graphs on the same vertex set are G-creating if their
union (the union of their edges) contains G as a not necessarily induced subgraph. Let

Hn(G) and Hn(G) be the maximum number of pairwise G-creating and pairwise non-G-
creating Hamiltonian paths of Kn, respectively.

The study of Hn(G) for various graphs G was initiated in [19]. There it was observed
that the maximum number of Hamiltonian paths of Kn such that each pairwise union
contains an odd cycle (of unspecified length) is

(

n
⌊n/2⌋

)

if n is odd and
(

n
⌊n/2⌋

)

/2 if n is

even. The authors of [19] asked whether replacing an odd cycle of unspecified length with
a triangle would result in the same answer. This question was answered affirmatively by
I. Kovács and the second author in [14].

Theorem 1.2 (Kovács–Soltész [14]). We have

Hn(C3) =

{(

n

⌊n

2 ⌋
)

when n is odd;

1
2

(

n

⌊n

2 ⌋
)

when n is even.

First author supported by NKFIH (National Research, Development and Innovation Office) grant
K 119528, and by the MTA Rényi Intézet Lendület Automorphic Research Group. Second author sup-
ported by NKFIH (National Research, Development and Innovation Office) grants K 108947, K 120706,
KH 126853, KH 130371.
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The ideas of Theorem 1.2 were generalized in [15] where non-trivial lower bounds were
obtained forHn(C2k+1). In particular, when k is a power of two, thenHn(C2k+1) = 2n+o(n).
Although the ideas that led to Theorem 1.2 have been useful in the case of longer odd
cycles, they did not contribute to our understanding of Hn(Ck) for even k. The authors
of [19] proved that the maximum number of Hamiltonian paths of Kn each of whose
pairwise unions contains an even cycle (of unspecified length) is Ω

(

n!
n2

)

. The natural
question whether Hn(C4) behaves in the same way was answered negatively by Cohen,
Fachini and Körner.

Theorem 1.3 (Cohen–Fachini–Körner [6]). We have
⌊n

2

⌋

! ≤ Hn(C4) ≤ n
3
4
n+O( n

log n
).

Although Theorem 1.3 clearly shows that the order of magnitude of Hn(C4) is much
smaller than n!

n2 , it does not reveal the asymptotic growth rate of Hn(C4). While the
second author tried to improve the bounds of Theorem 1.3, he managed to apply the
method of Cohen, Fachini and Körner to longer even cycles.

Theorem 1.4 (Soltész [30]). For every integer k > 1, we have

n
1
k
n−o(n) ≤ Hn(C2k) ≤ n

(

1− 2

3k2−2k

)

n+o(n)
.

Moreover, for k > 5 odd, we have the improved upper bound

Hn(C2k) ≤ n

(

1− 2

3k2−3k

)

n+o(n)
,

while for k ∈ {3, 5} we have the improved upper bound

Hn(C2k) ≤ n(1−
1

k2
)n+o(n).

In this paper we have finally succeeded to improve the bounds of Theorem 1.3.

Theorem 1.5. We have

n
1
2
n− 1

2
n

log n
−O(1) ≤ Hn(C4) ≤ n

1
2
n+o( n

log n
).

Theorem 1.5 closes the superexponential gap of Theorem 1.3, and determines the lead-
ing term in the asymptotics of log(Hn(Ck)) for the smallest unsolved cycle, C4. The
improvement on the lower bound is only a modest contribution, the main result is the
new upper bound. The main idea in the proof of the upper bound is the observation that
the large spectral gap of some dense, regular and C4-free graphs combined with the follow-
ing theorem of Krivelevich guarantees the existence of n

1
2
n−o(n) pairwise non-C4-creating

Hamiltonian paths. This gives a lower bound on Hn(C4), which can be used readily to
obtain an upper bound for Hn(C4), see Lemma 3.1.

Theorem 1.6 (Krivelevich [23]). Let G be a d-regular graph on n vertices whose non-
trivial eigenvalues have absolute value at most λ. Assume that the following two conditions
hold:

• there is an ε > 0 such that d
λ
≥ (logn)1+ε;

• lim
n→∞

log d log d

λ

logn
= ∞.

Then the number of Hamiltonian cycles in G is n!
(

d
n

)n
(1 + o(1))n.

The same ideas applied to C2k-free graphs instead of C4-free graphs yield the following
improvement on Theorem 1.4.
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Theorem 1.7. For every integer k > 2, we have

n
1
k
n−o(n) ≤ Hn(C2k) ≤ n(1−

1
3k )n+o(n).

Theorem 1.7 improves on the bounds of Theorem 1.4 except in the case when k = 3.
The authors believe that the proof of Theorem 1.5 can be adapted to the case of C6 to
give an upper bound of n

2
3
n+o(n).

The paper is organized as follows. Section 2 contains constructions for the lower bound
part of Theorem 1.5, while Section 3 treats the corresponding upper bound, with some
lengthy but straightforward arguments postponed to Appendix A. We prove Theorem 1.7
in Section 4. We conclude with the connection of Hn(C4)-like problems and the so-called
reversing permutation conjecture (for which we present an improved lower bound) in
Section 5, along with some closing remarks.

Acknowledgements. We are grateful to the referees for their careful reading and valu-
able comments. We also thank Zoltán Füredi and Miklós Simonovits for useful discussions.

2. The lower bound of Theorem 1.5

The original construction of Cohen, Fachini and Körner for the lower bound for Hn(C4)
is as follows. For the sake of simplicity, let n− 1 be even, and let π be a permutation of
the set {2, 4, . . . , n− 1}. Observe that the Hamiltonian paths of Kn of the form

(1, π(2), 3, π(4), 5, . . . , n− 2, π(n− 1), n),

with π as above, are pairwise C4-creating. Indeed, if π1 and π2 are different permutations
as above, say π1(2i) 6= π2(2i), then the set of vertices {2i−1, π1(2i), 2i+1, π2(2i)} induces
a C4 in the union of the two paths. The improvement uses the same idea but in a recursive
manner.

Lemma 2.1. We have
⌊(n−1)/2⌋
∏

i=1

(n− 2i) ≤ Hn(C4).

Proof. We build a set of Hamiltonian paths recursively, by starting from (∗, ∗, . . . , ∗) and
placing the yet unused elements of [n] one-by-one somewhere on the path. Initially, let
the path be (1, ∗, 2, ∗, ∗, . . . , ∗), and let S2 := [n] \ {1, 2} be the set of remaining elements
that we can still place somewhere. Assuming that we have already placed i elements on
the path, we perform one of two steps:

(1) If the stars of the currently constructed Hamiltonian path do not form a consec-
utive block or there is a single star left: we pick any element from Si and replace
the leftmost star with it. Let Si+1 be Si minus the picked element.

(2) If the stars of the currently constructed Hamiltonian path do form a consecutive
block of size at least 2: we pick the smallest element of Si and replace the star
that is next to the leftmost star with it. Let Si+1 be Si minus the picked element.

It is easy to see that the number of Hamiltonian paths that can be constructed this
way is the claimed amount. The fact that two such Hamiltonian paths H1 and H2 are
C4-creating can be seen by considering the first step of the procedure at which the two
paths become different. Such a step must be of type (1), and hence the picked element is
placed between two other already picked elements: a, b which are the same two elements
since up to this point H1 was equal to H2. But as in the original construction, these four
elements form a C4 in the union H1 ∪H2. �
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Using Stirling’s formula, it is straightforward to show that Lemma 2.1 implies the lower
bound of Theorem 1.5.

3. The upper bound of Theorem 1.5

For many problems where the maximum number of pairwise compatible objects is the
question, one can prove the equivalent of the following lemma.

Lemma 3.1. For every graph G and every integer n > 1, we have

Hn(G)Hn(G) ≤ n!/2.

Proof. Consider the graph G′ whose vertices are the Hamiltonian paths of Kn, and two
vertices are connected if the corresponding Hamiltonian paths are not G-creating. This
graph is vertex-transitive since relabeling the vertices of Kn is an automorphism act-
ing transitively on the Hamiltonian paths of Kn. Therefore, a well-known result [11,
Lemma 7.2.2] shows that

α(G′)ω(G′) ≤ α(G′)ω∗(G′) = |V (G′)| = n!/2,

where ω∗(G′) denotes the fractional clique number of G′. The product on the left-hand

side equals Hn(G)Hn(G), so we obtained the bound in the lemma. �

We prove the upper bound of Theorem 1.5 by establishing a lower bound for Hn(C4)
and combining it with Lemma 3.1. We construct a large set of pairwise non-C4-creating
Hamiltonian paths by proving that a certain C4-free graph contains enough of them.
Thankfully, all the heavy lifting is already done. Namely, by Theorem 1.6, it is enough
to find a dense, regular C4-free graph with a large spectral gap, and it is well-known
that some of the densest C4-free graphs are regular with a large enough spectral gap (for
the purpose of Theorem 1.6). We only have to deal with the fact that these dense C4-
free graphs are not simple, since they contain a small number of loops. The next lemma
confirms that we can overcome this by removing the loops and some additional edges
while preserving the properties that are necessary for our purposes. The proof is almost
entirely present in the literature, hence we put it to an appendix.

Lemma 3.2. For every odd prime p, there is a simple graph G(p) with the following
properties. G(p) is (p− 1)-regular on p2 vertices, G(p) is C4-free, and each eigenvalue of
G(p) besides p− 1 (which has multiplicity one) is of absolute value at most

√
4p− 5.

The proof of Lemma 3.2 can be found in Appendix A. Observe that when n = p2 is
a prime square, Theorem 1.6 applied to the graph G(p) provided by Lemma 3.2 gives a

lower bound on Hn(C4) which together with Lemma 3.1 finishes the proof. In order to
extend this line of thought to general n’s, we shall use a theorem ensuring that the primes
are dense enough. The strongest such result is due to Baker, Harman and Pintz [1], but
for our purposes a more classical version suffices.

Theorem 3.3 (Ingham [13]). For arbitrary ε > 0 and all large enough n > 0, there is a
prime p in the interval [n, n+ n5/8+ε].

Corollary 3.4. For arbitrary ε > 0 and all large enough n > 0, there is a prime square
p2 in the interval [n, n + n13/16+ε].

Proof. Let n > 0 be sufficiently large. By Theorem 3.3, there is a prime p in the interval
[n1/2, n1/2 + n5/16+ε/2]. Then,

p2 ∈ [n, n+ 2n13/16+ε/2 + n5/8+ε] ⊂ [n, n + n13/16+ε]

as desired. �
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Now we are ready to prove the upper bound of Theorem 1.5. Let n > 0 be large enough,
and let m be the smallest integer such that n ≤ m andm = p2 for some prime p. Applying
Theorem 1.6 to the C4-free graph G(p) provided by Lemma 3.2, we see readily

Hm(C4) ≥ m!

(√
m− 1

m

)m

(1− o(1))m.

As Hn(C4) is non-decreasing, the previous display combined with Lemma 3.1 yields

Hn(C4) ≤ Hm(C4) ≤
m!/2

Hm(C4)
≤

(

m√
m− 1

)m

(1 + o(1))m = m
m

2
+o( m

logm
).

Since by Corollary 3.4 we also have m ≤ n+ n5/6, we conclude that

Hn(C4) ≤ m
m

2
+o( m

logm
) ≤ n

n

2
+o( n

log n
).

The proof of Theorem 1.5 is complete.

4. Longer even cycles

We obtain upper bounds on Hn(C2k) for k > 2 similarly to the k = 2 case. We shall
apply Theorem 1.6 to suitable C2k-free graphs, and use that the necessary number theo-
retic objects are dense enough. The densest known C2k-free graphs were constructed by
Lazebnik, Ustimenko and Woldar in [24], but they are bipartite and their spectral prop-
erties are not yet sufficiently understood. Hence we cannot apply Theorem 1.6 directly
to them. The graphs that have all the necessary properties are the Ramanujan graphs
constructed by Margulis [26] and independently by Lubotzky, Phillips and Sarnak [25]1.

Theorem 4.1 (Lubotzky–Phillips–Sarnak [25]). If p and q are unequal primes congruent
to 1 modulo 4, and p is a quadratic residue modulo q, then there is a simple graph Gp,q

with the following properties. Gp,q is (p + 1)-regular on q(q2 − 1)/2 vertices, the girth of
Gp,q is at least 2 logp q, and each eigenvalue of Gp,q besides p + 1 (which has multiplicity
one) is of absolute value at most 2

√
p.

For a suitable pair of primes (p, q) and for m := q(q2−1)/2, we can apply Theorem 1.6
to the graph Gp,q to get a set of

m!

(

p+ 1

m

)m

(1 + o(1))m

Hamiltonian paths on m vertices. We shall assume that q > pk in order to guarantee that
Gp,q is C2k-free, while we shall try to work with p as large as possible (for a given q) in
order to maximize the above number of Hamiltonian paths.

Definition 4.2. We say that a prime q ≡ 1 (mod 4) is (ε, k)-good if there is a prime
p ≡ 1 (mod 4) such that q ∈ (pk, (1 + ε)pk) and p is a quadratic residue modulo q. We
also call (ε, k)-good the corresponding Ramanujan graphs Gp,q.

The following lemma states, roughly, that for every pair of positive reals ε and k, the
(ε, k)-good graphs are dense enough for our purposes.

1The proof of (4.19)–(4.20) in this celebrated paper is sketchy at one point, so we provide some
additional details. The equation before [25, Lemma 4.4] can be justified for n = pk by analyzing the
relevant local densities in Siegel’s mass formula. This is sufficient for the proof, and one can even obtain
a direct proof along these lines. Alternatively, for n coprime with 2q, the general shape of Fourier
coefficients of Eisenstein series reveals that C(n) =

∑

d|n dF (d, n), where F : N × N → C is periodic

of period 16q2 in both variables. From here, one can finish the proof by a straightforward extension of
[25, Lemma 4.4].
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Lemma 4.3. Let ε and k be arbitrary positive reals. Then for all sufficiently large n > 0,
there is an (ε, k)-good graph Gp,q on m vertices with m ∈ (n, (1 + ε)n).

The proof of Lemma 4.3 relies on the following powerful result of Heath-Brown [12],
in which

(

n
m

)

stands for the Jacobi symbol,
∑∗ indicates restriction to positive odd

square-free integers, and f ≪κ g means that f = Oκ(g).

Theorem 4.4 (Heath-Brown [12]). Let M , N be positive integers, and let a1, . . . , aN be
arbitrary complex numbers. Then for any κ > 0, we have

∑∗

m≤M

∣

∣

∣

∣

∣

∑∗

n≤N

an

( n

m

)

∣

∣

∣

∣

∣

2

≪κ (MN)κ(M +N)
∑∗

n≤N

|an|2.

We make use of Theorem 4.4 through the following corollary.

Corollary 4.5. Let ε and k be arbitrary positive reals. Then for all sufficiently large
x > 0, there is an (ε, k)-good prime in the interval (x, (1 + ε)x).

Proof. Let x > 0 be sufficiently large in terms of ε and k, and let us assume that there
is no (ε, k)-good prime in the interval (x, (1 + ε)x). We shall derive a contradiction by
examining the sum

(1)
∑

(1+ε/2)x<q<(1+ε)x
q ≡ 1 (mod4) is a prime

∣

∣

∣

∣

∣

∑

k
√
x<p< k

√
(1+ε/2)x

p ≡ 1 (mod4) is a prime

(

p

q

)

∣

∣

∣

∣

∣

2

.

As every prime pair (p, q) occurring in this sum satisfies

p, q ≡ 1 (mod 4) and pk < (1 + ε/2)x < q < (1 + ε)x < (1 + ε)pk,

we have either
(

p
q

)

= −1 or p = q by Definition 4.2 and the initial assumption on x. As

a result, by the prime number theorem for arithmetic progressions, the sum (1) can be
estimated from below as

≫ε,k
x

log x

(

x1/k

log x

)2

=
x1+2/k

(log x)3
.

On the other hand, by Theorem 4.4 applied for

κ :=
min(1, k)

2k + 2
, M := (1 + ε)x, N := k

√

(1 + ε/2)x,

and an being the indicator function of the primes p occurring in (1), the sum (1) can be
estimated from above as

≪ε,k x
(1+1/k)κ(x+ x1/k)x1/k ≤ x1+3/(2k) + x1/2+2/k.

Comparing the above two bounds for (1), we get a contradiction (for x > 0 sufficiently
large in terms of ε and k). �

Proof of Lemma 4.3. It suffices to show that there is an (ε, k)-good prime q such that

n < q(q2 − 1)/2 < (1 + ε)n.

A slightly stronger inequality is

(2n)1/3 + 1 < q < ((1 + ε)2n)1/3.

For n → ∞, the ratio of the two sides tends to (1 + ε)1/3, which exceeds 1. Hence, for
n > 0 sufficiently large, Corollary 4.5 implies the existence of a suitable q. �
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Proof of the upper bound of Theorem 1.7. Let ε ∈ (0, 1/4) be fixed, and let n > 0 be
sufficiently large. By Lemma 4.3, there is an (ε, k)-good graph Gp,q on m ∈ (n, (1 + ε)n)
vertices. As Gp,q is C2k-free, it follows from Theorem 1.6 that

Hm(C2k) ≥ m!

(

p + 1

m

)m

(1− o(1))m.

As Hn(C2k) is non-decreasing in n, the previous display combined with Lemma 3.1 yields

Hn(C2k) ≤ Hm(C2k) ≤
m!/2

Hm(C2k)
≤

(

m

p+ 1

)m

(1 + o(1))m.

Since Gp,q is (ε, k)-good and m = q(q2 − 1)/2, we can estimate

p >

(

q

1 + ε

)1/k

>

(

(2m)1/3

1 + ε

)1/k

> m
1
3k .

We conclude, for n > 0 sufficiently large in terms of ε and k, that

Hn(C2k) ≤ m(1− 1
3k)m+o(m) ≤ n(1−

1
3k)n+εn.

This implies the upper bound of Theorem 1.7, because ε ∈ (0, 1/4) is arbitrary. �

5. Hn(C4) and the reversing permutations conjecture

The main driving force behind the study of Hn(C2k) is the following conjecture. We say
that two permutations π1 and π2 of [n] are reversing if, as vectors of length n, there are
two coordinates that contain the same two elements {a, b} ⊂ [n], but in reversed order.
Let RP (n) be the maximum number of pairwise reversing permutations of [n].

Conjecture 5.1 (Körner [16]). There is a constant C > 0 such that RP (n), the maximum
number of pairwise reversing permutations of [n], is at most Cn.

In [30] the following equivalent form of Conjecture 5.1 was observed. Let M2n(C2k) be
the maximum number of perfect matchings of K2n where every pairwise union contains
a C2k.

Conjecture 5.2 (Körner [16]). There is a constant C > 0 such that M2n(C4), the max-
imum number of pairwise C4-creating perfect matchings of K2n, is at most Cn.

The best known upper bound for bothRP (n) andM2n(C4) is n
1
2
n+o(n) due to Cibulka [5].

The best published lower bound is RP (n) ≥ 8⌊n/5⌋ ≥ 1.515n−4, see [10]. A slightly better
lower bound can be obtained by observing that the four “incomplete permutations”

(1, 2, 3, ∗, . . . , ∗)
(3, 4, 1, ∗, . . . , ∗)
(2, 1, 4, ∗, . . . , ∗)
(4, 3, 2, ∗, . . . , ∗)

are already pairwise reversing. Indeed, this implies RP (n) ≥ 4RP (n − 3) for n ≥ 3,
whence RP (n) ≥ 4⌊n/3⌋ ≥ 1.587n−2. In this section we consider questions strongly related
to the question of determining Hn(C4), and one of these will turn out to be strongly
related to the reversing permutations conjecture. Two Hamiltonian paths can form a C4

in their union in essentially three ways, so let us introduce a notation for these.
7



Definition 5.3. Let H1, H2, H3 denote the (unique) ways that two Hamiltonian paths can
form a C4 in such a way that the longest consecutive chain of edges (in the C4) that is
contained in one of the Hamiltonian paths is 1, 2, 3, respectively. Let H := {H1, H2, H3}
and for every S ⊂ H, let Hn(C4, S) denote the maximum number of pairwise C4-creating
Hamiltonian paths, where for each pair there is a C4 that is formed in a way that is in S.

With this notation, Hn(C4) = Hn(C4,H), and both Lemma 2.1 and the original lower
bound of Cohen, Fachini and Körner actually establish a lower bound on Hn(C4, {H2}).

We shall use the following lemma, which is implicitly present in the proof of [15,
Theorem 5.2], but for the reader’s convenience we reprove it here.

Lemma 5.4. For every n, there is a set J of directed Hamiltonian paths of Kn such that
no two paths in J are C4-creating in the H3 way and |J | ≥ n!/3n.

Proof. Let us color the vertices of Kn with colors 1, 2, 3 such that exactly ⌈n/3⌉ vertices
are colored 1 and exactly ⌊n/3⌋ vertices are colored 3. Let J be the set of directed
Hamiltonian paths whose vertices are colored cyclically as 1, 2, 3, 1, 2, 3, . . . , in the order
determined by the path. No two paths in J are C4-creating in the H3 way, since in every
path in J , any two vertices of distance 3 have the same color. Hence it suffices to show
that |J | ≥ n!/3n.

For every directed Hamiltonian path H of Kn, there is a unique 3-coloring as above
for which H ∈ J . The size of J does not depend on the particular coloring that we chose,
hence it equals n! divided by the number of 3-colorings. The number of 3-colorings is at
most 3n, hence |J | ≥ n!/3n as claimed. �

The following lemma states that when considering a problem Hn(C4, S) for some S,
the H3 way can be safely ignored unless we care about exponential factors.

Lemma 5.5. We have, for every S ⊂ H,

Hn(C4, S \ {H3}) ≤ Hn(C4, S) ≤ 3nHn(C4, S \ {H3}).
Proof. The lower bound follows readily from the definition of Hn(C4, S), so we focus on
the upper bound. By Lemma 5.4, there is a set I of (undirected) Hamiltonian paths of
Kn such that no two paths in I are C4-creating in the H3 way and |I| ≥ 3−nn!/2. Now
let S ⊂ H, and let X be a set of pairwise C4-creating Hamiltonian paths such that each
pair of paths in X is C4-creating in a way that is in S. Let σ(I) be a version of I where
the labels of Kn are permuted by a permutation chosen uniformly from Sn. Since

E(|X ∩ σ(I)|) = |X| |I|
n!/2

≥ |X|
3n

,

there is a relabeled version of I whose intersection with X has size at least |X|/3n. Since
no two paths in I, or in any relabeled version of I, are C4-creating in the H3 way, the
proof is complete. �

In the present paper, Hamiltonian paths that are C4-creating only in the H3 way are
negligible.

Remark. The quantity Hn(C4, {H3}) is called P (n, 4) in [15], and the best known upper
bound on it is the number of special 3-colorings considered in the proof of Lemma 5.4,
which is of size 3n−o(n). It would be interesting to decide whether Hn(C4, {H3}) exceeds
2n for large n, since it was proved in [15] that its natural generalizations, P (n, k) obey
an upper bound of size 2n+ok(n).
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Therefore, three possibilities remain for S if we are only interested in the superexpo-
nential growth rate: Hn(C4, {H1}), Hn(C4, {H2}), Hn(C4, {H1, H2}). Two of these are
asymptotically answered by the proofs of Theorem 1.5 and Lemma 2.1:

nn/2−o(n) ≤ Hn(C4, {H2}) ≤ Hn(C4, {H1, H2}) ≤ nn/2+o(n).

The only remaining case Hn(C4, {H1}) is strongly related to the reversing permutations
conjecture. It was already observed in [6, Lemma 1] that

Hn(C4, {H1}) ≥ 2n/4−o(n)RP (n/2).

Using the same ideas it is not hard to prove the similar inequality

H2n(C4, {H1}) ≥ M2n(C4)Mn(C4)M⌊n/2⌋(C4)M⌊⌊n/2⌋/2⌋(C4) · · · .

This shows that any improvement on the constant 1/2 in the upper bound provided by
Theorem 1.5,

H2n(C4, {H1}) ≤ (2n)
1
2
(2n)+o(n) = nn+o(n),

would prevent the possibility of a lower bound of the form nn/2−o(n) ≤ M2n(C4).
We finish this section by establishing an equivalent form of Conjecture 5.1.

Conjecture 5.6. There is a constant C > 0 such that Hn(K2,4) ≤ Cn.

Lemma 5.7. Conjecture 5.6 is equivalent to Conjecture 5.1.

Proof. We aim to prove that if one of the conjectures fails, then the other one fails, too.
Note that if Conjecture 5.6 fails, then by the inequality

Hm(K2,4)Hn(K2,4) ≤ Hm+n(K2,4)

and Fekete’s Subadditive Lemma, n

√

Hn(K2,4) tends to infinity. Similarly, if Conjecture 5.1

fails, then n

√

RP (n) tends to infinity.
Assume that Conjecture 5.1 is false. For each n ≥ 1, there exists a set S of pairwise

reversing permutations of [n] such that n

√

|S| → ∞. Starting from S, we construct a
large set T of pairwise K2,4-creating Hamiltonian paths of K4n as follows. We arrange
the elements of [4n] as in Figure 1. We fix the position of the unlabeled vertices and
vary the position of the labeled vertices according to the elements of S. The resulting set
T of Hamiltonian paths will be pairwise K2,4-creating, because S is pairwise reversing.

Moreover, 4n
√

|T | → ∞, because n

√

|S| → ∞. Hence Conjecture 5.6 is false.
Assume that Conjecture 5.6 is false. For each n ≥ 3, there exists a set X of pairwise

K2,4-creating Hamiltonian paths of Kn such that n

√

|X| → ∞. A pair of Hamiltonian
paths in X can create a K2,4 in several ways, hence we shall first “filter” X so that
each “surviving” pair creates a K2,4 in a fixed way. Observe that if a K2,4 is created by
two Hamiltonian paths in such a way that none of the paths contains three consecutive
edges in the K2,4, then both paths contribute two vertex disjoint stars on 3 vertices, see
Figure 2. We shall call a K2,4 in the union of two Hamiltonian paths good if it is created
as in Figure 2. If two Hamiltonian paths create a K2,4 that is not good, one of the paths
contributes at least three consecutive edges to the K2,4, and the other path necessarily
completes these three edges into a C4. Hence the two paths are C4-creating in the H3 way.
Now we proceed similarly as in the proof of Lemma 5.5. By Lemma 5.4, there is a set I
of (undirected) Hamiltonian paths of Kn such that no two paths in I are C4-creating in
the H3 way and |I| ≥ 3−nn!/2. Then, each pair of paths in I either creates a good K2,4

9



π(4)π(3)π(2)π(1)

Figure 1. K2,4-creating Hamiltonian paths from pairwise reversing permutations.

Figure 2. The only way how two Hamiltonian paths can create a good
K2,4. The dashed edges belong to one of the paths and the rest to the other.

or it does not create a K2,4 at all. Let σ(I) be a version of I where the labels of Kn are
permuted by a permutation chosen uniformly from Sn. Since

E(|X ∩ σ(I)|) = |X| |I|
n!/2

≥ |X|
3n

,

there is a “filtered” set T := X ∩ σ(I) of Hamiltonian paths of Kn such that n

√

|T | → ∞
and each pair of paths in T creates a good K2,4. Now we build a set of pairwise reversing
vectors from T . For each path H ∈ T , let us partially label the edges of Kn as follows.
If an edge e ∈ E(Kn) creates a triangle with H , then e is labeled by the vertex of the
triangle which is not incident to e, while the other edges are not labeled. By fixing an
ordering of E(Kn), we can convert the labelings into partially filled vectors satisfying the
following properties. Each vector has length

(

n
2

)

, but only n−2 coordinates are filled. The
filled coordinates contain n−2 different elements, and by the choice of T , the vectors are
pairwise reversing. Let us denote this set of vectors by V (n), then clearly n

√

|V (n)| → ∞.
Now let us fix n ≥ 3 for a moment, and let m ≥

(

n
2

)

be arbitrary. Starting from any
v ∈ V (n), we can construct RP (m − (n − 2)) pairwise reversing permutations π of [m]
by first adding m−

(

n
2

)

unfilled coordinates to v, and then filling the m− (n− 2) unfilled
coordinates of the augmented vector appropriately. These sets of permutations (coming
from the various v ∈ V (n)) are pairwise disjoint, and their union is still pairwise reversing
by the reversing property of V (n). This proves the inequality

RP (m) ≥ |V (n)| ·RP (m− (n− 2)), m ≥
(

n
2

)

.

From here it is straightforward to deduce that

lim sup m

√

RP (m) ≥ n−2
√

|V (n)|.

On the right hand side, n−2
√

|V (n)| is not bounded in n, so m

√

RP (m) is not bounded in
m. Hence Conjecture 5.1 is false. �

6. Concluding remarks

Roughly speaking, Theorems 1.3 and 1.4 “draw their power” from the fact that there
are C4-free (or C2k-free) graphs with many perfect matchings. Their improvements in the
present paper, Theorems 1.5 and 1.7, “draw their power” from the fact that there are
C4-free (or C2k-free) graphs with many Hamiltonian paths.
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In the proof of Theorem 1.5, we employed Lemma 3.1 to establish the inequality

(2) Hn(C4) ≤
n!/2

Hn(C4)
,

and then we used Hamiltonian paths of a C4-free graph to get an asymptotically optimal
lower bound on Hn(C4). In the following subsection we argue that using G-free graphs

to prove lower bounds on Hn(G) does not always yield asymptotically optimal results.

6.1. Constructions using G-free graphs. From Theorem 1.5 and [15] it follows that

for k ∈ {3, 4, 5}, an asymptotically best construction for Hn(Ck) can be obtained by
choosing a Ck-free graph with enough Hamiltonian paths. This is not the case in general
for Hn(G), a counterexample being G = K3,3. Indeed, Brown [3] and Füredi [9] proved
that

(3) ex(n,K3,3) =
1

2
n5/3 + o(n5/3),

which implies that the number of Hamiltonian paths in a K3,3-free graph on n vertices

is at most n
2
3
n+o(n). To see this, observe that the number of Hamiltonian paths is at

most n times the product of the degrees, and then apply the inequality of arithmetic
and geometric means coupled with (3). However, an asymptotically larger construction

exists. Let
−→
G 3 be a complete tripartite, directed graph with parts X1, X2, X3 of size as

equal as possible and the edges between Xi and Xj are directed towards Xj if j − i ≡ 1

(mod 3). The number of directed Hamiltonian paths in
−→
G 3 (in which there are no vertices

of indegree or outdegree 2) is nn+o(n), and it is an easy exercise that no two such paths
contain a K3,3 in their union.

6.2. Using Lemma 3.1. By the proof of Lemma 3.1, we see that the right hand side of
(2) is actually equal to the fractional relaxation of Hn(C4). Hence Lemma 3.1 is useful if
there is no large gap between the clique and the fractional clique number of the underlying
graph. The gap between the clique number and the fractional clique number of a vertex-
transitive graph can be arbitrarily large, a longer discussion about the size of the gap
compared to the number of vertices can be found in [27].

For the problem of determining RP (n), Conjecture 5.1 would imply such a large gap:

Cibulka [5] proved that n
n

2
−o(n) ≤ M2n(C4) ≤ n

n

2
+o(n), hence no improvement on the

upper bound M2n(C4) ≤ n
n

2
+o(n) can be made using only Lemma 3.1 and bounds on

M2n(C4).

Appendix A. Proof of Lemma 3.2

Let p be an odd prime, and let Fp denote the finite field of p elements. Let the vertex

set of the graph G̃ = G̃(p) be the vector space F2
p, and let two vertices (a, c), (b, d) ∈ F2

p

be adjacent in G̃ if and only if ab = c+ d. This is a well-known construction for a dense
C4-free graph, and the spectral properties of G̃ have already been studied, see for example
the work of Mubayi–Williford [28] and Solymosi [31]. Thus it is already established in the

literature that G̃ satisfies all our requirements except that it contains loops. Getting rid
of the loops in a way that the resulting graph is still regular with a large spectral gap is
easy, and here we present one way of doing it.

We partition the vertex set of G̃ into the affine subspaces Pa (a ∈ Fp), where Pa consists

of all pairs from F
2
p whose first coordinate is a. We delete from G̃ all the edges between

the vertices of each Pa (in particular, we delete all loops), and we denote by G = G(p)
11



the resulting graph. We claim that this graph satisfies all the conditions of Lemma 3.2,
and for the proof we collect first some basic properties of G̃.

Lemma A.1. The following statements hold for the graph G̃.

(1) For distinct a, b ∈ Fp, the edges of G̃ between Pa and Pb form a perfect matching.

(2) For a ∈ Fp, the subgraph of G̃ spanned by Pa consists of a perfect matching on
p− 1 vertices and the remaining single vertex with a loop.

(3) For distinct a, b ∈ Fp, every pair consisting of a vertex from Pa and a vertex from

Pb has a unique common neighbor in G̃.
(4) For a ∈ Fp, no pair of different vertices from Pa has a common neighbor in G̃.

Proof. We prove the statements one by one.

(1) Two vertices (a, c) ∈ Pa and (b, d) ∈ Pb are adjacent in G̃ if and only if ab = c+d.
For given distinct a, b ∈ Fp, this equation determines a pairing c ↔ d on Fp.

(2) Two vertices (a, c) ∈ Pa and (a, d) ∈ Pa are adjacent in G̃ if and only if a2 = c+d.
For given a ∈ Fp, this equation determines a pairing c ↔ d on Fp, and a2/2 is the
unique element in Fp whose pair is itself.

(3) Two vertices (a, c) ∈ Pa and (b, d) ∈ Pb have (x, y) ∈ F2
p as a common neighbor in

G̃ if and only if ax = c+ y and bx = d+ y. As a 6= b, the unique solution of these
equations is x = c−d

a−b
and y = bc−ad

a−b
.

(4) Two vertices (a, c) ∈ Pa and (a, d) ∈ Pa have (x, y) ∈ F2
p as a common neighbor

in G̃ if and only if ax = c + y = d + y. These equations have no solution when
c 6= d.

�

We shall deduce Lemma 3.2 from Lemma A.1. The graph G is (p − 1)-regular by
parts (1) and (2) of Lemma A.1, and it is C4-free by parts (3) and (4) of Lemma A.1.
It remains to prove that the eigenvalue p− 1 of G has multiplicity one, and every other
eigenvalue has absolute value at most

√
4p− 5. In order to analyze the spectrum of G,

we identify Fp with {0, 1, . . . , p − 1}, and we order it accordingly: 0 < 1 < · · · < p − 1.
Then, we order F2

p lexicographically: (a, c) < (b, d) if and only if a < b or a = b and c < d.

We consider the adjacency matrix A(G̃) of G̃, where the i-th row (and similarly the
i-th column) corresponds to the i-th vertex of G̃ in the lexicographic order. This is a
p2 × p2 symmetric matrix whose square has a simple structure in terms of p× p blocks.
Indeed, the (i, j)-entry of A(G̃)2 is the number of common neighbors in G̃ of the (not
necessarily distinct) i-th and j-th vertices, hence by Lemma A.1 we get that

(4) A(G̃)2 =









pIp×p 1p×p · · · 1p×p

1p×p pIp×p · · · 1p×p
...

...
. . .

...
1p×p 1p×p · · · pIp×p









,

where Ip×p is the identity matrix, and 1p×p is the matrix containing only ones.
The structure of A(G)2 can be understood by considering the difference between com-

mon neighbors in G̃ and G. Let 1
⊖2
p×p be the class of matrices with exactly p − 2 ones

in every row and column, and zeros elsewhere. By changing G̃ to G, the diagonal blocks
in equation (4) change from pIp×p into (p− 1)Ip×p, while the off-diagonal blocks change
from 1p×p into matrices lying in 1

⊖2
p×p. Indeed, if a, b ∈ Fp are distinct, then for every

vertex (a, c) ∈ Pa there are precisely two vertices (b, d) ∈ Pb which have no common
neighbor with (a, c) in G. These are, within G̃, the neighbor in Pb of the neighbor in
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Pa of (a, c), and the neighbor in Pb of the neighbor in Pb of (a, c). Note that these two
vertices (b, d) ∈ Pb are distinct by part (3) of Lemma A.1. Explicitly, these are the two
vertices (b, d) ∈ Pb such that c−d

a−b
equals a or b (cf. proof of part (3) of Lemma A.1). To

summarize, the analogue of equation (4) is the relation

(5) A(G)2 ∈









(p− 1)Ip×p 1
⊖2
p×p · · · 1

⊖2
p×p

1
⊖2
p×p (p− 1)Ip×p · · · 1

⊖2
p×p

...
...

. . .
...

1
⊖2
p×p 1

⊖2
p×p · · · (p− 1)Ip×p









.

Let V be the space of real column vectors of length p2, and let v ∈ V be the column
vector with entries 1. Note that v is an eigenvector of A(G) with eigenvalue p−1, because
G is (p− 1)-regular. By the spectral theorem for symmetric matrices, it suffices to show
that every eigenvector w ∈ V of A(G) orthogonal to v has eigenvalue λ ≤ √

4p− 5.
Clearly, these conditions imply that w is an eigenvector of the matrix

S(G) := A(G)2 − 1p2×p2

with eigenvalue λ2. By (5) we also see that, in each row of S(G), the sum of the absolute
values of the entries equals (p−2)+(p−1)+2(p−1) = 4p−5. Therefore, by a well-known
inequality on the spectral radius (see [29, Proposition 7.6]), we conclude that

λ2 ≤ ‖S(G)‖∞ = 4p− 5.

The proof of Lemma 3.2 is complete.
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[9] Z. Füredi, An upper bound on Zarankiewicz’ problem, Combin. Probab. Comput. 5 (1996), 29–33.

[10] Z. Füredi, I. Kantor, A. Monti, and B. Sinaimeri, On reverse-free codes and permutations, SIAM J.
Discrete Math. 24 (2010), 964–978.

[11] C. Godsil and G. Royle, Algebraic graph theory, Graduate Texts in Mathematics, vol. 207, Springer-
Verlag, New York, 2001.

[12] D. R. Heath-Brown, A mean value estimate for real character sums, Acta Arith. 72 (1995), 235–275.
[13] A. E. Ingham, On the difference between consecutive primes, Quart. J. Math. 8 (1937), 255–266.
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