REAL

Searching for glycomic biomarkers for predicting resilience and vulnerability in a rat model of posttraumatic stress disorder

Fazekas, Csilla Lea and Bodóné Sipos, Eszter and Klaric, Thomas and Török, Bibiána and Bellardie, Manon and Zelena, Dóra (2020) Searching for glycomic biomarkers for predicting resilience and vulnerability in a rat model of posttraumatic stress disorder. STRESS-THE INTERNATIONAL JOURNAL ON THE BIOLOGY OF STRESS, 23 (SI6). pp. 715-731. ISSN 1025-3890

[img] Text
Searchingforglycomicbiomarkersforpredicting.pdf
Restricted to Repository staff only

Download (1MB)

Abstract

Posttraumatic stress disorder (PTSD) is triggered by traumatic events in 10-20% of exposed subjects. N-linked glycosylation, by modifying protein functions, may provide an important environmental link predicting vulnerability.Our goals were (1) to find alterations in plasma N-glycome predicting stress-vulnerability; (2) to investigate how trauma affects N-glycome in the plasma (PGP) and in three PTSD-related brain regions (prefrontal cortex, hippocampus and amygdala; BGP), hence uncover specific targets for PTSD treatment. We examined male (1) controls, (2) traumatized vulnerable and (3) traumatized resilient rats both before and several weeks after electric footshock. Vulnerable and resilient groups were separated by z-score analysis of behavior.Higher freezing behavior and decreased social interest were detected in vulnerable groups compared to control and resilient rats. Innate anxiety did not predict vulnerability, but pretrauma levels of PGP10(FA1G1Ga1), PGP11(FA2G2) and PGP15(FA3G2) correlated positively with it, the last one being the most sensitive. Traumatic stress induced a shift from large, elaborate N-glycans towards simpler neutral structures in the plasma of all traumatized animals and specifically in the prefrontal cortex of vulnerable rats. In plasma trauma increased PGP17(A2G2S) level in vulnerable animals. In all three brain regions BGP11(F(6)A2B) was more abundant in vulnerable rats, while most behavioral correlations occurred in the prefrontal cortex.In conclusion, we found N-glycans (especially PGP15(FA3G2)) in plasma as possible biomarkers of vulnerability to trauma that warrants further investigation. Posttrauma PGP17(A2G2S1) increase showed overlap with human results highlighting the utility and relevance of this animal model. Prefrontal cortex is a key site of trauma-induced glycosylation changes that could modulate the behavioral outcome.

Item Type: Article
Uncontrolled Keywords: PREFRONTAL CORTEX; HIPPOCAMPUS; BLOOD-PLASMA; AMYGDALA; PTSD; N-Glycans; electric footshock;
Subjects: R Medicine / orvostudomány > R1 Medicine (General) / orvostudomány általában
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 16 Mar 2021 09:01
Last Modified: 16 Mar 2021 09:01
URI: http://real.mtak.hu/id/eprint/122414

Actions (login required)

Edit Item Edit Item