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A B S T R A C T

Parkinson’s disease (PD) is a neurodegenerative amyloid disorder with debilitating motor symptoms due to the
loss of dopamine-synthesizing, basal ganglia-projecting neurons in the substantia nigra. An interesting feature of
the disease is that most of PD patients have gastrointestinal problems and bacterial dysbiosis, years before the
full expression of motor symptoms. We hypothesized that antibiotic consumption might be a contributing factor
of gut microbiome dysbiosis in PD, favoring curli-producing Enterobacteria. Curli is a bacterial α-synuclein (αSyn)
which is deposited first in the enteric nervous system and amyloid deposits are propagated in a prion like manner
to the central nervous system. In addition, antibiotics result in a low-grade systemic inflammation, which also
contributes to damage of neurons in enteric- and central nervous system. To support our hypothesis, by com-
paring PD prevalence change with antibiotic consumption data in EU countries, we found significant positive
correlation between use narrow spectrum penicillin + penicillinase resistant penicillin and increased prevalence
of the disease.

Introduction

According to an ancient proverb, “death lives in the belly”, and with
the discovery of the extensive role of gut microbiome in the develop-
ment of different serious diseases, our recent knowledge should confirm
this statement.

Parkinson’s disease (PD) was discovered by James Parkinson
200 years ago and he treated his patients with intensive purgative drugs
and observed an improvement of the symptoms, without even having
any knowledge of gut flora or microbiome [1,2].

Background

PD is a slowly developing, neurodegenerative disease with serious
motor- and neuropsychiatric symptoms. PD affects 2% of the global
population aged over 80 years [3]. PD is currently incurable, although
variety of symptomatic therapies are available. According to a recent
survey, published in the Lancet [4] the number of patients diagnosed
with PD has doubled in the past 25 years and their number exceeds 6
million over the world. PD is being considered as the second largest
group of neurodegenerative diseases after Alzheimer’s disease.

Variety of PD’s symptoms are associated with loss of dopaminergic
neurons in the midbrain substantia nigra, pars compacta (SNPc). These
neurons innervate basal ganglia, including the striatum. Loss of

dopamine in the striatum trigger cellular and synaptic alterations,
which are responsible for the appearance of the motor symptoms of PD
[5]. In addition to motor programming and execution, basal ganglia
also participate in learning, cognition and emotion; functions, which
are also affected in PD [6].

The main histopathological characteristics of PD are cell death af-
fecting up to 70% of the dopamine secreting neurons in SNPc and
presence of α-synuclein (αSyn) aggregates in the form of Lewy bodies in
the remaining neurons [7]. The loss of neurons is accompanied by a
significant increase of reactive microglia and A1 neurotoxic astrocytes
in the substantia nigra [8,9].

The definite cause of PD is still unknown, environmental triggers in
combination with genetic vulnerability factors are proposed [10]. In-
creased risk of PD has been associated with exposure to pesticides,
consumption of dairy products, history of melanoma and traumatic
brain injury, whereas a reduced risk has been reported in association
with smoking, caffeine consumption, higher serum urate concentra-
tions, physical activity, and use of non-steroidal anti-inflammatory
medications [11].

PD patients experience several non-motor symptoms, including
sleep dysfunction [12], anosmia [13] and gastrointestinal problems
[14]. The gastrointestinal abnormalities may occur years before mani-
festation of motor disturbances and diagnosis of PD [14]. Recent studies
confirm that neuropsychiatric conditions, including PD, which have
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classically been established as disorders of the brain also have etiologies
in the gut [15]. Along these lines, recent evidence uncovered the pre-
sence of αSyn accumulation/Lewy bodies in the enteric nervous system
of PD patients [16].

Gut microbiome is the largest bacterial community within the
human body which significantly affects host physiology. For instance,
vitamins, metabolites, hormones, immune modulators, neuro-
transmitters, neuropeptides produced by those bacteria which colo-
nized the gastrointestinal (GI) tract may influence central nervous
system functions through the gut-(microbiome)-brain axis [17–20].
Furthermore, certain gut bacteria such as E. coli, Salmonella and other
strains of the Bacteroidaceae family produce curli, a functional amyloid
peptide which forms extracellular fibril deposits in the GI tract to
promote adhesion and colonization via resistant biofilm formation [21].
These bacterial amyloids have the ability to initiate additional αSyn
deposits via cross-seeding [22] and transmit their pathogenic con-
firmation as prions [23]. It has been proposed that GI abnormalities
seen in PD patients is related to bacterial dysbiosis and curly/αSyn
deposits in the enteric nervous system [24,25]. From this remote site,
-according to Braak staging concept-, amyloid pathology spreads to the
lower brainstem and further up to the forebrain [26,27].

Indeed, PD patients very often display GI dysbiosis [28–35]. Mi-
crobiome analysis of PD patients vs. healthy subjects revealed changes
in relative abundance of certain bacterial genera rather than appear-
ance or disappearance of a single species. For instance, the abundance
of Prevotella was consistently reduced in fecal samples of PD patients as
well as those of anti-inflammatory, butyrate-producing bacteria from
the Blautia, Coprococcus, and Roseburia genera [28]. By contrast, several
studies reported an increase in the relative abundance of genus

Lactobacillus, Bifidobacterium, Ralstonia and Akkermansia in PD
[31,36,37]. It is also worth noting that colonization of αSyn over-
expressing mice with fecal microbiota from PD patients enhances motor
symptoms compared to microbiome transplants from healthy humans
[38].

Among the factors, influencing the gut microbiome, antibiotic ex-
posure has profound and sometimes persisting impact on the bacterial
composition, diversity and function of the intestinal flora [39]. In ad-
dition to the use antibiotics for medical reasons, the human body is
unintentionally exposed to antibiotics present in feeds and in the en-
vironment. Prior to 2017, 80% of all antibiotics were given as feed
additives to the livestock, in the United States. https://www.ncbi.nlm.
nih.gov/books/NBK216502/. Animal husbandry use subtherapeutic
dose of different antibiotics to increase the growth rate and feed effi-
ciency, as well as for disease prevention in overcrowded locations in-
cluding aquacultures [40–42].

Antibiotics decrease the microbial diversity of the gut flora, mod-
ulate Bacteroidetes/Firmicutes ratio and result in overgrowth of oppor-
tunistic pathogens [43,44]. For instance, a 7-day treatment with com-
monly used antibiotic groups: fluoroquinolones and β-lactams,
significantly decreased microbial diversity by 25% and reduced the
core phylogenetic microbiota from 29 to 12 taxa [45,46]. Another re-
cent study on healthy subjects, found an immediate bloom of En-
terobacteria and other pathobionts along with significant depletion of
Bifidobacteria and butyrate-producing species in response to a mer-
openem, gentamicin and vancomycin cocktail. Although the micro-
biome of the subjects recovered to near-baseline composition within
1.5 months, some common species, which were present in all subjects
before the treatment, remained undetectable after 4 months [47].

Table 1
Comparison of antibiotic consumption data from the ESAC project and prevalence of Parkinson’s disease (PD) in 29 European countries.

Country J01 DID (100%) J01C % J01D % J01F % J01M % J01A % % Change of PD prevalence 1990–2016

J01CE + CF % J01CA + CR %

Austria 13.42 39.86 11.92 21.84 9.83 9.16 8.56 31.44 14.2
Belgium 25.1 45.05 12.35 11.31 9.4 10.99 1.63 42.31 12.4
Bulgaria 19.27 44.83 9.7 6.95 7.73 14.63 7.73 37.2 0.8
Cyprus 33.25 45.95 19.54 10.64 12.09 8.42 0.45 45.53 16.3
Czech 17.22 42.21 5.63 16.02 6.79 15.91 12.95 29.26 9.3
Denmark 13.9 62.01 0.25 1.58 2.15 8.56 41.87 20.7 45.9
Estonia 11.86 38.95 6.07 13.49 6.4 20.4 2.6 36.25 1.5
Finland 18.34 30.86 12.43 9.16 4.36 22.84 10.3 20.55 5.8
France 30.63 50.89 12.04 13.22 6.75 10.67 2.25 48.64 −2.2
Germany 13.69 32.06 9.42 15.7 8.32 22.71 10.29 21.76 11.5
Greece 33.46 33.17 21.63 25.04 8.36 7.74 2.36 30.81 13.7
Hungary 18.05 44.48 12.57 14.68 8.08 10.69 5.48 39 9.5
Iceland 20.95 50.88 2 7.54 3.19 24.24 19.76 31.12 13.4
Ireland 19.8 49.64 4.89 14.74 3.88 16.51 8.53 41.11 17.2
Italy 26.04 48.77 7.29 19.05 12.01 1.88 0.15 48.61 −3.4
Latvia 11.52 45.92 1.56 7.81 8.42 20.39 1.38 44.53 7.6
Lithuania 22.9 56.85 7.77 7.29 5.54 9.3 15.81 41.04 8.8
Luxembourg 27.06 40.68 18.36 14.07 8.9 9.75 1.25 39.76 13.4
Malta 20.1 44.47 22.13 16.81 8.5 5.22 0.59 43.93 15.4
Netherlands 10.3 39.02 0.67 12.33 8.34 23.88 7.28 31.74 −7.5
Norway 15.57 42.58 1.34 10.85 2.69 18.81 28.83 13.68 87.1
Poland 21.69 43.56 10.14 11.2 5.16 15.39 3.04 40.57 14.2
Portugal 23.93 48.34 12.53 1.37 13.16 5.22 2.84 45.5 31.9
Romania 10.2 42.25 24.21 17.94 12.35 1.07 2.94 39.31 10.2
Slovakia 25.34 51.77 11.68 16.33 6.62 7.97 16.33 35.39 9.7
Slovenia 16.8 59.52 3.75 17.32 8.21 3.86 9.9 44.58 9.7
Spain 19.35 57.31 10.49 13.33 11.67 3.25 1.8 55.45 8
Sweden 15.05 47.3 2.99 3.98 19.4 21.26 37 10.36 13.6
UK 15.64 45.84 5.11 15.34 3.08 21.73 9.78 36.06 22.3
Pearson R −0.097 0.118 −0.195 −0.262 −0.305 0.032 0.537 −0.446
Pearson p 0.795 0.330 0.110 0.239 0.087 0.375 0.002 0.022

Antibiotic classes are labeled according to the ATC code (https://www.atccode.com/).
J01-all antimicrobial drugs; J01C- Penicillins; J01D- β-lactam antibiotics; J01F- Macrolides, lincosamides and streptogramins; J01M- Quinolone antibacterials; J01A-
Tetracyclines; J01CE + CF- β-lactamase sensitive + resistant penicillins; J01CA + CR- Extended spectrum of penicillins and combinations of penicillin including β-
lactamase inhibitors. DID: Defined Daily Dose (DDD)/1000 Inhabitants/Day. ESAC project: European Surveillance of Antimicrobial Consumption (1997–2010).
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Further deleterious effects of antibiotic treatment are induction of
bacterial biofilm formation by E. coli [48] and (2) producing low grade
systemic inflammation by compromising gut barrier function, luminal
signaling and metabolism [44]

The hypothesis

We hypothesize that exposure to certain antibiotics are involved in
the pathogenesis of PD. Based on the data listed above, it is likely that
certain antibiotics change the gut microbiome favoring curli-producing
species. These bacteria deposit αSyn in the enteric nervous system
(ENS) and promote further amyloid deposition via cross-seeding, which
results in formation of transmissible self-propagating prion-like pro-
teins. Amyloidosis appears in the ENS and later on in the central ner-
vous system until the full expression of motor symptoms of PD de-
velops, due to the loss of dopamine supply in basal ganglia. In addition,
antibiotics result in a low-grade systemic inflammation, which also
contributes to damage of neurons in enteric and central nervous system.

Evaluation of the hypothesis

We tested the hypothesis whether consumption of different groups
of antibiotics, belonging to four major groups (penicillin /J01C/, ce-
phalosporin/J01D/, quinolones/J01M/, macrolides/J01F/) is asso-
ciated with the change of PD prevalence in different European countries
[4].

Antibiotic consumption data, collected between 1997 and 2009 by
the ESAC project (European Surveillance of Antibiotic Consumption
network; Table 1) and data from the ECDC (European Centre for

Disease Prevention and Control) database (2010–2017; Table 2) were
used.

Within the penicillin group, consumption data of narrow spectrum
penicillins (J01CE) plus penicillinase resistant penicillins (J01CF) and
the extended spectrum penicillins (J01CA) plus β lactamase inhibitor
combination penicillins (J01CR) were separately compared to PD pre-
valence change data.

Changes in PD prevalence between 1990 and 2016 were obtained
from [4]. During this period, there was a 2.5x increase of patients di-
agnosed with PD. It should be noted, however, that the increase of PD
prevalence was not solely due to increasing number of older people,
because age-standardized prevalence rates were also increased. How-
ever, there is a possibility that higher number of cases were diagnosed
due to increased awareness of medical facilities.

Correlation was calculated between antimicrobial consumption data
and changes in PD prevalence. Significant positive correlation
(r = 0.537, p = 0.002) was found between the consumption of narrow
spectrum + penicillinase resistant penicillin (J01CE + CF) and the
increased prevalence of PD (Fig. 2, Table 1). No positive correlation was
found between the other groups of antibiotics (J01D, J01M, J01F) and
the joint group of penicillin compounds (J01C) featured in the ESAC
project and the ECDC antibiotic consumption data. By contrast, we
found a significant negative correlation between consumption of broad
spectrum penicillin (J01CA) + combination penicillin (J01CR) and PD
prevalence. This phenomenon might be explained by the fact that some
antibiotics might have an anti-neuroinflammatory action, which is
beneficial in PD.

Although a statistically significant correlation has been found be-
tween increasing prevalence of PD and exposure of penicillin antibiotics

Table 2
Comparison of antibiotic consumption data from ECDC project and prevalence of Parkinson’s disease (PD) in 30 European countries.

Country J01
DID (100%)

J01C % %Change of PD prevalence 1990–2016
J01D % J01F % J01M % J01A % J01CE % J01CR %

Austria 12.55 38.13 11.33 25.24 9.23 7.28 6.55 25.8 14.2
Belgium 22.75 45.78 5.7 14.8 11.25 7.23 0.15 22.61 12.4
Bulgaria 17.52 31.1 15.88 20.27 14.58 7.67 1.23 11.36 0.8
Croatia 17.4 43.51 15.1 16.63 10.38 5.18 4.06 21.83 7.9
Cyprus (a) 26.02 35.38 18.65 11.07 18.64 10.97 0.33 24.59 16.3
Czech 16.59 35.64 8.9 22.2 5.99 11.47 11.28 16.83 9.3
Denmark 15.49 63.02 0.18 12.98 3.1 10.4 28.99 4.96 45.9
Estonia 10.28 29.92 9.24 23.05 7.85 14.09 1.92 12.3 1.5
Finland 16.44 29.81 12.02 7.46 4.94 22.77 7.73 5.4 5.8
France 23.55 51.52 8.46 14.34 2.3 10.05 0.89 20 −2.2
Germany 13.29 24.85 19.38 18.22 10.2 15.24 5.77 2.41 11.5
Greece 30.86 29.87 22.48 25.16 8.21 6.53 0.28 15.36 13.7
Hungary 13.65 33.94 12.68 21.62 16.37 7.23 2.19 24.9 9.5
Iceland 18.8 48.55 2.84 8.71 5.13 22.28 11.56 15.69 13.4
Ireland 19.58 48.32 5.55 24.05 4.47 11.84 5.26 21.77 17.2
Italy 22.22 45.87 9.01 18.5 14.93 1.98 0.1 33.46 −3.4
Latvia 10.98 38.4 4.96 14.7 9.27 17.34 0.45 11.15 7.6
Lithuania 14.01 46.92 7.36 13.4 6.94 8.8 1.65 21.52 8.8
Luxembourg 22.31 37.64 14.01 18.13 11.9 6.38 0.14 24.07 13.4
Malta 19.46 32.77 21.43 19.66 12.01 5.48 0.4 25.56 15.4
Netherlands 9.61 32.41 0.34 14.73 8.19 21.56 3.02 23.63 −7.5
Norway 15.51 39.53 0.55 9.93 3.08 19.11 21.65 0.1 87.1
Poland 20.47 32.85 11.99 19.49 6.32 9.99 1.04 14.8 14.2
Portugal 17.56 47.16 8.06 16.55 12.49 3.76 0.14 34.85 31.9
Romania (a) 26.11 47.78 14.79 11.63 13.55 3.06 3.31 22.51 10.2
Slovakia 20.15 30.41 19.03 28.03 9.81 7.05 6.34 18.56 9.7
Slovenia 11.53 60.89 5.39 16.54 9.64 2.47 15.02 24.8 9.7
Spain (b) 18.72 54.72 8.3 12.25 13.87 3.57 0.45 32.3 8
Sweden 12.66 49.81 1.07 4.83 5.58 17.75 27.56 7.47 13.6
UK 17.48 38.23 1.81 17.14 2.59 23.8 4.69 4.62 22.3
Pearson R −0.015 0.182 −0.296 −0.220 −0.318 0.167 0.549 −0.389
Pearson p 0.485 0.538 0.796 0.177 0.086 0.821 0.002 0.012

Antibiotic classes are labeled according to the ATC code (https://www.atccode.com/).
J01-all antimicrobial drugs; J01C- Penicillins; J01D- β-lactam antibiotics; J01F- Macrolides, lincosamides and streptogramins; J01M- Quinolone antibacterials; J01A-
Tetracyclines; J01CE- β-lactamase sensitive penicillins; J01CR- Combinations of penicillin including β-lactamase inhibitors. DID: Defined Daily Dose (DDD)/1000
Inhabitants/Day. ECDC project: European Centre for Disease Prevention and Control (2010–2017).
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in different European countries, it should be confirmed by preclinical
studies and detailed retrospective analysis of antibiotic exposure data of
PD patients. The geographical distribution of the correlation is also
worth of mentioning. While the correlation was strong in the
Scandinavian countries (Denmark, Sweden and Norway), it is also in-
teresting to note, that PD prevalence decreased in Holland, France,
Italy, Israel, countries with low-to-average J01CE + J01CF exposure.
Another confounding factor would be that the consumption data are the
sum of antimicrobials used in the community (primary care sector) and
in the hospital sector. Secondary consumption data are not included.

Consequences of the hypothesis and discussion

There is a general agreement in the literature that, apart from ge-
netic background, PD is caused by some external effect and the primary
change leading to the disease is the modified gut flora, dysbiosis. Even
the suspected toxic agents, like pesticides, operate through the altered
microbiome in the process of developing PD. Thus, as mounting evi-
dence supports a role for the microbiota in the regulation of human
behavior and neuronal functions, concerns arise about possible detri-
mental interactions with the commensals and its consequences in terms
of the development of neurological disorders. Considering the fact that
antibiotics are powerful agents influencing the microbiome, it is likely
that some penicillins, as “external factors” initiate gut dysbiosis, which
contribute to the development of PD. Our study compared global an-
tibiotic consumption to the change of PD prevalence in different
European countries in the past 25 years might provide some clues
elucidating the issue [4]. To support our hypothesis, a recent work
evaluated the impact of antibiotic exposure on the risk of PD in a
register-based case-control study in Finland. This study also found
significant association between exposure to certain types of oral anti-
biotics and increased risk of PD, with a delay that is consistent with the
proposed duration of a prodromal period [49].

Our findings shows connection between high consumption of

narrow spectrum penicillin and the highest prevalence change of PD
without any other significant positive correlation from the comparisons
of antibiotic consumption databases and PD prevalence. The countries
(arrows) with the highest prevalence increase of PD, really “pulling up”
the diagram, featuring the highest consumption of narrow spectrum
penicillin between 1997 and 2009 (ESAC project) (Fig. 1).

Two major mechanisms may underlie the connection between ex-
posure of certain antibiotics and increased prevalence of PD.

1. Antibiotics induce gut dysbiosis, a microbial imbalance, in which
certain curly-producing bacteria gain abundance in the microbiome.
Curly, as a functional αSyn, excreted to the extracellular space and
exaggerates additional amyloid deposition. The αSyn pathology has
the ability to spread from the gastrointestinal tract to the brain and
results in loss of vulnerable dopamine synthesizing neurons in the
substantia nigra.

Fig. 1. Chart indicating penicillin consumption in
different European Union (EU) countries (ESAC pro-
ject). Penicillin consumption is expressed in DID. DID
is the Defined Daily Dose (DDD)/1000 Inhabitants/
Day. Countries marked with green arrows consume
the highest amount of narrow spectrum penicillin
(green) and β-lactamase resistant penicillin (blue)
within their respective column (total consumption).
Data were obtained from ESAC-Net interactive data-
base: https://www.ecdc.europa.eu/en/antimicrobial-
consumption/surveillance-and-disease-data/database.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web version
of this article.)

Fig. 2. Correlation between consumption of certain penicillins and prevalence
of Parkinson’s disease. Consumption of narrow spectrum β-lactamase sensitive
(J01CE) and β-lactamase resistant penicillins is expressed in DID
(DID = Defined Daily Dose (DDD)/1000 Inhabitants/Day).
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2. These antibiotics may promote inflammation, via translocation of
live gut bacteria and inhibition of anti-inflammatory, short chain
fatty acid (SCFA) (butyrate)-producing bacteria. Systemic in-
flammation in general-, and local neuroinflammation (microglia
activation), in special-, contribute to PD pathogenesis.

These mechanisms are not mutually exclusive. For better under-
standing the relationship between antibiotics – microbiome – and PD,
preclinical experiments and retrospective human studies should be
designed. If our hypothesis is correct, a symbiotic (application of
pre + pro biotics) strategy to fight PD, might be elaborated Fig. 2.
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