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Abstract

The anatomy and physiology of monosynaptic connections in rodent hippocampal CA1

have been extensively studied in recent decades. Yet, the resulting knowledge remains

disparate and difficult to reconcile. Here, we present a data-driven approach to inte-

grate the current state-of-the-art knowledge on the synaptic anatomy and physiology

of rodent hippocampal CA1, including axo-dendritic innervation patterns, number of

synapses per connection, quantal conductances, neurotransmitter release probability,

and short-term plasticity into a single coherent resource. First, we undertook an exten-

sive literature review of paired recordings of hippocampal neurons and compiled

experimental data on their synaptic anatomy and physiology. The data collected in this

manner is sparse and inhomogeneous due to the diversity of experimental techniques

used by different groups, which necessitates the need for an integrative framework to

unify these data. To this end, we extended a previously developed workflow for the

neocortex to constrain a unifying in silico reconstruction of the synaptic physiology of

CA1 connections. Our work identifies gaps in the existing knowledge and provides a

complementary resource toward a more complete quantification of synaptic anatomy

and physiology in the rodent hippocampal CA1 region.

K E YWORD S
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1 | INTRODUCTION

The hippocampal formation, notably the CA1 region, is one of the most

exhaustively studied regions in the mammalian brain and is thought to

play a role, for example, in the acquisition of memory, recognition of

place and language (Bliss & Collingridge, 2013; Buzsáki, 1989). Neuronal

microcircuits in the hippocampal CA1 region process and store informa-

tion through a myriad of cell-type-specific monosynaptic connections.

Previous studies have shown that hippocampal cell types are con-

nected through multiple synaptic contacts, which are positioned
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across distinct axo-dendritic domains with a wide diversity in their

physiology. Despite the wealth of data, we lack an integrative frame-

work to reconcile the diversity of synaptic physiology, and therefore,

identify knowledge gaps. There have been several noteworthy

attempts to integrate knowledge on the cellular and synaptic compo-

nents of hippocampal CA1 microcircuitry, which have provided a solid

foundation to bring together anatomical properties and kinetic param-

eters of cell-type-specific connections—including the number of syn-

apses per connection, connection probabilities, neurotransmitter release

probabilities, and amplitudes of synaptic responses (Bezaire &

Soltesz, 2013; Moradi & Ascoli, 2020; Wheeler et al., 2015). As a com-

plementary endeavor, we extended a previously developed framework

to reconstruct neocortical microcircuitry at the cellular and synaptic

levels of detail (Markram et al., 2015), by integrating disparate data on

the physiology of short-term dynamics of depression and facilitation of

cell-type-specific synaptic transmission in hippocampal CA1. Using this

framework, we identified and extrapolated organizing principles to pre-

dict missing knowledge for a repertoire of connection types, for exam-

ple, the short-term dynamics and peak conductance of synaptic

connections between inhibitory interneurons (Klausberger &

Somogyi, 2008; Pelkey et al., 2017), which remain largely

uncharacterized, and could, therefore, require high-throughput strate-

gies that employ multiple whole-cell patch-clamp recordings to

surmount the relatively low yield obtained through conventional paired

recordings (Espinoza, Guzman, Zhang, & Jonas, 2018; Jiang et al., 2015;

Perin, Berger, & Markram, 2011).

We accounted for the dynamic and probabilistic nature of synaptic

transmission by fitting experimental traces using a stochastic generali-

zation of the Tsodyks–Markram (TM) short-term plasticity (STP) model

(Fuhrmann, Segev, Markram, & Tsodyks, 2002; Markram, Wang, &

Tsodyks, 1998; Tsodyks & Markram, 1997), and also considered tem-

perature and extracellular calcium concentration ([Ca2+]o) differences,

which were adjusted using Q10 and Hill scaling factors, respectively.

Measuring peak quantal conductances directly at individual syn-

aptic contacts remains very difficult, if not impossible with current

experimental techniques. While theoretically, the peak synaptic con-

ductance can be calculated from voltage-clamp recordings by simply

dividing the peak postsynaptic current (PSC) by the liquid junction

potential (LJP)-corrected driving force, this approach does not take

into account the space-clamp artifact (Gulyás, Freund, & Káli, 2016;

Spruston, Jaffe, Williams, & Johnston, 1993; Williams &

Mitchell, 2008). We have recently demonstrated that space-clamp

corrected peak synaptic conductances in neocortical connections are

at least twofold to threefold higher than estimated previously

(Markram et al., 2015). As a connection is formed by several synaptic

contacts, each subject to a different space-clamp effect, a purely the-

oretical correction is challenging. We, therefore, used an alternative

approach, where we calibrated peak synaptic conductances in the in

silico model of connected pairs such that the resulting postsynaptic

potential (PSP) amplitudes match in vitro recordings. This yielded an

estimate of peak synaptic conductance since other factors affecting

the PSP amplitude—such as number and location of synapses, release

probability and reversal potential, depression, facilitation, and synaptic

conductance rise and decay time constant—were independently vali-

dated beforehand.

The resulting models for a subset of hippocampal connection

types were applied predictively to the remaining uncharacterized con-

nection types by clustering them into nine groups based on synapse

types and neuronal biomarkers and applying the estimated parameters

within each group. Curated and predicted parameters presented here

should serve as a resource to researchers aiming to model hippocam-

pal synapses at any level, while the detailed methodology intends to

give a guideline to utilize such a framework to integrate data from

other brain regions or species.

2 | METHODS

2.1 | Circuit building and synapse anatomy

A detailed model of the rat hippocampal CA1 area was built by

adapting a previously described pipeline for reconstructing neocortical

microcircuitry (Markram et al., 2015). In brief, detailed axo-dendritic

morphological reconstructions and electrophysiological traces

obtained from the dorsal part of hippocampal CA1 were used to build

single cell-type-specific computational models (Migliore et al., 2018)

(see Supplementary Methods). The resulting single-cell models were

assembled in an atlas-based volume corresponding to the dimensions

of the hippocampal CA1 region (Ropireddy, Bachus, & Ascoli, 2012),

cell-densities and proportions, which yielded a tissue model consisting

about 400,000 cells, �90% pyramidal cells (PCs), and �10% interneu-

rons comprising 11 distinct morphology types (m-types; see Supple-

mentary Methods and Supplementary Figure S1) (Bezaire &

Soltesz, 2013). Structural appositions between axons and dendrites

were detected based on touch distance criteria and subsequently

pruned to yield a functional connectome through an algorithmic pro-

cess, which was constrained with experimentally reported bouton

density, number of synapses per connections, and connection proba-

bility (Reimann, King, Muller, Ramaswamy, & Markram, 2015). A previ-

ous study suggests targeted innervation of interneurons from PCs

(Takács, Klausberger, Somogyi, Freund, & Gulyás, 2012). Therefore, to

recreate this tendency, touch distances from PCs to interneurons were

set to 6 μm as against 1 μm for connections between PCs. Furthermore,

touch distances of 6 μm for connections between all interneurons and

1 μm for connections between interneurons and PCs were assumed. In

this manner, the number and location of synapses for each cell-types spe-

cific connection were derived in a data-driven manner. When rep-

roducing paired recordings in silico (see below), monosynaptically

connected pairs of neurons were sampled from this reconstructed circuit

based on their intersomatic distance as sampling criterion.

2.2 | Dendritic features of single cell models

Detailed, multicompartmental morphoelectrical models with 3D

reconstructed dendrites from Migliore et al. (2018) were used in the
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present study (see Supplementary Methods and Supplementary

Figure S1). The attenuation of synaptic responses along the dendrites

with varying diameters was validated against experimental data from

Magee and Cook (2000) using the HippoUnit framework (see Supple-

mentary Methods). To this end, excitatory PSC (EPSC) like currents were

injected into the apical trunk of PCs with varying distance from the soma

and PSPs were simultaneously measured at the local site of the injection

and in the soma.

2.3 | Model of postsynaptic conductance and
current

Synaptic conductances were modeled with biexponential kinetics:

g tð Þ=bgA e−t=τdecay −e−t=τrise
� �

ð1Þ

where bg (nS) is the peak synaptic conductance and τrise and τdecay (ms)

are PSC rise and decay time constants, respectively. The

A= e−tp=τdecay −e−tp=τrise normalization constant ensures that synapses

reach their peak conductance at tp = (τdecayτrise)/((τdecay− τrise)log

(τdecay/τrise)) (ms). (Equation (1) is modified below to take stochastic

release of multiple vesicles into account.) AMPAR and GABAR synap-

tic currents are then computed as:

I tð Þ= g tð Þ Vm tð Þ−Erevð Þ ð2Þ

where Vm (mV) is the membrane potential and Erev (mV) is the reversal

potential of the given synapse. NMDAR currents depend also on Mg2+

block:

INMDA tð Þ= g tð Þmg Vm tð Þð Þ Vm tð Þ−Erevð Þ ð3Þ

where mg(Vm) is the LJP-corrected (see below) Jahr–Stevens non-

linearity (Jahr & Stevens, 1990):

mg Vmð Þ= 1

1+ e−c1Vm CMg2+ =c2
� � ð4Þ

where CMg2+ (mM) is the extracellular magnesium concentration and

c1 = 0.062 (1/mV) and c2 = 2.62 (mM) are constants (the difference

from the original Jahr and Stevens (1990) constant is because the

authors did not correct for the LJP offset of �5 mV). PC-to-PC

NMDAR rise and decay time constants are Q10 corrected (see below)

(Q10 = 2.2 ms for rise and 1.7ms for decay time constants (Hestrin,

Sah, & Nicoll, 1990; Korinek, Sedlacek, Cais, Dittert, &

Vyklicky, 2010)) values from Andrasfalvy and Magee (2001):

τrise = 3.9ms and τdecay = 148.5ms. All, but the CCK+ interneuron

excitatory afferents have the same NMDAR time constants as the PC-

to-PC ones, while the PC to CCK+ interneuron NMDAR conductance

decays with a slower time constant: τdecay = 298.75ms (Cornford et

al., 2019; Le Roux, Cabezas, Böhm, & Poncer, 2013; Matta et

al., 2013). Peak NMDAR conductance bgNMDA (nS) is calculated from

the AMPAR one by multiplying it with NMDAR/AMPAR peak conduc-

tance ratio. PC-to-PC NMDAR/AMPAR peak conductance ratio = 1.22

was taken from Groc, Gustafsson, and Hanse (2002) and Myme,

Sugino, Turrigiano, and Nelson (2003).

PC to CCK+ interneuron NMDAR/AMPAR bg ratio was set to

0.86, as against 0.28 for PC to other interneurons (Le Roux

et al., 2013; Matta et al., 2013). Synaptic currents are individually del-

ayed based on axonal path length and conduction velocity of 300 μm/

ms (Stuart, Schiller, & Sakmann, 1997) and an additional 0.1ms delay

of neurotransmitter release (Ramaswamy et al., 2012).

2.4 | STP parameter fitting

STP of synapse dynamics was fit by the TM model (Markram et

al., 1998; Tsodyks & Markram, 1997). The model assumes that each

synapse has a pool of available neurotransmitter resources (R) that is

utilized by a presynaptic action potential (AP) with a release probability

(U). The utilization of resources leads to postsynaptic conductance that

is proportional to the amount utilized. R decreases and U increases after

an AP and both R and U recover between spikes to a steady-state (SS)

value. The speed of recovery is parameterized by time constants D and

F (ms) that together determine the short-term dynamics of the synapse.

This is described by the following differential equations:

dR tð Þ
dt

=
1−R tð Þ

D
−U tð ÞR tð Þδ t−tspike

� � ð5Þ

dU tð Þ
dt

=
USE−U tð Þ

F
+USE 1−U tð Þð Þδ t−tspike

� � ð6Þ

where USE is the utilization of synaptic efficacy or absolute release

probability (also known as the release probability in the absence of

facilitation), δ(t) is the Dirac delta function and tspike indicates the

timing of a presynaptic spike. Each AP in a train elicits an ASEU(tspike)R

(tspike) amplitude PSC, where ASE is the absolute synaptic efficacy. R

= 1 and U = USE are assumed before the first spike.

The USE, D, F, and ASE free parameters of the model were fit to

amplitudes of experimentally recorded trains of PSCs. In the case of

Losonczy, Zhang, Shigemoto, Somogyi, and Nusser (2002), amplitudes

were already extracted by the authors, while in the case of Kohus et

al. (2016) custom-written Python routines were used to extract them

from the averaged postsynaptic traces. Fitting the 10 + 1 recovery

spikes was done by using a multiobjective genetic algorithm from

BluePyOpt (Van Geit et al., 2016). For Kohus et al. (2016), differ-

ent frequency stimulations (10, 20, and 40 Hz) were fit together

for better generalization. Thus, the optimized error function con-

tained 3 (frequencies) × 11 (peak amplitudes) points. For the

event-based version of the equations above, see Maass and Mark-

ram (2002) and Supplementary Methods. The Python source code

fitting amplitudes from multiple frequencies is available on GitHub

under /BluePyOpt/examples.
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2.5 | Stochastic TM model with multivesicular
release

For the simulation of synapses, the canonical TM model (intro-

duced above and used for fitting experimental traces) was modi-

fied to include stochastic release of multiple vesicles, and

connected to the model of postsynaptic conductance described

above. To take multivesicular release (MVR) into account in the

postsynaptic conductance model, the classical “quantal model” of

Del Castillo and Katz (1954) was used. In this model, synapses are

assumed to be composed of NRRP (size of the readily releasable

pool) release sites, each of which has a probability of release U

(see deterministic TM model above) and contributes a 1/NRRP

quanta to the postsynaptic response (Barros-Zulaica et al., 2019;

Loebel et al., 2009; Markram et al., 2015; Ramaswamy

et al., 2012, 2015). Unlike in the deterministic TM model above,

individual quanta were assumed to be released in an all-or-none

fashion with probability U(t) (Fuhrmann et al., 2002). Vesicle avail-

ability is also an all-or-none process where only available vesicles

can be released. To this end, synaptic vesicles were implemented

as two-state (available: 1 and unavailable: 0) Markov processes.

After release, the state is set to unavailable and the probability of

staying in the unavailable state at time t was described as a sur-

vival process, with the time constant D. The state transitions are

described by the following set of equations:

P1!0 =U tð Þ seeEequation 6ð Þð Þ ð7Þ
P1!1 = 1−P1!0

P0!0 = e
− t−tspikeð Þ=D

P0!1 = 1−P0!0

The above-described model converges to the canonical TM model

in the limit (number of trials !∞). In this formalism, a presynaptic AP

releases only a fraction Nr ≤ NRRP fraction of vesicles, which follows a

Bernoulli distribution. Equation (1) is thus updated as follows:

g tð Þ=bg d tð Þ−r tð Þð Þ ð8Þ

dd tð Þ
dt

= −
d tð Þ
τdecay

+A
Nr

NRRP
δ t−tspike
� � ð9Þ

dr tð Þ
dt

= −
r tð Þ
τrise

+A
Nr

NRRP
δ t−tspike
� � ð10Þ

where r and d are the rising and decaying components of the postsyn-

aptic conductance, respectively. The implementation of the above

described stochastic synapse model is available at the open-access NMC

portal (Ramaswamy et al., 2015).

These changes to the canonical TM model introduce variability

of the postsynaptic traces, where the magnitude of the variability

depends on the additional NRRP parameter (Barros-Zulaica et al., 2019;

Loebel et al., 2009). In vitro this variability is typically assessed by the

coefficient of variation (CV, SD/mean) of the peak PSC (or PSP) ampli-

tudes. Therefore, the NRRP was calibrated to match the CVs of the first

PSCs extracted from the raw traces of Kohus et al. (2016). For a better

comparison, artificial membrane noise was added to the simulated traces

(see Barros-Zulaica et al. (2019) and Supplementary Methods).

2.6 | Calibrating peak synaptic conductances
through in silico paired recordings

Paired recordings were replicated in silico as follows: First, pairs were

selected from the circuit based on pathway specific distance criteria

used by experimentalist (100 μm3 for cells in the same layer and

200 μm3 for cell pairs from different layers). Second, postsynaptic

cells were current clamped to match the LJP-corrected (see below) SS

potential specified in the experiments. It is important to note, that in

the case of PCs sodium channels were blocked (in silico TTX applica-

tion) when clamping above −58 mV to avoid spontaneous firing of

the cell models (see Migliore et al. (2018), figure 5), whereas sodium

channels were not blocked in in vitro experiments. Next, the presynap-

tic cell was stimulated by somatic current injection, which resulted in

a PSP recorded in the soma of the postsynaptic neuron. This protocol

was repeated for 50 monosynaptic connections of the same pre-post

combination with 35 repetitions for each neuron pair. Finally, the

mean PSP amplitude was compared against experimentally data and

the peak conductance value was calibrated using the formula:

bg =bgPSPexp 1−PSPmodel=dfð Þ
PSPmodel 1−PSPexp=dfð Þ ð11Þ

where PSPexp (mV) and PSPmodel (mV) are the experimental and

modeled PSPs amplitudes respectively and df = j Erev − VSS j (mV) is

the driving force. For all the experiments we aimed to reproduce,

Erev = − 8.5 mV was calculated for excitatory connections, while

Erev = − 73 mV for inhibitory connections (Moradi & Ascoli, 2020). All

simulations were run using the NEURON simulator as a core engine

(Hines & Carnevale, 1997) with the Blue Brain Project's collection of

hoc and NMODL (Hines & Carnevale, 2000) templates for parallel exe-

cution on supercomputers (Hines, Eichner, & Schürmann, 2008; Hines,

Markram, & Schürmann, 2008). The default temperature in all simula-

tions was set to 34�C and the integration time step to 0.025 ms.

2.7 | Correcting for calcium ion concentration,
temperature, and LJP

Before integrating published parameters from different sources into

the in silico synapse model, they were corrected for differences in

experimental protocols. This included scalings for [Ca2+]o levels differ-

ent from 2 mM, temperatures different from 34�C and the correction

of holding and SS potentials by the theoretical LJP.
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Levels of [Ca2+]o impact the neurotransmitter release probability.

The corresponding in silico correction was applied by scaling the abso-

lute release probability USE parameter (see above) of the synapses,

using the Hill isotherm with n = 4 (Hill, 1910). The Hill equation below

describes the nonlinear increase in release probability as a function of

increasing [Ca2+]o:

USE =USEmax

Ca2+
h i4

0

K4
1=2 + Ca2+

h i4
0

ð12Þ

where USEmax is the maximum value of the release probability (≤1) at

high [Ca2+]o and K1/2 is the [Ca2+]o at which USE is one-half of USEmax.

USEmax and K1/2 parameters can be fit to data points (e.g., an indicator

of release probability—the ratio between PSP amplitudes) measured

at different [Ca2+]os. K1/2 values were taken from Rozov, Burnashev,

Sakmann, and Neher (2001), 2.79 (mM) for steep and 1.09 (mM) for

shallow calcium dependence and were shown to generalize well for

other characterized pathways of the neocortex (see Markram et

al. (2015), supplementary figure S11). In the absence of hippocampus

specific data, we followed the approach of Markram et al. (2015) and

assumed a steep dependence in PC to PC and PC to distal dendrite

targeting inhibitory (O-LM) cells, and a shallow dependence between

PC to proximal targeting cells (PVBC (PV+ basket cell), CCKBC (CCK+

basket cell), and axo-axonic cell). For experimentally uncharacterized

pathways, an intermediate calcium dependence was used, as the aver-

age of the steep and shallow ones. This intermediate curve was in

agreement with the few relevant data points for specific hippocampal

synaptic connections (Price, Scott, Rusakov, & Capogna, 2008; Tyan et

al., 2014). The temperature dependence of kinetic parameters such as

rise and decay time constants was corrected by dividing them with

Q10 scaling factors:

τsim = τexp=Q10
Tsim−Texpð Þ=10 ð13Þ

where τ is the time constant, Q10 is an empirically determined,

receptor-specific parameter, Tsim = 34 �C is the temperature used in

the simulations, while Texp < Tsim is the temperature of the experiment.

The Q10 correction was only needed for the NMDA current between

connected PCs (see above) because all other kinetic values that we

used were recorded at near physiological temperature (�34 �C).

Holding and SS potentials were corrected by the theoretical LJP

(Neher, 1992). These potentials arise from the differences in solutions

in the pipette and bath and are in 2–12 mV range for the standard

solutions. Theoretical LJPs, calculated from the reported pipette and

bath solutions were obtained from Moradi and Ascoli (2020).

2.8 | Statistical analysis

R values for validating matching experimental and model values are

Pearson correlations. Data are presented as mean ± SD to yield

comparable values to the experimental ones. USE, D, F distributions

from two different sources (e.g., found in the literature vs. fitted here)

are said to be comparable if the mean of the second distributions is

not further away than one-half of the SD of the first distribution.

3 | RESULTS

3.1 | Literature curation

First, we undertook an extensive literature review of paired recording

experiments, and compiled data on the various parameters (Figure 1,

Step 1; Tables 1 and 2 for the data inclusion and exclusion criteria, and

a list of data and modeling assumptions, respectively; see also Supple-

mentary Table S1 for voltage-clamp data from rat hippocampal CA1,

and S2 for current-clamp recordings). The data collected in this manner

is sparse and inhomogeneous, due to the disparate experimental condi-

tions used by different groups and were, therefore, corrected for vari-

ous aspects (Figure 1, Step 2). For example, [Ca2+]o is known to affect

release probability and, therefore, an additional Hill scaling had to be

considered while parameterizing STP models (see Section 2.7). Rise and

decay time constants of synaptic currents are influenced by tempera-

ture differences but can be corrected with Q10 factors (see Section 2.7).

For electrophysiological recordings, patch pipettes have become the

method of choice over sharp electrodes, which necessitates applying an

LJP correction for voltage traces (see Section 2.7).

3.2 | Synaptic model parameters

We integrated the collected and corrected data into a model of synap-

tic transmission that includes STP and stochastic neurotransmitter

release. We found that for some connection types the parameters of

this model could be fully determined by employing in silico paired

recordings (Figure 1, Step 3). Yet, for the majority of connection types

parameters had to be extrapolated (Figure 1, Step 4). We use “syn-

apse” to refer to a single anatomical synaptic contact and “connec-

tion” to indicate the collection of all synaptic contacts between a

given presynaptic and postsynaptic neuron, comprising one or more

synapses.

The underlying synapse model consisted of several parts, each

with their associated parameters, which we determined in a six-step

procedure: We modeled synaptic connections with biexponential con-

ductances requiring 8 parameters. Three parameters (Erev, τrise, τdecay)

were directly obtained from the literature (see Supplementary

Table S1 for AMPAR and GABAR rise and decay time constants,

methods for NMDAR time constants, and Supplementary Table S2 for

reversal potentials (Moradi & Ascoli, 2020)). In particular, for the τdecay

(Supplementary Table S1) with the exception of Maccaferri, Roberts,

Szucs, Cottingham, and Somogyi (2000) who used either single or

weighted biexponential fits, none of the other studies we considered

explicitly reported how τdecay was extracted. Therefore, we extrapo-

lated single exponential fits τdecay of all pathways, which were
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measured through somatic voltage-clamp recordings. We used these

measurements directly as dendritic PSC time constants without any

correction for attenuation (Table 2). STP was modeled with the TM

model, which added three parameters USE, D, F) to a synaptic connec-

tion type. They were fit in conjunction to the experimentally observed

STP behavior (Figure 2, Step 4; see Section 2.4). Stochastic synaptic

transmission was modeled by extending the TM model to include

quantal release from multiple sites. This added another parameter

(NRRP) that was fit to the observed variability of PSC amplitudes of

experimental traces in terms of their CV (SD/mean; Figure 2, Step 5;

see Section 2.5). Finally, the mean amplitude of PSPs depended on

three of the parameters and thus could be fit to the peak synaptic

conductance (bg) only after the other two parameters had been deter-

mined (Figure 2, Step 6).

In addition to the parameters of synaptic models, the physiology

of PSPs is also dependent on several anatomical parameters, which

result from the single-cell and tissue modeling workflow (see Sec-

tion 2.2; Supplementary Figure S1). To ensure the accuracy of the

fitted synaptic parameters we independently validated aspects of the

modeled anatomy (Figure 2, Steps 1 and 2). In the following sections,

we present the results of the anatomical validations, followed by the

results of the various fits of synaptic parameters.

3.3 | Validation of synaptic anatomy and dendritic
attenuation

The anatomical properties of synaptic connections such as number of

synapses per connection and axo-dendritic innervation patterns, along

with the dendritic properties of single cell models were validated

against experimental data (Figure 3). Pairs of synaptically connected

neurons were sampled from a dense tissue-level reconstruction of the

rat hippocampal CA1 region (see Section 2.1, Supplementary Figure S1,

Figures 3a and 4a). The number of synapses per connection for the

handful of experimentally characterized pathways (Ali, 2011; Biró,

Holderith, & Nusser, 2005; Buhl, Halasy, & Somogyi, 1994; Buhl, Han,

et al., 1994; Deuchars & Thomson, 1996; Földy, Lee, Morgan, &

Soltesz, 2010; Maccaferri et al., 2000; Sik, Penttonen, Ylinen, &

Buzsáki, 1995; Vida, Halasy, Szinyei, Somogyi, & Buhl, 1998) was con-

sistent with biological data (r = 0.98; Figure 3b and Supplementary

Table S3). The mean number of synapses per connection for the in silico

pathways that have been experimentally characterized are as follows:

Excitatory to excitatory (E-E): 1.26 ± 0.6; inhibitory to excitatory (I-E):

8.2 ± 2.1; excitatory to inhibitory (E-I); only connections between PC to

O-LM cells): 2.8 ± 1.2; inhibitory-inhibitory (I-I): 2.8 ± 0.2

(Supplementary Table S3). A systematic, quantitative characterization

of axo-dendritic innervation profiles for hippocampal CA1 synaptic con-

nections is largely lacking. Therefore, although we derived many predic-

tions of axo-dendritic innervation profiles from in silico synaptic

pathways, these could, however, only be validated based on anecdotal

evidence (Figures 3a and 4a). In addition, we sampled neuron pairs at

intersomatic distances of 0–200 μm to predict their connection proba-

bility and number of synapses per connection (Figure 3c,d). The upper

bound of 200 μm ensured that we obtained a sufficient number

(100 ≤ n ≤ 5, 000) of pairs for all connections, even where the pre–post

neurons were in different layers, for example, Schaffer collateral-

associated and OLM cells to PC connections. Although the perforant

path-associated cell to PC connections occur in our model, they were

excluded in these analyses since their somata are farther apart than the

general 200 μm distance criteria chosen for these predictions.

Finally, we also validated the dendritic attenuation profile of PSPs

in single neuron models of PCs, which were also found to be consis-

tent with experimental data (Magee & Cook, 2000) (τmodel = 235.2,

τexp = 155.6, Supplementary Figure S2).

3.4 | STP of synapses

The synaptic physiology of hippocampal CA1 connections expresses a

rich diversity of STP profiles in response to presynaptic AP trains at

F IGURE 1 In silico data integration pipeline. (1) 51 peer-reviewed papers, spanning 21 years were used to compile data on various
parameters of connected neurons in rat CA1 including connection probability, number of synapses per connections, axo-dendritic innervation
profile, kinetics, STP profiles, calcium and temperature sensitivity. (2) Parameters were integrated into a common framework and experimental
paradigm, including temperature, [Ca2+]o and liquid junction potential (LJP) corrections. TM models of STP were fit to publicly available raw
traces. (3) In silico paired recordings were run to correctly adjust the unitary peak conductance of connections with experimentally characterized
postsynaptic potential (PSP) amplitudes. (4) The resulting parameters were averaged within each of the nine classes of synapses and used
predictively to describe experimentally uncharacterized pathways [Color figure can be viewed at wileyonlinelibrary.com]
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different stimulus frequencies (Ali, Bannister, & Thomson, 1999; Ali,

Deuchars, Pawelzik, & Thomson, 1998; Ali & Thomson, 1998; Éltes,

Kirizs, Nusser, & Holderith, 2017; Kohus et al., 2016; Losonczy

et al., 2002; Pouille & Scanziani, 2004). However, to the best of our

knowledge, only Losonczy et al. (2002) reported TM model parame-

ters for CA1 pathways and used an additional recovery spike elicited

about 500–100 ms after the last spike in the train, which is crucial to

characterize frequency-dependent STP profiles of depression and

facilitation (Gupta, Wang, & Markram, 2000). Published STP parame-

ters from Losonczy et al. (2002) were used for PC to BC pathways,

after refitting a subset of their data, and ensuring their consistency with

our resulting USE, D, F values (see Section 2). The dataset from Kohus et

al. (2016) were obtained in the mouse CA3 region at 1.6 mM [Ca2+]o,

which differs from the rest of the datasets we considered, we never-

theless made use of this resource due to the availability of their raw

data, which was subsequently used in our procedure of fitting TM

model parameters (see Section 2.4; Table 1 for data inclusion and exclu-

sion criteria; Table 2 for a list of data and modeling assumptions). The

resulting TM model parameters following the fitting procedure were

consistent with those in the source dataset (Kohus et al., 2016). In addi-

tion, we were able to match the CVs of the first PSC amplitudes

(r = 0.8; Figure 4b, Supplementary Table S4), by calibrating NRRP (see

Loebel et al. (2009); Barros-Zulaica et al. (2019) and Section 2.5) with

the resulting values of NRRP in a biologically plausible range. An elegant

study demonstrated that under experimental conditions to induce high

neurotransmitter release probability (high Mg/Ca) CCKBC to PC con-

nections in CA3 are characterized by MVR (with NRRP = 5 − 7 vesicles)

(Biró, Holderith, & Nusser, 2006). However, univesicular release (UVR,

NRRP = 1) is more prevalent under physiological conditions (Biró et

al., 2006). The in silico CV of CCKBC to PC PSCs with NRRP = 1 com-

pared well against experimental data obtained under physiological con-

ditions. In the cases of synaptic connections from PVBC to PC and

PVBC, a value larger than 1 (NRRP = 6) vesicles were required (see Sec-

tion 2.5; Figure 4b). For pathways not present in the Kohus et

al.'s (2016) dataset, the NRRP could not be calibrated and was thus

assumed. The assumption of MVR with NRRP = 2 vesicles at each

excitatory to excitatory connections was used in this study (Barros-

Zulaica et al., 2019; Christie & Jahr, 2006; Conti & Lisman, 2003; Tong

& Jahr, 1994), while UVR was assumed at all other noncalibrated

pathways (see Gulyás et al. (1993); Biró et al. (2005) suggesting UVR

for certain PC to interneuron connections).

Based on the literature and our model fitting, we identified sev-

eral rules to group STP profiles. The mapping of STP profiles for all

pathways is as follows: PC to O-LM cells (Ali & Thomson, 1998; Biró

et al., 2005; Losonczy et al., 2002; Pouille & Scanziani, 2004) and

other interneurons in stratum oriens (Éltes et al., 2017) E1 (excitatory

facilitating). PC to PC (Deuchars & Thomson, 1996), PC to all SOM

interneurons (Ali et al., 1998; Losonczy et al., 2002; Pouille &

Scanziani, 2004) E2 (excitatory depressing). CCK+ interneurons to CCK

+ interneurons (Ali, 2007, 2011; Kohus et al., 2016) I1 (inhibitory facilitat-

ing), PV+ and SOM+ interneurons to PC (Ali et al., 1998, 1999; Bartos et

al., 2002; Buhl, Cobb, Halasy, & Somogyi, 1995; Daw, Tricoire, Erdelyi,

Szabo, & McBain, 2009; Kohus et al., 2016; Maccaferri et al., 2000;

Pawelzik et al., 2002) as well as interneurons to interneurons (except the

TABLE 1 Data inclusion and exclusion criteria

Data inclusion criteria

1 For the characterization of number of the synapses per connections, we used published values from anatomical studies employing electron and

light microscopy; in rat CA1 slices.

2 For the validation of our axo-dendritic innervation patterns, we used figures from published studies with biocytin-filled pairs; under light

microscopy; in rat CA1 slices.

3 For the characterization of synaptic physiology, we prioritized data from: Paired recordings from identified m-types; in rat CA1 slices; at 2 mM

[Ca2+]o; and 34�C; with reported holding/SS potential; and reported LJP or recording solutions.

4 For the parametrization the decay time constant of single PSCs, we used published decay time constant fits (independent of the model, e.g.,

single vs. biexponential fit).

5 For fitting the TM model, we used average raw PSC traces as well as published peak PSC amplitudes; with 10 spikes at different frequencies

plus a recovery spike.

6 For the validation of the TM model, we used published fits from the neocortex (Markram et al., 2015) in order to compare USE, D, F values of the

corresponding pathways.

7 For the estimation of the NRRP, we used raw PSC traces (all trials) to estimate the CV of the first peak PSC amplitude as well as published NRRP

estimates.

8 For the calibration of peak synaptic conductance amplitudes, we used published peak PSP amplitudes (see Supplementary Table S2).

9 For the validation of the peak synaptic conductances, we used single-receptor conductance and receptor number estimates.

Data exclusion criteria

10 In the case of multiple reports of a single parameter or reference data, we prioritized publications which were already used for other parameters

and excluded the others (see, e.g., (Pawelzik, Hughes, & Thomson, 2002) in Supplementary Table S2).

11 When we had access to individual PSP amplitudes beyond the usually reported mean ± SD, we excluded outliers and used the updated

mean ± SD as target PSP amplitude (see Supplementary Table S5).
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CCK+ ones) (Bartos et al., 2002; Daw et al., 2009; Elfant, Pal, Emptage, &

Capogna, 2008; Karayannis et al., 2010; Kohus et al., 2016; Price et

al., 2005) I2 (inhibitory depressing). CCK+ and NOS+ (only Ivy cells, since

we lack NGF morphologies) to PC (Fuentealba et al., 2008; Kohus et

al., 2016; Price et al., 2008) I3 (inhibitory pseudo linear). The parameters of

the groups and the resulting dynamics are summarized in Table 3 and

Figure 5.

Neurotransmitter release probability and the STP profile are not

only sensitive to the recording temperature and the developmental

age but also [Ca2+]o (Guzman, Schlögl, Frotscher, & Jonas, 2016;

Rozov et al., 2001; Williams & Atkinson, 2007). Therefore, we

modeled [Ca2+]o sensitivity with a highly nonlinear scaling of USE

(absolute release probability) values (see Section 2.7). As an exemplar

result of this additional modeling detail, the PC-to-PC pathway

exhibits an E3 (excitatory pseudolinear) STP profile characterized by

low PSP amplitudes with high trial-by-trial variability and failures at in

vivo like [Ca2+]o levels (1.1–1.3 mM) compared to the in vitro levels

(2–2.5 mM) E2 (excitatory depressing) profile (Supplementary

Figure S2b). USE values are scaled by a Hill isotherm (see Section 2.7)

parameterized with data from PSP amplitudes in neocortex (Markram et

al. (2015), supplementary figure S11), which is an indirect measure of

the release probability. Here, we have shown that applying this Hill iso-

therm directly to the USE values indeed results in the same scaling pro-

file of PSP amplitudes in the case of PC-to-PC connection

(Supplementary Figure S3a).

3.5 | Calibration of peak synaptic conductances to
match PSP amplitudes

There is a dearth of studies characterizing both the PSC and PSP

amplitudes for the same connections in rat hippocampal CA1 (com-

pare Supplementary Tables S1 and S2). Therefore, we only used PSP

amplitudes that were measured experimentally to calibrate the in silico

peak synaptic conductances in order to match the in vitro PSPs (Ali et

al., 1998; Ali & Thomson, 1998; Cobb et al., 1997; Deuchars &

TABLE 2 List of assumptions. All the assumptions that were made to arrive at model parameters from a sparse set of raw data and published
values

1 We assume that after all the listed correction in this paper, all parameters coming from different sources can be used together to parameterize

the synapse models.

2 When using data from Kohus et al. (2016), we assumed that CCK+ DTIs (dendrite-targeting interneurons) are SCA cells in SR. Furthermore, we

assumed that synaptic currents measured in mouse CA3 are representative of similar pathways in rat CA1.

3 In the lack of representative data and our lack of neurogliaform cells, we assumed that all inhibitory synapses are mediated purely by GABAA

receptors.

4 For calculating release probabilities at different [Ca2+]o, we assumed that Hill functions parameterized with cortical data generalize well for

hippocampal connections.

5 For modeling synaptic currents, we assumed that all CA1 synapses can be described with biexponential conductances, with vesicle release

kinetics governed by the stochastic TM model. When modeling dendritic PSC decays, we assumed a single exponential function, parametrized

with a time constant extracted from somatic recording.

6 In the process of calibrating synaptic peak conductances, we simulated only the synapses mediating the given connection and thus we assume

that the background activity does not matter.

7 Some of the biggest assumptions are inherited from the network model: In this work, we assumed that the published electrical models of single

cells (Migliore et al., 2018) capture the behavior of different neurons in rat CA1. (The fact that unlike experimentalists, we cannot clamp PC

models to potentials above −58 mV without blocking sodium channels seems to violate this assumption.) We also assumed that the cell

composition and cell density within each layer are homogeneous and the constrained connectivity reflects the connectivity of rat CA1.

8 Kinetic parameters for a given pathway are drawn from a distribution, but since (almost) all experimental data used to derive these parameters

are representative for a given connection and not for individual synapses per se, we use the same parameters for all synapses mediating a

single connection.

9 The biggest assumption is that one can extrapolate parameters from experimentally characterized pathways, to fill in missing values. When

generalizing our parameters for similar, experimentally uncharacterized pathways we group CA1 interneurons based on only one chemical

marker. However, cells express many of these and the markers overlap (see hippocampome.org (Wheeler et al., 2015)). By PV+ cells we mean:

SP_PVBCs, SP_BS cells, and SP_AA cells. By CCK+ cells we mean: SP_CCKBCs, SR_SCA cells and SLM_PPA cells. The only interneurons in our

NOS+ class are SP_Ivy cells. (Neurogliaform cells would belong here as well.) We assume all neurons in SO: SO_OLM cells, SO_BS cells,

SO_Tri cells, and SO_BP cells to be SOM+.

10 A usually unspoken, implicit assumption on communication between neurons is used here as well, namely, we model only glutamatergic and

GABAergic synapses between presynaptic axons and postsynaptic somata and dendrites. Thus, we leave out cotransmission and

neuromodulators acting on different receptors, retrograde messengers, any kind of gap junctions and any axonal receptors.
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Thomson, 1996; Fuentealba et al., 2008; Pawelzik et al., 2002;

Pawelzik, Bannister, Deuchars, Ilia, & Thomson, 1999) (see Figure 3d

and Table 3). Having parameterized all relevant anatomical and physi-

ological synaptic properties including the number of synapses per con-

nections, axo-dendritic innervation patterns, PSC rise and decay time

constants, STP parameters, NRRP, NMDA/AMPA peak conductance

ratio, and reversal potential, we undertook in silico paired recordings

by following a sequence of steps. A connected pair of neurons within

a pathway specific intersomatic distance (usually �100 μm) for a given

pathway was sampled from the hippocampal CA1 model, the postsyn-

aptic neuron was current clamped to a pathway-specific SS potential

(see Supplementary Table S2), an AP was elicited in the presynaptic

neuron, which caused a postsynaptic response, measured in the soma.

After repeating this sequence for multiple pairs of the same pathway

(n = 50) with many trials (n = 35), we derived the peak synaptic con-

ductance value that yielded the reference mean experimental PSP

amplitude (see Section 2.6). Next, we repeated the same protocol on a

set of 50 randomly selected pairs with the calibrated peak conduc-

tance values as a validation of our approach (r = 0.99; Figure 4c and

Supplementary Table S5).

As an independent external validation of the peak conductances,

we compared them against sparse published data estimating single-

receptor conductance and receptor numbers in excitatory synapses

on PCs. Hippocampal CA1 PCs receive most of their inputs from CA3

PCs through the Schaffer collaterals (Megías, Emri, Freund, &

Gulyás, 2001; Takács et al., 2012), whereas in this study we only con-

sidered intrinsic connections—for example, excitatory connections

between local CA1 PCs—and not long-range extrinsic projections.

Thus, single-receptor conductances and receptor number estimates

from the Schaffer collateral synapses were assumed to generalize for

the intrinsic PC-to-PC connections. Using nonstationary fluctuation

analysis on EPSCs recorded in outside-out dendritic membrane pat-

ches, (Spruston, Jonas, & Sakmann, 1995) estimated peak single-

receptor conductances of 10.2 pS and 43.5 pS for AMPARs and

NMDARs, respectively. Based on these numbers, our calibrated values

resulting in a peak AMPAR conductance of 0.6 ± 0.1 nS is the net

result of �59 AMPARs per synaptic contact. Based on an experimen-

tally measured NMDAR/AMPAR peak conductance ratio of 1.22

(Myme et al., 2003), we predict that there are about �18 NMDARs

constituting a single synaptic contact between CA1 PCs. Our in silico

predictions are consistent with experimental studies that estimate

�58–70 AMPA and �5–30 NMDA receptors (Jonas, Major, &

Sakmann, 1993; Matsuzaki et al., 2001; Nusser et al., 1998; Spruston

et al., 1995). Taken together, these experimental datasets enable an

independent validation of the calibrated peak conductance of PC-to-

PC connections in CA1. In addition, we also predict an average GABA

peak conductance of 2 ± 1 nS at a single inhibitory synaptic contact

comprising �100 GABAergic receptors, which is also in good agree-

ment with previous estimates (Mody & Pearce, 2004).

3.6 | Parameter extrapolation

By integrating all the synaptic parameters and performing paired

recordings in silico, we procured a dataset of 16 pathways (Table 3).

The number of theoretically possible pathways (based on 12 m-types)

in our CA1 circuit model is 144; however, only 102 of these are bio-

logically viable based on the extent of axo-dendritic overlap

(Figure 3c,d). Therefore, the parameters of the remaining 90% of the

pathways had to be extrapolated. We generalized the anatomical

properties of synapses (number of synapses per connection, connec-

tion probability, bouton density, innervation profile) obtained from

the fraction of characterized to the remainder of uncharacterized

pathways as shown previously (Markram et al., 2015; Reimann et

al., 2015). However, for STP profiles of hippocampal connections

obtained from studies that reported measurements of paired-pulse

F IGURE 2 In silico synapse model and parameter fitting:
Properties of the network (left) and the parameters synapse model
(right) determine certain features of the emergent postsynaptic
potentials (PSPs) (middle). (These PSP features are schematized at the
bottom of the figure. Individual trials are shown in gray and their
average postsynaptic voltage trace in black.) These dependencies
between properties/parameters and PSP features (indicated by
arrows, and dots where they join and continue as a single arrow) were
used to fit the synapse model parameters to data in six steps. Left:
Parts of the network model that affect these features such as
biophysical and anatomical neuron models via dendritic attenuation
(1) as well as dendritic innervation and the number of synapses per
connection (2) are independently validated. Top right: Parameters of
the model of postsynaptic conductance are taken from averaged
experimental PSC traces (3). Middle right: The TM model of STP adds
three parameters that are fit to observed STP behavior (4). Bottom
right: The model of stochastic quantal release adds another parameter
fit to the observed CV of PSP amplitudes (5). In the last step, peak
synaptic conductances are calibrated to match PSP amplitudes from
data (6). Numbers on arrows indicate that the given parameter was
validated against—or fitted to data, while numbers on boxes indicate
that the parameters were taken from literature and directly plugged in
into the model [Color figure can be viewed at wileyonlinelibrary.com]

ECKER ET AL. 1137

http://wileyonlinelibrary.com


(a)

(a1)

(a2) (a4)

(b)
(c) (d)

F IGURE 3 In silico synapse anatomy. (a) A representative in silico O-LM (purple) to PC (blue) pair, with synapses visualized in red. 3D
morphologies were reconstructed with the Neurolucida software by the members of the Thomson/Mercer lab (Migliore et al., 2018). (a1) Branch
order distribution (n = 5, 000 connections) of the presynaptic (O-LM) axons. (a2) Branch order distribution of the postsynaptic (PC) tuft dendrites.
(a3) Distribution of the number of synapses per connection of the in silico O-LM to PC pathway. In vitro experimental data is indicated in red. (a4)
Distance-dependent connection probability of the in silico O-LM to PC pathway. (b) Validation of the number of synapses per connection against
experimental data. (E: excitatory, I: inhibitory, e.g.,: I-E: inhibitory to excitatory pathways.) Dashed gray line represents perfect correlation
between experimental and model values. (c) Predicted mean number of synapses per connections for all pathways in the full-scale CA1 network
model. Only connections with ≤200 μm intersomatic distance were used to calculate the average. Averages were calculated from 100 ≤ n ≤ 5,
000 pairs. White boxes represent connections that are not present in the circuit model due to the lack of axo-dendritic overlap (given the
≤200 μm intersomatic distance sampling criteria). Experimentally measured values (same as on its left) are highlighted with black rectangles. Layer
abbreviations: SR, stratum radiatum; SP, stratum pyramidale; SO, stratum oriens. M-type abbreviations: AA, axo-axonic cell; BP, back-projecting
cell; BS, bistratified cell; CCKBC, CCK+ basket cell; Ivy, ivy cell; OLM, oriens-lacunosum moleculare cell; PC, pyramidal cell; PVBC, PV+ basket
cell; PPA, performant path-associated cell; SCA, Schaffer collateral-associated cell; Tri, trilaminar cell (see Supplementary Methods). (d) Predicted
mean connection probability (within 200 μm intersomatic distance) for all pathways in the CA1 network model. M-type abbreviations, white
boxes, black rectangles, and number of pairs are as in (c) [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 4 In silico synapse physiology. (a) In silico paired recording experiment with the STP protocol used in Kohus et al. (2016). Presynaptic
(PVBC) voltage trace is shown on top. In silico PVBC (green) to PC (blue) pair, with synapses visualized in red in the middle. 3D morphologies were
reconstructed with the Neurolucida software by the members of the Thomson/Mercer lab (Migliore et al., 2018). Postsynaptic (PC) experimental
traces recorded in vitro (in gray) and their mean in red, as well as model traces recorded in silico (in gray) and their mean in blue, are presented at
the bottom panel. Insets show the variance of the first IPSCs. (b) Validation of the CV of the first PSC amplitudes (excluding failures) against
experimental data. (E: excitatory, I: inhibitory, e.g.,: I-E: inhibitory to excitatory pathways.) Dashed gray line represents perfect correlation
between experimental and model values. (c) Validation of the postsynaptic potential (PSP) amplitudes against experimental data. (d) Predicted CVs
of first PSC amplitudes (excluding failures) for all pathways in the CA1 network model after synapse parameter generalization. As in Figure 3c,
only connections with ≤200 μm intersomatic distance were used to calculate the average postsynaptic response from n = 20 pairs with 35
repetitions for each pair. Postsynaptic cells were held at −65 mV in in silico voltage-clamp mode. M-type abbreviations, white boxes, and black
rectangles are as in Figure 3c. (e) Predicted PSP amplitudes for all pathways in the CA1 network model after synapse parameter generalization.
Then, 20 pairs with 35 repetitions for every possible connection. Postsynaptic cells were held at −65 mV steady-state potential in in silico

current-clamp mode. Consistent with Gulyás et al. (1993), PC to interneurons are the strongest. M-type abbreviations, white boxes, black
rectangles and number of pairs are as in (d). (f) Properties of postsynaptic (PC) IPSPs from 100 PVBC to PC pairs with 35 repetitions each. (f1)
Distribution of in silico PSP amplitudes. In vitro experimental data from Pawelzik et al. (2002) is indicated in red. (f2) Distribution of in silico PSP
10–90% rise times. (10–90% rise time constants of PSCs are fixed to 0.2 ms in the model, but the PSP rise times wary.) (f3) Distribution of in silico
PSP decay time constants (single exponential fit). (f4) Distribution of in silico PSP latencies. (f5) Distribution of the CVs of the first in silico PSP
amplitudes (excluding failures). (f6) Distribution in silico failures (0 measurable PSP amplitude from 35 repetitions) [Color figure can be viewed at
wileyonlinelibrary.com]
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ratios, but did not provide the raw experimental traces with ≥2 pre-

synaptic spikes (Ali & Thomson, 1998; Deuchars & Thomson, 1996;

Fuentealba et al., 2008), we applied analogous parameters from the

somatosensory cortex (Markram et al., 2015). We performed a prior

consistency check of the parameter ranges for similar connection

types—perisomatic inhibitory (BCs) to PC, and inhibitory to

inhibitory—that have been experimentally characterized in both

somatosensory cortex and hippocampus and found them to be com-

parable. Therefore, our rationale to generalize four sets of USE, D, F

values from the somatosensory cortex to the hippocampus (Table 3)

could be justified. Thereafter, we approximated the missing parame-

ters with averaged values across specific connection types that were

grouped according to neurochemical markers that appear to have sim-

ilar STP parameters and peak conductances (Table 3). For example, it

is known that excitatory synapses on distal dendrite targeting inter-

neurons, which predominantly express SOM—such as PC to O-LM

connections—are mostly facilitating, and on the contrary inhibitory

synapses from SOM+ neurons to PCs are strongly depressing (Ali &

TABLE 3 Parameters and generalization to nine classes

Pre Post bg τ decay USE D F NRRP

PC to PC (E2)

PC PC 0.6 ± 0.1 3 ± 0.2 0.5 ± 0.02a 671 ± 17a 17 ± 5a 2

PC to SOM+ (E1)

PC OLM 0.8 ± 0.05 1.7 ± 0.14a 0.09 ± 0.12a 138 ± 211a 670 ± 830a 1

PC SOM+ 0.8 ± 0.05 1.7 ± 0.14a 0.09 ± 0.12a 138 ± 211a 670 ± 830a 1

PC to SOM− (E2)

PC PVBC 2 ± 0.05 4.12 ± 0.5 0.23 ± 0.09 410 ± 190 10 ± 11 1

PC CCKBC 3.5 ± 0.4 4.12 ± 0.5 0.23 ± 0.09 410 ± 190 10 ± 11 1

PC BS 1.65 ± 0.1 4.12 ± 0.5 0.23 ± 0.09 410 ± 190 10 ± 11 1

PC Ivy 2.3 ± 0.4 4.12 ± 0.5 0.5 ± 0.02a 671 ± 17a 17 ± 5a 1

PC SOM− 2.35 ± 0.7 4.12 ± 0.5 0.23 ± 0.09 410 ± 190 10 ± 11 1

PV+ to PC (I2)

PVBC PC 2.15 ± 0.2 5.94 ± 0.5 0.16 ± 0.02 965 ± 185 8.6 ± 4.3 6

AA PC 2.4 ± 0.1 11.2 ± 0.9 0.1 ± 0.01 1,278 ± 760 10 ± 6.7 1

BS PC 1.6 ± 0.1 16.1 ± 1.1 0.13 ± 0.03 1,122 ± 156 9.3 ± 0.7 1

PV+ PC 2 ± 0.35 11.1 ± 4.1 0.13 ± 0.03 1,122 ± 156 9.3 ± 0.7 1

CCK+ to PC (I3)

CCKBC PC 1.8 ± 0.3 9.35 ± 1 0.16 ± 0.04 153 ± 120 12 ± 3.5 1

SCA PC 2.15 ± 0.3 8.3 ± 0.44 0.15 ± 0.03 185 ± 32 14 ± 5.8 1

CCK+ PC 2 ± 0.15 8.8 ± 0.25 0.16 ± 0.01 168 ± 15 13 ± 0.5 1

SOM+ to PC (I2)

Tri PC 1.4 ± 0.3 7.75 ± 0.9 0.3 ± 0.08a 1,250 ± 520a 2 ± 4a 1

SOM+ PC 1.4 ± 0.3 8.3 ± 2.2a 0.3 ± 0.08a 1,250 ± 520a 2 ± 4a 1

NOS+ to PC (I3)

Ivy PC 0.48 ± 0.05 16± 2.5 0.32 ± 0.14a 144 ± 80a 62 ± 31a 1

CCK− to CCK− (I2)

PVBC PVBC 4.5 ± 0.3 2.67 ± 0.13 0.26 ± 0.05 930 ± 360 1.6 ± 0.6 6

PVBC AA 4.5 ± 0.3 2.67 ± 0.13 0.24 ± 0.15 1,730 ± 530 3.5 ± 1.5 1

CCK− CCK− 4.5 ± 0.3 2.67 ± 0.13 0.26 ± 0.05 930 ± 360 1.6 ± 0.6 1

CCK+ to CCK+ (I1)

CCKBC CCKBC 4.5 ± 0.3 4.5 ± 0.55 0.11 ± 0.03 115 ± 110 1,542 ± 700 1

CCK+ CCK+ 4.5 ± 0.3 4.5 ± 0.55 0.11 ± 0.03 115 ± 110 1,542 ± 700 1

Note: Synapse parameters either taken from the literature (τdecay (ms)), fitted directly to data (USE, D (ms), F (ms)), calibrated in silico (bg (nS), NRRP) or taken

from the somatosensory cortex ((Markram et al., 2015) marked with superscript “a”). Values in the τdecay column which neither appear in Supplementary

Table S1 (summarizing rat PSCs) nor are taken from the somatosensory cortex, are from mouse recordings (Daw et al., 2009; Lee et al., 2014). Average class

parameters are marked in bold and are used predictively for the remaining pathways belonging to the same class. For cells belonging into the same class,

see Table 2, Assumption 9. M-type abbreviations are as in Figure 3c. [Correction added on 12 October 2020, after first online publication: Values in the

PC to Ivy row of the above table were updated.]
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Thomson, 1998). This exercise resulted in nine synaptic classes, cover-

ing all connection types in the CA1 region (Table 3 and Figure 5).

Most of these classes contain few experimentally characterized exam-

ples, especially between inhibitory interneurons (Table 3). We have

previously shown that averaging STP parameters and peak conduc-

tances within synaptic classes is a valid method to extrapolate miss-

ing values (Markram et al., 2015; Ramaswamy et al., 2015).

With the integrated and calibrated, but mostly generalized set of

parameters (bg , τdecay, USE, D, F parameters of STP and NRRP; Figure 2)

for all pathways in the CA1 model we predicted the CVs of the first

PSCs (Figure 4d) and the first PSP amplitudes (Figure 4e), based on

previously published cell models (Migliore et al., 2018) and statistically

derived connectivity. In addition, we performed in silico paired record-

ings in all possible pre-post combination of m-type-specific pathways

(n = 102 biologically viable pathways) to generate detailed predictions

of the physiological properties of synaptic transmission including PSP

amplitudes, 10–90% rise times, decay time constants, latencies, CV of

first PSP amplitude, and percentage of failures (Figure 4f). Although

these predictions could provide preliminary insights into the organiz-

ing principles of synaptic transmission in hippocampal CA1—in partic-

ular, inhibitory pathways, which remain mostly uncharacterized—they

require further validation through targeted experiments, for example,

employing state-of-the-art multiple whole-cell patch-clamp recordings

(Espinoza et al., 2018; Guzman et al., 2016; Perin et al., 2011).

4 | DISCUSSION

Recent advances in high-performance computing have enabled

biologically detailed, data-driven reconstructions and large-scale

simulations of brain regions (Bezaire, Raikov, Burk, Vyas, &

Soltesz, 2016; Bezaire & Soltesz, 2013; Markram et al., 2015;

Wheeler et al., 2015). Here, we demonstrate that a data-driven

workflow grounded in biological first-principles, which was used to

reconstruct a biologically detailed model of rat neocortical tissue

digitally, can be extended to model other brain regions such as the

hippocampal CA1, to reconcile disparate cellular and synaptic data,

and to extrapolate from the sparse set of experimentally obtained

parameters to predict those of synaptic connections not yet char-

acterized experimentally. In this study, we chose a previous imple-

mentation of the phenomenological TM model of STP, which is

based on the quantal model of neurotransmitter release. The

approach was able not only to extract relevant parameters from

raw experimental traces, but scaled well to simulate dynamic trans-

mission (Markram et al., 2015; Ramaswamy et al., 2012, 2015). In

addition, this version of the TM model also enabled us to simulate trial-

to-trial fluctuations to recreate, validate, and predict a broad spectrum

of synaptic properties for cell-type-specific hippocampal connections

including amplitudes, rise and decay times, latency, variability, and

response failures (Figure 4f). It is known that [Ca2+]o regulates the neu-

rotransmitter release probability, and therefore, the amplitudes of PSPs.

In this study, we adapted the existing data-driven digital reconstruction

workflow to reconcile differences in synaptic dynamics that were

characterized at different [Ca2+]o levels. Therefore, we scaled the neu-

rotransmitter release probabilities for all pathways that were character-

ized at 1.6–2 mM [Ca2+]o (Kohus et al., 2016; Losonczy et al., 2002;

Markram et al., 2015) before calibrating peak conductances to match

PSP amplitudes that were measured at 2.5 mM [Ca2+]o, which is more

representative of baseline values for hippocampal slice experiments (Ali

et al., 1998; Ali & Thomson, 1998; Deuchars & Thomson, 1996;

Fuentealba et al., 2008; Pawelzik et al., 1999, 2002).

In the continuing spirit of bringing together, hippocampal synaptic

electrophysiology from published literature a recent complementary

study leveraged text-mining techniques to extract the properties of

synaptic connections in hippocampal CA1, including PSP amplitudes

and peak conductances (Moradi & Ascoli, 2020). The authors have

also open-sourced their collection of papers and parameters alongside

useful cloud-based tools to calculate reversal potentials and LJPs, of

which we took advantage for this paper. However, our approach to

data integration from literature demonstrates that synaptic properties

reported in the literature such as peak conductances should not be

interpreted at face value but require further corrections to account

for inadequate space-clamp errors, which could severely underesti-

mate their value by twofold to threefold (Markram et al., 2015). Fur-

thermore, when integrating data from whole-cell patch-clamp

recordings, the interaction between the extracellular bath and intracel-

lular pipette solutions, and their influence on the kinetics of ion chan-

nel mechanisms used in the in silico single-cell models becomes

paramount.

The results we report, to the best of our knowledge, constitute a

comprehensive resource, not only for the anatomy but also for the

physiology of synaptic connections in the rat hippocampal CA1

region. Consolidation of the state of the literature not only facilitates

building detailed models but also highlights knowledge gaps and could

help in prioritizing the identification of missing data on CA1 connec-

tions, such as PC to interneurons, and between interneurons, which

could form diverse presynaptic–postsynaptic combinations of poten-

tial CA1 connection types that are crucial in regulating hippocampal

oscillations (Klausberger & Somogyi, 2008; Pelkey et al., 2017). Our

modeling approach predicts relatively high connection probabilities

for interneuron to interneuron connections, and low IPSP amplitudes

(see Figures 3d and 4e). However, these predictions need further

experimental validation, probably through multiple patch-clamp

recordings, which have enabled high-throughput mapping of inhibi-

tory circuits not only in the neocortex (Jiang et al., 2015), but also in

the dentate gyrus of the hippocampal formation (Espinoza et

al., 2018). Indeed, the parameter set presented here should be consid-

ered a first draft, with many assumptions and limitations. For example,

we assume somatically measured PSC decay time constants for den-

dritic synapses without any correction for attenuation, use USE, D, F

values obtained in CA3, generalize NMDA/AMPA peak ratios charac-

terized between PCs to all other excitatory pathways, and do not

model GABAB receptors. We plan to refine these assumptions system-

atically in future versions of our model and overcome limitations by

integrating new experimental data when available (see Table 1 for all

data inclusion criteria and Table 2 for all explicit limitations). The
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presence of blockers such as TTX, QX314, cesium, and gluconate

among many others, alter the kinetics of dendritic ion channels, which

are active in the subthreshold regime, and thus, are key factors in

governing the attenuation of PSPs in active dendrites. However, in

our study, the core experimental dataset that was used to calibrate

the peak synaptic conductances (Supplementary Tables S2 and S5)

were derived exclusively from sharp-electrode recordings where the

intracellular medium is devoid of any of the above blockers, and there-

fore, the subthreshold regime of the single-cell models are not unduly

influenced. Indeed, the effects of blockers on the subthreshold regime

will not only become important for future refinements of single-cell

models but also when more experimental data from whole-cell patch

clamp recordings are available.

By detailing all the integration steps in this study, we had two main

objectives. First, we aimed to demonstrate that published parameters

should not be taken at face value without rigorously checking their con-

sistency within any modeling framework and the necessity of being

abreast of the state-of-the-art experimental techniques. Second, we

attempted to emphasize the fact that a growing diversity of experimen-

tal standards combined with published literature that provides access to

only processed data sets but not raw experimental traces could lead to

an inconsistent picture of a fundamental mechanism such as synaptic

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(a)

(b)

F IGURE 5 Summary of synapse diversity in the CA1 network model. Panels represent exemplar in silico pairs from the nine generalized
pathways (two for PC to SOM− interneurons). Presynaptic voltage traces are shown in the upper traces of each panel (a–j), while the
postsynaptic potentials elicited in 35 trials (in gray) and the average of these trials are superimposed in the lower traces of each panel.
Postsynaptic cells were held at −65 mV steady-state potential in in silico current-clamp mode. Physical dimensions are as follows: decay time
constant τd and D, F depression and facilitation time constants: ms, peak synaptic conductance bg: nS, while the absolute release probability
USE and NMDA/AMPA conductance ratios are dimensionless. (a) PC to PC (E2). (b) PC to O-LM cell (E1). (c) PC to (SP) bistratified cell (E2). (d) PC
to CCKBC (E2). (e) O-LM cell to PC (I2). (f) CCKBC to CCKBC (I1). (g) Ivy cell to PC (I3). (h) CCKBC to PC (I3). (i) PVBC to PC (I2). (j) PVBC to

PVBC (I2). Vertical scale bars on each panel represent 0.25mV. Connectivity in the schematic CA1 microcircuit in the middle is simplified for
clarity (e.g., most of the interneuron to interneuron connections are missing). Simplified synapses of the pathways shown in the panels around
are indicated with gray circles. M-type abbreviations are as in Figure 3c [Color figure can be viewed at wileyonlinelibrary.com]
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transmission. The bottom-up modeling framework presented as a

resource in this article could facilitate the integration of disparate

datasets and provide a platform within which a community-driven con-

sensus of the synaptic organization of the hippocampal formation could

develop.
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