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Abstract

We analyze the rank gradient of finitely generated groups with

respect to sequences of subgroups of finite index that do not necessarily

form a chain, by connecting it to the cost of p.m.p. actions. We

generalize several results that were only known for chains before. The

connection is made by the notion of local-global convergence.

In particular, we show that for a finitely generated group Γ with

fixed price c, every Farber sequence has rank gradient c−1. By adapt-

ing Lackenby’s trichotomy theorem to this setting, we also show that

in a finitely presented amenable group, every sequence of subgroups

with index tending to infinity has vanishing rank gradient.

1 Introduction

For a finitely generated group Γ let d(Γ) denote the minimal number of
generators (or rank) of Γ. For a subgroup H ≤ Γ of finite index let

r(Γ, H) = (d(H)− 1)/ |Γ : H| .

The rank gradient of Γ with respect to a sequence (Γn) of finite index sub-
groups is defined to be

RG(Γ, (Γn)) = lim
n→∞

r(Γ,Γn)

when this limit exists. This notion has been introduced by Lackenby [Lac]
and further investigated in the literature, mainly for chains of subgroups.

∗The authors were supported by the Hungarian National Research, Development and

Innovation Office, NKFIH grant K109684 and the ERC Consolidator Grant 648017.
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Recall that a chain in Γ is a decreasing sequence Γ = Γ0 > Γ1 > . . . of
subgroups of finite index in Γ. In this case, it is easy to see that r(Γ,Γn) is
non-increasing and so the limit exists.

The main goal of this paper is to offer a general framework for under-
standing the rank gradient of an arbitrary sequence of subgroups in Γ using
the cost of probability measure preserving (p.m.p.) actions of Γ. For chains
this has been done by the first author and Nikolov in [AbN]. In [AGN] arbi-
trary sequences were analyzed for a special class of groups called right angled
groups.

Let (Gn) be a sequence of finite graphs with an absolute degree bound.
We define the edge density as

e(Gn) = lim
n→∞

|E(Gn)|

|V (Gn)|

when this limit exists and the lower edge density e to be the lim inf of the
same sequence. A rewiring of (Gn) is another sequence of graphs Hn on the
same vertex set as of Gn, such that the bi-Lipshitz distortion of the maps
idV (Gn) stay bounded in n. The combinatorial cost cc(Gn) is defined as the
infimum of the lower edge densities of possible rewirings of (Gn). This notion
has been introduced by Elek [El] as a discrete analogue of the notion of cost.

Our first result shows that actually combinatorial cost is more than an
analogue and, when making an additional convergence assumption, it can be
expressed as the cost of a limiting graphing.

Local-global convergence of graphs has been introduced by Bollobás and
Riordan [BoR] under the name partition metric, while the limiting object
and most of the known results were obtained by Hatami, Lovász and Szegedy
[HLSz]. On the group theory side, the notion is related to the work of Kechris
on weak containment, see [Kec] and [AbE1]. We postpone its definition to
Section 2. For now, it suffices to know that every sequence has a convergent
subsequence and that the limit is a graphing in the sense of Gaboriau [Gab].

Theorem 1. Let Gn be a local-global convergent graph sequence. Then we
have

cost(limGn) = cc(Gn).

Moreover, one can choose rewirings such that the limit defining the edge
density exists.

Note that similar results to Theorem 1 and its consequences (until Corol-
lary 5) have been obtained independently by A. Carderi, D. Gaboriau and
M. de la Salle [CGS, 2017].
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This result can be effectively used to give direct proofs of results on
combinatorial cost using the already established theory of cost. For instance,
Theorem 1 immediately implies the following theorem of Elek [El].

Corollary 2. Let Gn be a graph sequence with girth tending to infinity such
that e(Gn) exists. Then we have

cc(Gn) = e(Gn).

Indeed, by the girth assumption, any subsequential local-global limit of
Gn will be a so called treeing and by Gaboriau [Gab], the cost of a treeing
equals its expected degree divided by two.

In Theorem 1, our graphs a priori have nothing to do with groups. When
they do come from a sofic approximation of Γ, the limiting graphing gives
rise to an essentially free probability measure preserving action of Γ, that
is unique up to weak equivalence in the sense of Kechris [Kec]. This case
of local-global convergence has been analyzed by the first author and Elek
[AbE2].

Following Gaboriau, we say that Γ has fixed price c, if every essentially
free probability measure preserving action of Γ has cost c. Applying Theorem
1 gives us the following new result.

Theorem 3. Let Γ be a finitely generated group of fixed price c. Then

cc(Gn) = c

for any sofic approximation (Gn) of Γ.

This gives an alternate proof of another result of Elek [El] that for an
amenable group Γ, any sofic approximation of Γ has combinatorial cost 1.
Indeed, by the Ornstein-Weiss theorem [OrW], amenable groups have fixed
price 1.

A sequence of subgroups is Farber, if the quotient Schreier graphs Sch(Γ,Γn, S)
form a sofic approximation of Γ. We can now connect the cost to the rank
gradient as follows.

Theorem 4. Let Γ be a finitely generated group of fixed price c. Then we
have

RG(Γ, (Γn)) = c− 1

for any Farber sequence (Γn) in Γ.

The same result is proved in [AbN] for Farber chains. Also, in [AGN] it
is proved that any Farber sequence in a right angled group has rank gradient
zero. Right angled groups have fixed price 1 by Gaboriau [Gab], so this now
immediately follows from Theorem 4. Since amenable groups also have fixed
price 1, we get the following.
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Corollary 5. Let Γ be a finitely generated amenable group. Then we have

RG(Γ, (Γn)) = 0

for any Farber sequence (Γn) in Γ.

When the sequence is not Farber, Corollary 5 is clearly not true, already
for the standard lamplighter group (see [AJN]). However, one can show that
it still holds for finitely presented amenable groups.

Theorem 6. Let Γ be a finitely presented amenable group. Then we have

RG(Γ, (Γn)) = 0

for any sequence (Γn) of distinct subgroups in Γ.

Behind this is the following extension of [AJN] that generalized a theorem
of Lackenby for normal chains [Lac].

We call a sequence of finite graphs Gn dispersive if for any subsequential
local-global limit G of Gn, G has no strongly ergodic component of positive
measure. For the notion of strong ergodicity and a graph theoretic reformu-
lation see Section 5.

Theorem 7. Let Γ be a finitely presented group generated by a finite sym-
metric set S. Let (Γn) be an arbitrary sequence of subgroups of finite index
in Γ. Then at least one of the following holds:

1) the sequence Sch(Γ,Γn, S) is not dispersive;

2) RG(Γ, (Γn)) = 0;

3) there exists some n such that Γn decomposes as a non-trivial amalga-
mated product.

We show that sequences in amenable groups are dispersive, and clearly
they cannot decompose as a non-trivial amalgamated product. Thus Theo-
rem 6 follows as a corollary of Theorem 7. Note that for a chain of subgroups,
being dispersive is equivalent to saying that the limiting profinite action is
not strongly ergodic. Hence, Theorem 7 implies [AJN, Theorem 3]. When
the Γn are normal in Γ, being dispersive is equivalent to saying that (Γn) has
no subsequence with Lubotzky’s property (τ). So Theorem 7 also generalizes
Lackenby’s trichotomy theorem [Lac, Theorem 1.1.].

The structure of the paper is as follows. In Section 2 we define the basic
notions and state some lemmas that we need for our main result. In Section 3
we prove Theorems 1 and 3. We introduce the analogous notions and results
for group actions in Section 4 and prove Theorem 4. We prove the results
on finitely presented groups in Section 5. Finally, in Section 6 we list some
open problems and suggest further directions of research.
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2 Preliminaries

In this section we define the basic objects of investigation of the paper and
state some known results.

2.1 Local-global convergence

Let Ur denote the set of connected, rooted graphs with radius at most r with
all degrees bounded by some integer D. For any graph G, if we pick a vertex
v ∈ V (G) and look at its r-neighborhood BG(r, v) rooted at v we get an
element of Ur. Picking v uniformly at random gives us a probability measure
on Ur which we will denote PG,r, and refer to as the r-neighborhood statistics
of G.

For any finite set X let M(X) denote the set of probability measures on
X . We say that a sequence of graphs (Gn) is locally (or Benjamini-Schramm)
convergent, if for any r the sequence of probability measures PGn,r ∈M(Ur)
converge to a limit distribution as n→ ∞.

We will work with a more refined notion of convergence, and following
notation from [HLSz] we introduce a colored version of the neighborhood
statistics. Let K(k,G) =

{

ϕ : V (G) → {1, . . . , k}
}

denote the set of k-
colorings of the vertices of G. Let Uk

r denote the set of rooted, connected,
k-colored graphs of radius at most r. For any coloring ϕ ∈ K(k,G) we
can associate a colored neighborhood statistic PG,r[ϕ] ∈M(Uk

r ) as before, by
choosing a uniform random vertex v, and then considering its r-neighborhood
BG(r, v), this time together with the coloring ϕ|BG(r,v).

For η1, η2 ∈M(Uk
r ) let

dTV (η1, η2) = sup
A⊆Uk

r

|η1(A)− η2(A)|.

Note that dTV is the total variation distance. As we are operating in a
finite dimensional space all the usual norms are equivalent.

Intuitively, a sequence of graphs (Gn) is local-global convergent if for
any r, k ∈ N and for i, j large enough the colored neighborhood distribution
PGi,r[ϕ] for any k-coloring ϕ can be approximately modeled on Gj, that is
we can find some coloring ψ such that PGi,r[ϕ] and PGj ,r[ψ] are arbitrarily
close.

For a finite graph G let Qk
G,r denote the finite set of possible colored

neighborhood statistics arising from a graph G:

Qk
G,r =

{

PG,r[ϕ] | ϕ ∈ K(k,G)
}

⊆M(Uk
r ).
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Definition 8. We say that a sequence of graphs (Gn) is local-global conver-
gent if for every r, k ∈ N the compact sets (Qk

Gn,r
) converge in the Hausdorff

distance on
(

M(Uk
r ), dTV

)

.

In [HLSz] the authors show that every sequence of bounded degree graphs
has a locally-globally covergent subsequence, and that graphings can be con-
sidered as the limit objects of convergent sequences.

Definition 9 ([HLSz] Definition 3.1). Let X be a Polish topological space and
let µ be a probability measure on the Borel sets in X. A graphing (with degree
bound D) is a graph G on V (G) = X with Borel edge set E(G) ⊂ X ×X in
which all degrees are at most D and

∫

A

e(x,B) dµ(x) =

∫

B

e(x,A) dµ(x) (1)

for all measurable sets A,B ⊆ X, where e(x, S) is the number of edges from
x ∈ X to S ⊆ X.

Every finite graph G is a graphing with X = V (G) and µ the uniform
distribution on V (G).

The colored neighborhood statistics PG,r[ϕ] can easily be defined for a
graphing G, provided that the coloring ϕ : X → {1, . . . , k} is chosen to be
Borel. We pick a random vertex x ∈ X according to µ, and consider its
colored r-neighborhood in G.

As opposed to the finite case we now have to take the closure of all possible
such statistics in order to obtain a compact set. Let

Qk
G,r =

{

PG,r[ϕ] | ϕ : V (G) → {1, . . . , k} Borel
}dTV

⊆M(Uk
r ).

The graphing G is a local-global limit of the sequence (Gn) ifQ
k
Gn,r

→ Qk
G,r

in the Hausdorff distance for all r and k.
We say that two graphings G and H are local-global equivalent, if the

sets Qk
G,r and Qk

H,r are the same. Note that the limit is unique only up to
local-global equivalence. Although we will only be dealing with sequences of
finite graphs, observe that the above definition of convergence makes sense
for sequences of graphings as well.

2.2 Cost

For a graphing G and a vertex x ∈ X let [x]G denote the connected component
of x in G. For two graphings G and H on the same vertex set X we write
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G ∼ H if they have the same connected components, that is [x]G = [x]H
µ-almost surely.

Let RG ⊆ X × X denote the measurable equivalence relation generated
by G, where two points are in the same equivalence class if they are in the
same connected component of G. Clearly G ∼ H if and only if RG = RH up
to measure zero. Note that every component of G is countable.

We will introduce a way of measuring edge sets of graphings. Let µ̃ be
the measure on X ×X obtained the following way. For a measurable subset
C ⊆ X ×X let

µ̃(C) =

∫

X

#
{

y | (x, y) ∈ C, y ∈ [x]G
}

dµ(x).

In other words on each fiber {x} × X we consider the counting measure
concentrated on {x}× [x]G , and integrate these with respect to µ on the first
coordinate.

This measure µ̃ is σ-finite, it is concentrated on RG , and it is easy to see
that in fact it only depends on the relation RG . We can similarly define µ̃′

by taking the counting measures on the fibers [x]G and integrate with respect
to µ over the second coordinate. A standard argument shows that condition
(1) in Definition 9 is equivalent to µ̃ = µ̃′.

The cost of G is defined to be

cost(G) =
1

2
inf

{

µ̃
(

E(H)
)
∣

∣ H ∼ G
}

.

The normalization factor 1
2
is included to account for counting every edge

twice and to ensure coherence with [Gab]. Note that the µ̃ measure of the
edge set of a graphing is half the expected degree of a µ-random point. It is
clear that if H ∼ G, then their cost is the same, in fact the cost only depends
on RG .

The following lemma proved in [Gab] sheds some light on the bi-Lipschitz
condition used in the definition of combinatorial cost. We will also use it in
the proof of Theorem 1.

Lemma 10 (Gaboriau). Let G be a graphing. For every ε > 0 there exists
some integer L and some H ∼ G such that µ̃

(

E(H)
)

< cost(G) + ε and G
and H are L-bi-Lipschitz equivalent, that is the graph metrics they define on
the connected components are within a factor of L from each other.

2.3 Combinatorial cost

The combinatorial analogue of cost for sequences of graphs is due to Elek [El].
Let (Gn) be a sequence of graphs with |V (Gn)| → ∞, and degree bounded

7



by D. The sequence (Hn) is a rewiring of (Gn) – which we will denote
(Hn) ∼ (Gn) – if they have the same vertex set, and the distances defined
by the graphs are uniformly bi-Lipschitz equvialent, that is V (Gn) = V (Hn)
and there exists some natural number L such that for all n ∈ N

1

L
dHn

(x, y) ≤ dGn
(x, y) ≤ LdHn

(x, y) for all x, y ∈ V (Gn).

The lower edge density of a graph sequence is defined as follows.

e
(

(Hn)
)

= lim inf
n→∞

|E(Hn)|

|V (Hn)|
.

Definition 11. The combinatorial cost of a sequence (Gn) is the infimum
of the lower edge densities of its rewirings:

cc
(

(Gn)
)

= inf
{

e
(

(Hn)
)
∣

∣ (Hn) ∼ (Gn)
}

.

3 The cost of a local-global limit

In this section we will prove Theorems 1 and 3.

3.1 Proof of the main result

We aim to show that the combinatorial cost of a locally-globally convergent
graph sequence is equal to the cost of its limit. The idea of the proof is that
if there is a cheap rewiring of the sequence (Gn), then we can encode it into
a coloring which then can be modeled with small error on the limit graphing
G. Using this coloring on the limit we can reconstruct a cheap graphing that
(after some small modification) spans the same connected components as G.
In order to make this reconstruction process possible we will need to break
the possible local symmetries of the graphs.

Proof of Theorem 1. Fix ε > 0 and suppose that (Hn) is an L-rewiring
of Gn such that e(Hn) < cc(Gn) + ε. Set r = L2 + 1, R = 2r.

As the degrees of the Gn are bounded by D, there is a constant k such
that each Gn can be vertex colored by k colors so that no two vertices within
distance 2R have the same color. Fix such a coloring ηn : V (Gn) → {1, . . . , k}
for each Gn. The role of these ηn is merely to break all possible symmetries
of the R-neighborhoods.

For each vertex v ∈ V (Gn) define its type to be the following data. Let
(αv, ηv) denote the colored R-neighborhood of v in Gn, that is BGn

(R, v)
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rooted at v, together with ηn|BGn (R,v)
. Let Fv denote the set of edges of

Hn that connect two vertices from BGn
(R, v). The type of v is the triple

(αv, ηv, Fv). We think of this as a rooted, vertex colored graph with some
extra distinguished edges (Fv) indicated. Note that ηv assigns distinct colors
to the vertices of αv.

Let T denote the set of all possible types. Note that |T | is finite, as k
and R are fixed. Now assigning each vertex its type can be considered as a
coloring of V (Gn) by |T | colors. Let ϕn denote this coloring:

ϕn : V (Gn) → T, ϕn(v) = (αv, ηv, Fv) for all v ∈ V (Gn).

Observe that ηn is a function of ϕn: for all v ∈ V (Gn), ηn(v) equals the color
of the root of ϕn.

For any vertex v ∈ V (Gn) the edge (v, u) ∈ E(Gn) connecting v to its
neighbor u can be traversed using at most L edges of Hn. Choose a shortest
path between v and u in Hn. Because the length of the steps on the edges of
Hn are bounded by L in terms of the graph distance in Gn the r = L2 + 1-
neighborhood of v in Gn already contains this shortest path. This holds for
all neighbors u. This fact will be reflected in the type of v, namely for every
neighbor of the root of αv there will be a path of length at most L using edges
from Fv connecting the root to the neighbor. We will refer to this property
by saying that Fv witnesses L-bi-Lipschitz equivalence at the root.

Since the Gn converge locally-globally to G if we choose n large enough,
we can find a Borel coloring ϕ : X → T such that

dTV
(

PGn,r[ϕn], PG,r[ϕ]
)

< δ,

that is we can model the local statistics of ϕn on G with at most δ error.
Choose δ such that δ(D + 1

2
DL) < ε.

The type of x gives a suggestion on how to construct a cheap graphing
around x, which is Fx, the collection of distiguished edges. The idea is
to consider the r-neighborhood of x in G, and choose the edges of some
graphing H locally according to Fx. This H would have the same connected
components as G because Fx witnesses bi-Lipschitz equivalence at the root,
and would be cheap because the expected H-degree of a point is close to
the expceted Fv-degree of the root in PGn,r[ϕn]. The problem is that the
r-neighborhood of x in G is a priori not the same as what the type of x
suggests it is.

However, we will show that the above idea works for most of the points,
and after a slight modification the resulting graphing will be a cheap gener-
ating graphing of the relation RG .

9



First we construct a Borel coloring η : X → {1, . . . , k} from ϕ imitating
the way the ηn could be recovered from the ϕn. Let x ∈ X , and let ϕ(x) =
(αx, ηx, Fx) be the type assigned to x by ϕ. The type suggests a color for
the root, namely ηx(o) where o is the root of αx. So we set η(x) = ηx(o).
Observe that ηx is a coloring of the rooted graph αx, and a priori neither αx
nor ηx has anything to do with the structure of G. The value η(x) on the
other hand is a concrete color from {1, . . . , k} that is assigned to the point
x ∈ X .

It will turn out that that for most points x ∈ X , their η-colored neigh-
borhood in G is the same as the colored neighborhood (αx, ηx) suggested by
thier type ϕ(x), and η breaks the possible local symmetries of G by being
injective on the neighborhood. We define Y1 as the set of points where this
does not hold up to distance r:

Y1 =
{

x ∈ X
∣

∣

∣

(

BG(r, x), η|BG(r,x)

)

≇
(

Bαx
(r, o), ηx|Bαx (r,o)

)

}

⋃

{

x ∈ X
∣

∣

∣
η|BG(r,x) is not injective

}

.

For any x outside Y1 we can identify Bαx
(r, o) with BG(r, x) using their

colorings. For any v ∈ V (αx) there exists a unique y ∈ BG(r, x) with η(y) =
ηx(v). Such a y exists because of the isomorphism, and the injectivity of the
colorings implies uniqueness. Later on we will denote this unique y by yx,v.
The identification works the other way around as well, for every y in BG(r, x)
we can find a unique v ∈ V (αx) such that ηx(v) = η(y). Let us denote this
unique v by vx,y.

We use this identification to reconstruct our rewiring on G. Define the
edges of a graphingH0 around x ∈ X\Y1 as follows: for every edge (o, v) ∈ Fx
that connects the root o of αx with some other point v ∈ V (αx) we include
the edge (x, yx,v) in H0.

Recall that we aim to show that H0 (with some small later adjustments)
spans the same connected components as G.

Definition 12 (Perfect points). Call a point x ∈ X perfect, if the following
conditions hold:

1) Fx witnesses L-bilipchitz equivalence at the root;

2) all the edges in Fx that ϕ suggests in Bαx
(r, o) are indeed chosen to be

in the edge set of H0.

For a type ϕ(x), which is a rooted graph of radius R = 2r with some
additional decorations we write ϕ(x)|r for the graph where we simply forget
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everthing outside radius r. Similarly when v ∈ Bαx
(r, o) write ϕ(x)|r,v for

the rooted, decorated graph we get by considering v as the root, and then
forgetting everything outside radius r from v.

Definition 13 (Problematic points). Let Y2 be the set of points where one
of the following holds.

i) ϕ does not witness the bi-Lipschitz connectivity at the root;

ii) ϕ fails to capture the local η-colored structure (up to distance R);

iii) η is not injective up to radius R;

iv) there is some y close to x where ϕ(y)|r differs from ϕ(x)|r,yx.

We call these points problematic.

Y2 =
{

x ∈ X
∣

∣

∣
Fx does not witness bi-Lipschitz equivalence at the root

}

⋃

{

x ∈ X
∣

∣

∣
(BG,R(x), η|BG,R(x)

) ≇ (αx, ηx)
}

⋃

{

x ∈ X
∣

∣

∣
η|

BG,R(x)
is not injective

}

⋃

{

x ∈ X \ Y1

∣

∣

∣
∃v ∈ Bαx

(r, o) s.t. ϕ(x)|r,v ≇ ϕ(vx)|r

}

.

The next lemma shows that because no such incoherencies happen in Gn

the measure of the problematic points will be small. Also note that Y1 ⊂ Y2,
as in Y2 we include all points where the local structure is not captured up to
distance R instead of r.

Lemma 14. The points in (X \ Y2) are perfect and µ(Y2) < δ.

Proof. The PGn,r[ϕn] and PG,r[ϕ] are probability distributions on the set UT
R

of rooted, T -colored graphs of radius at most R, where T is the set of all
possible types.

Let (β, oβ, ψ) denote such a graph with root oβ and coloring ψ : V (β) →
T . For a vertex u ∈ V (β) its type ψ(u) ∈ T is the rooted k-colored graph
(αv, ηv) with the additional distingushed edges Fv. There is some root oαv

of
αv, and this way we define the coloring ηψ : V (β) → {1, . . . , k} by ηψ(v) =
ηv(oαv

). This ηψ is defined from ψ the same way as η (on X) is defined from
ϕ. Now let (β, oβ, ψ) be random with distribution PGn,r[ϕn], then

PPGn,R[ϕn]

[

(αoβ , ηoβ)
∼= (β, ηψ)

]

= 1.

11



The above equality just restates that the type encodes the local colored
structure (specifically the color of the root), but this formulation shows that
this property will be inherited with small error when the total variation
distance is small.

This isomorphism again enables us to identify αoβ with β. For any v ∈
V (αoβ) write yoβ ,v for the unique y ∈ V (β) for which ηoβ(v) = ηψ(y).

We restate that (Hn) is a rewiring by saying that the distinguished edges
witness the L-bi-Lipschitz equivalence at the root:

PPGn,R[ϕn]

[

Foβ witnesses L-bi-Lipschitz equivalence at the root
]

= 1.

We also restate the fact that the type of v, which is all the information
up to distance R = 2r, includes all the information in the r-neighborhood of
some other point u, provided that u is within distance r from v.

PPGn,R[ϕn]

[

ψ(oβ)|r,v ∼= ψ(yoβ ,v)|r for all v ∈ V
(

Bαoβ
(r, oαoβ

)
)

]

= 1.

Finally we restate that η distinguishes all points in the R-neighborhoods.

PPGn,R[ϕn] [ηψ is injective] = 1.

We see that the four events together hold with probability 1 with respect
to PGn,R[ϕn]. Since PG,r[ϕ] is close to PGn,R[ϕn] we get that the same holds
for ϕ and G with probability at least 1− δ, which implies µ(Y2) < δ.

If x ∈ X \ Y2 and y ∈ BG(r, x) then y ∈ X \ Y1, which means all the
distinguished edges starting from y suggested by ϕ(y) are indeed in H0, and
by the definition of Y2 we know that these are exactly the ones that ϕ(x)
would suggest. It is also clear that Fx has to witness generation, as otherwise
x would be in Y2. This implies that x is perfect.

Adding all the edges leaving the points in Y2 we get H:

H = H0 ∪
{

(x, y) ∈ E(G)
∣

∣ x ∈ Y2, y ∈ X
}

.

Lemma 15. H has the same connected components as G, and µ̃
(

E(H)
)

≤
|E(Hn)|
|V (Hn)|

+ ε.

Proof. H will have the same connected components as G, because for any
edge (x, y) ∈ E(G) where x is perfect the connection is witnessed by the
r-neighborhood of x. If x is not perfect, then x ∈ Y2, so (x, y) ∈ E(H) by
definition.

12



We now aim to show that H is indeed a cheap generator for the equiva-
lence relation.

µ̃
(

E(H)
)

≤ µ̃
(

E(H0)
)

+ µ̃
(

{(x, y) ∈ E(G) | x ∈ Y2, y ∈ X}
)

≤

≤ µ̃
(

E(H0)
)

+ δD.

For every point x ∈ X let degFx
(o) denote the number of edges in Fx

leaving the root of αx. It also makes sense to talk about the expectation of
this F -degree with respect to colored neighborhood statistics, as the F -degree
of the root can be determined from its type.

µ̃
(

E(H0)
)

=
1

2

∫

X

degH0
(x) dµ ≤

1

2

∫

X

degFx
(o) dµ =

1

2
EPG,r [ϕ]

[

degF (o)
]

≤

≤
1

2

(

EPGn,r [ϕn]

[

degF (o)
]

+ δDL
)

=
|E(Hn)|

|V (Hn)|
+

1

2
δDL.

Here we used the fact that there can be no more than DL edges leaving
the root in Fv (because of the bi-Lipschitz condition), and that the two
distributions are close in total variation. Putting all this together and using
that we chose δ to ensure that δ(D + 1

2
DL) < ε we get

µ̃
(

E(H)
)

≤
|E(Hn)|

|V (Hn)|
+ ε.

By the choice of (Hn) we can assume that |E(Hn)|
|V (Hn)|

≤ cc(Gn) + 2ε, which

implies µ̃(E(H)) < cc(Gn)+3ε. This shows the inequality cost(G) ≤ cc(Gn).
The other inequality is proved exactly the same way. The condition that

(Hn) is a rewiring was only used to ensure that the bi-Lipschitz constant L
does not depend on n, only on ε. To prove that cost(G) ≥ cc(Gn) we start
by picking a cheap L-bi-Lipschitz generator for the single graphing G using
Lemma 10, and by local-global convergence we know that for n large enough
we can copy it to Gn with small error.

As for any large enough n and m the graphs Gn and Gm are arbitrarily
close in the local-global topology we can do the same copying argument
between the two. We fix the constant L first, and then choose n and m
accordingly. This shows that (for all L) the rewirings (Hn) can indeed be
choosen such that the limits defining the edge densities exist. This finishes
the proof of Theorem 1.

13



3.2 Sofic approximations

Using Theorem 1 we will show that sofic approximations of a group with
fixed price c have combinatorial cost c as well.

Proof of Theorem 3. The sequence Gn of S-edge-labeled graphs converges
to Cay(Γ, S) in the Benjamini-Schramm sense, so any subsequential local-
global limit will be a graphing of an essentially free action of Γ, which by the
fixed price assumption implies that it has cost c.

First pick a locally-globally convergent subsequence Gnk
with limit G1.

cc(Gn) ≤ cc(Gnk
) = cost(G1) = c.

Now assume that cc(Gn) < c. We pick an L large enough such that there
is some L-bi-Lipschitz rewiring (Hn) with e(Hn) < c. As e is defined by a
liminf we can choose a subsequence nl such that

lim
|E(Hnl

)|

|V (Hnl
)|
< c.

Now by passing to a further subsequence we can assume that the (Gnl
)

converge locally-globally to some G2. The Hnl
witness that cc(Gnl

) < c, while
local-global convergence implies cc(Gnl

) = cost(G2) = c by Theorem 1. This
is clearly a contradiction, hence cc(Gn) = c.

4 Group actions

The same notions and results exist in the world of measure preserving group
actions, where convergence with respect to the weak containment topology
takes the place of local-global convergence. The analogous definitions and
statements will be introduced in this section.

4.1 Groupoid cost

Let Γ be a finitely generated group, generated by the finite symmetric set
S = S−1. Let (X, µ) be either a standard Borel probability space orX a finite
set with µ the uniform measure on X . A probability p.m.p. action f of Γ is a
homomorphism from Γ to the group of measure preserving transformations of
(X, µ). The image of some γ ∈ Γ under this homomorphism will be denoted
by fγ.

Any such p.m.p. action gives rise to a groupoid denoted Mf : endow Γ
with the discrete topology and counting measure, consider Mf = X×Γ with

14



the product Borel structure and product measure µ̃. We also define a partial
product on X × Γ: (x1, γ1) · (x2, γ2) = (x1, γ1γ2) whenever x2 = fγ1(x1).
The inverse is defined by (x, γ)−1 = (fγ(x), γ

−1), and so X × Γ becomes a
groupoid with respect to this partial product. We think of the element (x, γ)
as an arrow pointing from x to fγ(x), with the arrow labeled by γ.

The notion of a generating subset of the groupoid is just as one would
expect it: a subset generates, if all elements ofMf can be written as a product
of elements and their inverses chosen from the subset.

For A,B ⊆Mf we will write

A · B = {a · b | a ∈ A, b ∈ B, and a · b is defined}.

Also let E = X × {e}, where e is the identity element of Γ. Using our
notation A generates Mf if and only if

Mf =
∞
⋃

n=1

(A ∪ A−1 ∪ E)n.

The groupoid cost of f is

gcost(f) = inf{µ̃(A) | A generates Mf}.

The generators S of the group give rise to a specific generating subset
of Mf , namely XS = X × S. We will say that a generating subset A is
L-bi-Lipschitz, if all the elements of XS can be generated by using at most
L arrows from A and vice versa. More precisely we require that

XS ⊆ (A ∪ A−1 ∪ E)L, and A ⊆ (XS ∪X
−1
S ∪ E)L.

Note that while the actual value of the bi-Lipschitz constant L may depend
on the choice of S, the property of A being a bi-Lipschitz generating subset
(with some bi-Lipschitz constant) does not.

In this setting Lemma 10 was stated by Abért and Nikolov [AbN]. It says
that by paying an arbitrarily small amount, we can choose the generating
subset to be bi-Lipschitz. That is, for any ε > 0 there exists some integer L
and an L-bi-Lipschitz generating subset A ⊆Mf such that µ̃(A) < gcost(f)+
ε.

4.2 The weak containment topology

The notion of weak containment of actions was introduced by Kechris [Kec].
The topology described below on the weak equivalence classes was defined by
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Abért and Elek in [AbE2] and then studied further by Carderi in [Car]. They
showed that the topology of local-global convergence is a compact topology
on the weak equivalence classes of actions.

For an action f of the group Γ and a point x ∈ X the Γ-orbit of x admits
a Schreier graph structure: for two points y, z ∈ Γx in the orbit draw an
oriented edge from y to z labeled by some s ∈ S if fs(y) = z. Denote this
graph by Sch(Γ, f, x).

The only difference compared to the local-global convergence of graph
sequences and graphings is that in this case we consider the neighborhoods
in the Schreier graphs together with the edge labeling by the generators S.

To an action f we again associate a set Qk
f,r that is the closure of all local

statistics arising from Borel k-colorings with respect to the total variation
distance. We say that an action f weakly contains another action g (denoted
f � g) if Qk

g,r ⊆ Qk
f,r for all r and k. This means that all colorings of g can be

modeled on f with arbitrarily small error. The actions are weakly equivalent
if they both weakly contain the other, that is Qk

g,r = Qk
f,r

Convergence with respect to the weak containment topology is defined
by the convergence of Qk

fn,r
for all r, k as compact sets with respect to the

Hausdorff distance. The intuitive meaning of this convergence is the same
as the one for local-global convergence. Abért and Elek showed that the
topology induced by this convergence notion is compact, in particular every
convergent sequence has a limit [AbE2].

Kechris showed that if f and g are free p.m.p. actions and f � g, then
cost(Rf ) ≤ cost(Rg) [Kec, Corollary 10.14]. Here Rf denotes the orbit
equivalence relation generated by the action f . Abért and Weiss extended
this beyond free actions in [AbW]: for any actions with f � g the groupoid
cost satisfies gcost(f) ≤ gcost(g). This implies that the groupoid cost is well
defined on weak equivalence classes, and studying the continuity properties
of the groupoid cost with respect to the weak containment topology makes
sense.

4.3 The groupoid cost of weak containment limits

Following the proof of Theorem 1 we get a result for group actions.

Proposition 16. Suppose that the sequence f1, f2, . . . of p.m.p. actions is
convergent in the weak containment topology to the p.m.p. action f . Then

lim sup
n→∞

gcost(fn) ≤ gcost(f). (2)
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This is a semicontinuity result for the groupoid cost with respect to the
weak containment topology. The proof follows exactly the same steps as in
Theorem 1: we choose a cheap bi-Lipschitz generating set for the groupoid
Mf , record all local information into a coloring of X , modell this coloring
on the fn when n is large enough with some small error and build a cheap
generating set for Mfn by decoding the coloring.

The whole process is actually slightly easier in this setting, because there
is no need to break the local symmetries of the graphs as the Schreier edge
labeling already takes care of that. As we are not imposing a uniform bound
on the complexity of generation by talking about ”combinatorial groupoid
cost”, we only get an inequality.

However, for the inequality we only need that colorings of f can be mod-
eled with small error on the fn, and we don’t have to require it the other
way around. That is, if the sequence ”asymptotically weakly contains” f ,
then we have (2). This can be thought of as an asymptotic version of the
monotonicity results by Kechris [Kec], and Abért-Weiss [AbW].

Remark (The ultraproduct technique). These results, together with
Theorem 1 for graphings of free p.m.p. actions can be obtained by using the
ultraproduct techniques introduced in [AbE2] and [Car], Carderi’s result on
ultraproduct actions being weakly equivalent to some standard action and
the monotonicity results of Kechris and Abért-Weiss.

If one modifies (the somewhat arbitrary) choice of lower edge density in
the definition of the combinatorial cost to edge density along an ultrafilter ω
by taking an ultralimit instead of a liminf, then this modified combinatorial
cost of the sequence will equal the cost of the ultraproduct graphing.

4.4 Rank gradient in groups with fixed price

We need one further tool to prove Theorem 4. The following lemma is stated
in [AGN, Lemma 21].

Lemma 17. Let Γ be a countable group, and H a subgroup of finite index in
Γ. Let f be the right coset action of Γ on Γ/H. Then we have

r(Γ, H) =
rank(H)− 1

|Γ : H|
= gcost(f)− 1.

Proof of Theorem 4. First we show that lim inf r(Γ,Γn) ≥ c − 1. We
select a subsequence Γnk

such that r(Γ,Γnk
) converges to the liminf. Taking

the diagonal product of the corresponding group actions fnk
we get an action

f of Γ that factors onto each fnk
, which implies gcost(f) ≤ gcost(fnk

) for
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every nk. The measure of the set of fixed points of a group element can only
increase for factros, which implies that f is essentially free because of the
Farber condition. Using Lemma 17 and gcost(f) = c we get

lim
k→∞

r(Γ,Γnk
) = lim

k→∞
(gcost(fnk

)− 1) ≥ gcost(f)− 1 = c− 1.

Similarly we can choose a subsequence such that

lim sup r(Γ,Γn) = lim r(Γ,Γnl
).

By passing to a further subsequence we can also assume that the actions fnl

converge in the weak containment topology to some action f̂ . This limit is
essentially free by the Farber condition, so gcost(f̂) = c. Using Proposition
16 we get

lim
l→∞

r(Γ,Γnl
) = lim

l→∞
(gcost(fnl

)− 1) ≤ gcost(f̂)− 1 = c− 1.

Remark (alternative proof). The second part of the proof can be obtained
without Proposition 16 – which we only sketched – by using a result from
[AGN].

After choosing a subsequence such that lim sup r(Γ,Γn) = lim r(Γ,Γnl
),

[AGN, Theorem 8] states that lim r(Γ,Γnl
) ≤ cc

(

Sch(Γ,Γnl
, S)

)

− 1. Using
Theorem 3 we get

lim
l→∞

r(Γ,Γnl
) ≤ cc

(

Sch(Γ,Γnl
, S)

)

− 1 = c− 1.

5 The trichotomy theorem

In this section we introduce strong ergodicity, and prove the results on finitely
presented groups.

5.1 Strong ergodicity

Let f be a p.m.p. action of the countable group Γ on a standard Borel space
(X, µ). A sequence An of measurable subsets is called almost invariant, if

lim
n→∞

µ(fγAn△An) = 0, for all γ ∈ Γ.
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The action f is strongly ergodic, if for any almost invariant sequence An
we have limn→∞ µ(An)

(

1− µ(An)
)

= 1.
We will make use of the following result of Abért and Weiss [AbW, The-

orem 3].

Theorem 18. Let f be an ergodic p.m.p. action of a countable group Γ on
a standard Borel space (X, µ). If f is not strongly ergodic, then f is weakly
equivalent to f×I,which is the diagonal action on (X, µ)×[0, 1] with Γ acting
trivially on the second coordinate.

5.2 Dispersive actions

Let Sch(Γ,Γn, S) be a sequence of Schreier graphs, and let fn denote the
corresponding finite actions. We call the sequence Sch(Γ,Γn, S) dispersive
if for any subsequential weak containment limit f of fn, f has no strongly
ergodic, ergodic component of positive measure.

Lemma 19. Let Γ be a group generated by the finite set S and Γn a sequence
of subgroups such that the corresponding Schreier graphs Sch(Γ,Γn, S) form
a dispersive sequence. Then for every ε > 0 and k ∈ N we can find some
n such that the vertex set V of Sch(Γ,Γn, S) can be partitioned into k sets
A1, . . . , Ak such that

1. 1
k
− ε ≤ |Ai|

|V |
≤ 1

k
+ ε for all Ai,

2.
∑

|SAi \ Ai| < ε|V |.

Proof. Pick a subsequence Γnl
such that the Sch(Γ,Γnl

, S) converge in the
weak containment topology to some Γ action f on a standard Borel space
(X, µ). As the sequence is dispersive we know that f has no strongly egrodic,
ergodic components of positive measure.

We claim that X can be partitioned into k disjoined Borel sets B1, . . . , Bk

of approximately equal measure that are almost invariant, namely

∑

s∈S

∑

1≤i≤k

µ(sAi \ Ai) < ε/2.

Assume first that f is ergodic. Then it is not strongly ergodic, and we
can use Theorem 18. The base space of f × I can be easily partitioned
into k invariant subsets, specifically B′

i = (X, µ) × [(i − 1)/k, i/k]. Weak
equivalence guarantees that this partition can be modeled with arbitrarily
small error (e.g. ε/2) for f on the set X, and thus we have the desired Bi.
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When f is not ergodic the we can divide X into two invariant sets X1

and X2 of positive measure. If f is ergodic on one of the Xi, then it is not
strongly ergodic on that part and hence we can use the above argument to
partion that Xi. If f is not ergodic on Xi, then we can again divide it into
invariant subsets of positive measure.

Since all positive measure ergodic components are not strongly ergodic,
we can continue this procedure and find a partition into some tiny (measure
ε/100) invariant sets and some non-strongy-ergodic components, which we
can partition into almost invariant sets. Putting these blocks together into
k sets we can get an almost invariant partition into pieces with measure in
[1/k − ε/2, 1/k + ε/2].

Now since f is a limit, for some nl large enough we can model the partition
B1, . . . , Bk with error ε/2 on Sch(Γ,Γnl

, S), and get the desired Ai.

5.3 Finitely presented groups

We now briefly discuss how we will present finite index subgroups of finitely
presented groups. Notation and general framework follows [AJN].

Let Γ = 〈S | R〉 be a finitely presented group, and H ⊆ Γ a finite index
subgroup. Let T denote a spanning tree of the Schreier graph Sch(Γ, H, S).
We select a transversal T for the subgroup H as follows: for each coset γH
we consider the unique path in Sch(Γ, H, S) from the root H to γH , and
select the corresponding S-word to be in T . This T is called the left Schreier
transversal corresponding to T with respect to S. For a group element γ ∈ Γ
let γ̃ denote the unique element in T such that γH = γ̃H .

For every edge e = (γH, sγH) of Sch(Γ, H, S) we put T (e) = (s̃γ)−1sγ̃. It
is known that the {T (e)} belong to and generate H . Note that if e ∈ E(T ),
then T (e) = 1.

For a relation r = sl . . . s1 ∈ R and group element t ∈ T let rt = t−1rt.
This rt is an element of H , and can be considered as a word in the T (e):
rt = T (el) . . . T (e1), where ei = (si−1 . . . s1tH, si . . . s1tH). We are going to
use the fact that these relations give a presentation of H:

H =
〈

{T (e)}e∈E(Sch(Γ,H,S))\E(T ) | {rt}r∈R,t∈T
〉

.

Suppose a group H has subgroups Hi ⊆ H (1 ≤ i ≤ k) which all contain
a fixed subgroup L and H ∼= ∗LHi. We say that this decomposition is non-
trivial, if L has index at least 3 in at least two of the subgroups.

Proof of Theorem 7. Assume that Sch(Γ,Γn, S) is dispersive and
RG(Γ, (Γn)) > 0. We will show that some Γn decomposes as a non-trivial
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amalgamated product. We can pass to a subsequence and assume that
d(Γn)−1
[Γ:Γn]

> c > 0 for all n. Choose an integer k such that

(

3

2
|S|+ 1

)

1

k
≤ c/2.

Let M be the sum of the lengths of the relations in R. As the sequence
is dispersive, using Lemma 19 we can choose some n such that the vertex
set V

(

Sch(Γ,Γn, S)
)

can be split into the disjoint union of k sets A1, . . . , Ak
such that

1. [Γ:Γn]
k

− [Γ:Γn]
2k

< |Aj| <
[Γ:Γn]
k

+ [Γ:Γn]
2k

for all j ∈ {1, . . . , k} and

2. |∂(A1, . . . , Ak)| <
1

k(1+M2)
[Γ : Γn], where

∂(A1, . . . , Ak) =
{

e ∈ E
(

Sch(Γ,Γn, S)
)
∣

∣ e = (x, y), x ∈ Aj , y ∈ Al, j 6= l
}

.

As we have [Γ : Γn] → ∞ we can also make sure that we choose n large
enough so that k−1

[Γ:Γn]
≤ c/2. Put H = Γn and follow the above construction

for a presentation of H . Note that
∣

∣V
(

Sch(Γ, H, S)
)
∣

∣ = [Γ : H ].
Define Y to be the collection of generators T (e) that share a relation with

an inbetween edge. More precisely let T (e) ∈ Y if either e ∈ ∂(A1, . . . , Ak) or
there exists a relation rt = T (e1)

±1 . . . T (el)
±1 for which some ej ∈ ∂(A1, . . . , Ak)

and some em = e. Let Xi be the set of generators T (e) for which both end-
points of e are in Ai.

Define the subgroups L = 〈Y 〉 and Hi = 〈Y ∪Xi〉. Clearly L ≤ Hi for all
i.

Lemma 20. H decomposes as the amalgamated product of the Hj over L,
H ∼= ∗LHi.

We postpone the proof of the lemma, and show that this decomposition
is non-trivial. Suppose that L has index at most 3 in H1, H2, . . . , Hk−1. Then
each of these Hi (1 ≤ i ≤ k − 1) are generated by L and at most 1 other
element. Thus H is generated by Hk (which includes L) and at most k − 1
other elements, d(H) ≤ d(Hk) + k − 1.

It is easy to bound the cardinality of |Xk|:

|Xk| ≤ |S||Ak| ≤ |S|

(

[Γ : H ]

k
+

[Γ : H ]

2k

)

.

Let r = sl . . . s1 be a relation of Γ of lenght l. Note that there are at
most l|∂(A1, . . . , Ak)| different lifts rg̃ = T (e1)

±1 . . . T (el)
±1 of r for which

some ej ∈ ∂(A1, . . . , Ak). Also for each such relation of H we have at most l
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generators T (e) ofH that are getting into Y . Thus, if {lj} is the set of lenghts
of the relations of Γ (so M =

∑

lj), then we can bound the cardinality of Y .

|Y | ≤ |∂(A1, . . . , Ak)|(1 +
∑

l2j ) ≤ |∂(A1, . . . , Ak)|(1 +M2) ≤
[Γ : H ]

k
.

Putting our bounds together we get

d(H) ≤ d(Hk) + k − 1 ≤ |Xk|+ |Y |+ k − 1 ≤

(

3

2
|S|+ 1

)

[Γ : H ]

k
+ k − 1.

This however gives an upper bound on the rank quotient at H :

d(H)− 1

[Γ : H ]
≤

(

3

2
|S|+ 1

)

1

k
+

k − 1

[Γ : H ]
≤ c/2 + c/2 = c.

This contradicts our assumption that each such quotient is more than c,
hence the decomposition is non-trivial.

Proof of Lemma 20. The argument follows the one in [AJN, Section 3].
Consider the following sets of relations. Let Ri be the set of all the

rt = T (e1)
±1 . . . T (el)

±1 where either all ej have both endpoints in Ai or
some ej is in ∂(A1, . . . , Ak). Now Ri∪Rj is the same set R̄ for all pairs (i, j),
that is the relations having an inbetween edge. Define the groups Ti by the
presentations 〈Xi ∪ Y | Ri〉, let T̄ = 〈Y | R̄〉. We have a homomorphisms
φj : T̄ → Ti by the inclusion of Y into Xi ∪ Y . From the presentations we
see that H ∼= ∗T̄Ti.

Each Ti surjects onto Hi (and T̄ surjects onto L) by mapping the abstract
generators to their counterparts in H . By the universal property of the
amalgamated product one can see H ∼= ∗LHi.

Proposition 21. For a countable amenable group Γ all sequences (Γn) of
distinct finite index subgroups are dispersive.

Proof. It is a result of Schmidt [Sch, Theorem 2.4] that amenable groups
admit no strongly ergodic actions. If any subsequential limit would have an
ergodic component of positive measure that is strongly ergodic, then restrict-
ing the action to that component would contradict [Sch].

As amenable groups cannot decompose as non-trivial amalgamated prod-
ucts this proves Theorem 6.
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6 Open problems

Note that an even stronger form of Theorem 4 would simply express the
rank gradient of a local-global convergent sequence as the cost of the limiting
graphing of the sequence. As of this moment, we do not know how to prove
or disprove this. The obstacle is that combinatorial cost handles sequences
of generating sets with a bounded complexity with respect to some standard
generating set. A priori, it could happen that actual small generating sets
over the sequence need a very aggressive growth of complexity, and the local-
global metric is too weak to connect such generating sets over the sequence.
This is the same obstacle that makes the proof of Theorem 7 somewhat tricky.

The following problem connects two well-known unsolved problems, one
in ergodic theory, the other in 3-manifold theory.

Problem 22. Let Γ be a finitely generated group. Does there exist c such
that for any Farber sequence (Γn) in Γ, we have RG(Γ, (Γn)) = c?

Equivalently, one can ask whether RG(Γ, (Γn)) exists for any Farber se-
quence (Γn) in Γ. Indeed, an advantage of Farber sequences over Farber
chains is that they are closed to merging.

By Theorem 4, a negative answer to Problem 22 would immediately give
a negative answer to the Fixed Price problem of Gaboriau [Gab], that asks
whether for an arbitrary countable group Γ, all essentially free p.m.p. actions
of Γ have the same cost. A positive answer, on the other hand, would specif-
ically show that in a finitely generated group, any two normal chains with
trivial intersection have the same rank gradient, which by [AbN] would then
solve the strong Rank vs Heegaard genus problem on hyperbolic 3-manifolds.

One possible approach to Problem 22 is through graph theory as follows.
Let G be a finite, connected graph with maximal degree D. For L ≥ 1 let

cL(G) = min
H

|E(H)|

|V (G)|

where H runs through all rewirings of G with bi-Lipschitz constant at most
L. It is easy to see that

1− o(1) ≤ cL(G) ≤ D.

The following problem is related to the Fixed Price problem of Gaboriau.

Problem 23. Let (Gn) be a Benjamini-Schramm convergent sequence of
graphs of bounded degree. Does cL(Gn) converge for every L ≥ 1?

The connection is one sided.
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Proposition 24. An affirmative solution of Problem 23 implies an affirma-
tive solution of Problem 22.

Note, however, that this problem seems to be a real strenghtening. In-
deed, it could happen that for two large graphs G1 and G2 that are very
close in the Benjamini-Schramm topology, one can find a cheap rewiring of
G1 with a bi-Lipschitz constant L1 but only do the same to G2 with a much
bigger constant.

Problem 25. Let Γ be a finitely presented group generated by a finite sym-
metric set S. Let (Γn) be a sequence of subgroups of finite index in Γ and let
Gn = Sch(Γ,Γn, S). Assume that no Γn decomposes as a non-trivial amal-
gamated product and that the sequence (Gn) is dispersive. Is it true that
cc(Gn) = 1?

In Theorem 7 we show that the rank gradient of (Γn) must vanish.
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