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Abstract
We analyze the impact of in utero temperature exposure on the birth weight and 
an indicator for low birth weight using administrative data on singleton live births 
conceived between 2000 and 2016 in Hungary. We find that exposure to high tem-
peratures during pregnancy decreases birth weight, but its impact on the probability 
of low birth weight is weaker. Exposure to one additional hot day (mean temperature 
> 25 °C) during the gestation period reduces birth weight by 0.46 g, relative to a 
15–20 °C day. The second and third trimesters appear to be slightly more sensitive 
to temperature exposure than the first trimester. We project that climate change will 
decrease birth weight and increase the prevalence of low birth weight by the mid-
twenty-first century. The projected impacts are the strongest for newborns conceived 
during the winter and spring months.

Keywords Birth weight · Low birth weight · Health at birth · Temperature · Climate 
change

Introduction

Birth weight and other indicators of health at birth predict important outcomes 
in later life, including childhood, adolescent, and adult health, as well as edu-
cational attainment and labor market outcomes (Almond et  al., 2018; Almond & 
Currie, 2011; Behrman & Rosenzweig, 2004; Bharadwaj et al., 2018; Black et al., 
2007; Case et  al., 2005; Currie, 2009, 2011; Figlio et  al., 2014). Recognizing the 
importance of these indicators, a growing number of papers examine how differ-
ent shocks in utero influence health at birth. These studies showed that environmen-
tal factors—among others air pollution, drinking water contamination, agricultural 
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fires, earthquakes, radiation, and toxic releases—are among the key determinants 
of health at birth (Coneus & Spiess, 2012; Currie et al., 2013, 2014, 2015; Currie 
& Schmieder, 2009; DeCicca & Malak, 2020; Jones, 2020; Menclova & Stillman, 
2020; Pedersen et  al., 2013; Quansah et  al., 2015; Rangel & Vogl, 2019; Torche, 
2011; Tsou et al., 2019; Yang et al., 2003).

As the Earth’s climate is projected to warm rapidly in the next decades (IPCC 
2014, 2018), a notable research line focuses on the impact of in utero temperature 
exposure on birth weight (Andalón et al., 2016; Chen et al., 2020; Davenport et al., 
2020; Deschênes et al., 2009; Grace et al., 2015; Molina & Saldarriaga, 2017; Ngo 
& Horton, 2016; Sun et al., 2019). These studies found that exposure to heat during 
pregnancy decreases birth weight and increases the probability of being born with 
low birth weight. However, the results regarding the impact of cold temperatures 
are mixed. Some studies have found that in utero exposure to cold temperatures 
increases birth weight (Deschênes et al., 2009). Others have found a negative (Ngo 
& Horton, 2016; Sun et al., 2019) or zero impact (Andalón et al., 2016; Chen et al., 
2020; Molina & Saldarriaga, 2017). The results are also mixed in terms of which 
trimester is the most sensitive to temperature exposure.

A handful of papers examine the impacts of in utero exposure to other weather 
indicators on birth weight, e.g., sunshine (Trudeau et al., 2016; Zhang et al., 2020) 
or storms and hurricanes (Beuermann & Pecha, 2020; Currie & Rossin-Slater, 2013; 
Simeonova, 2011). Furthermore, other related literature analyzes the long-term 
impacts of in utero temperature exposure (Fishman et al., 2019; Hu & Li, 2019; Isen 
et al., 2017; Wilde et al., 2017).

Despite the numerous studies on the relationship between in utero temperature 
exposure and birth weight, only two papers have dealt with the impacts of climate 
change. One of them quantified the impact of climate change using projections from 
a single climate model (Deschênes et  al., 2009), by which it failed to account for 
the full extent of the uncertainty of future climate (Burke et al., 2015a, 2015b). The 
other one used predictions from 33 climate models (Ngo & Horton, 2016), but even 
this study ignored regression uncertainty, which is, in this case, uncertainty in the 
historical relationship between temperature exposure and birth weight (Burke et al., 
2015a, 2015b).

In this paper, we explore the impacts of in utero temperature exposure on birth 
weight and the probability of low birth weight. We use administrative data of the 
Hungarian Central Statistical Office that cover more than 1.5 million singleton live 
births conceived between 2000 and 2016 in Hungary. The effects of in utero temper-
ature exposure are identified from year-to-year variation after controlling for county-
specific annual shocks and seasonality. We find that temperature exposure during 
pregnancy has a significant impact on birth weight, whereas its effect on the prob-
ability of low birth weight is weaker. In general, exposure to higher temperatures 
decreases birth weight, but the relationship seems to be nonlinear. Using historical 
estimates, we project the impact of climate change by the middle of the twenty-first 
century. Our calculations show that average birth weight will decrease, whereas the 
prevalence of low birth weight is likely to increase by 2040–2059. In addition, the 
projected impacts of climate change vary across births conceived in different parts 
of the year.
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Our paper contributes to the existing literature in several ways. We explore 
the impact of in utero temperature exposure in a Central European country. This 
region was missing from the literature until now. More importantly, this is one of 
few papers that project the impact of climate change on birth weight and low birth 
weight. In these calculations, we account for both climate and regression uncertainty 
and show the importance of this approach. Furthermore, for the first time in the lit-
erature, we also explore the impact of climate change across the calendar weeks of 
conception.

Data

Live births

Live birth data come from the administrative registers of the Hungarian Central 
Statistical Office. The birth records contain detailed information on the newborns 
and their parents. We have information on the exact birth date, sex, birth weight, 
and gestational age of the newborn babies, as well as on the level of education, 
employment, residence, and birth date of both the mother and the father, and on the 
pregnancy history and marital status of the mother. We consider two outcome vari-
ables: (1) birth weight (measured in grams) and (2) an indicator for low birth weight 
(LBW, birth weight < 2500 g).

Information on the birth date and pregnancy length (reported in completed weeks) 
are used to estimate the beginning of the last menses. Next, based on the medical 
literature (Cole et  al., 2009; Fehring et al., 2006; Lenton et al., 1984; Stirnemann 
et  al., 2013), we assume that conception occurs on the 15th day of the menstrual 
cycle. Using the estimated conception dates, we define the conception year and the 
conception week of every live birth.1 For further details, see the Electronic Supple-
mentary Materials.

We use data of singleton newborns conceived between 2000 and 2016.2 The 
county of a live birth record is defined by the place of residence of the mother (at 
the time of the birth).3 We excluded birth records with non-Hungarian or unknown 
places of residence, as well as births with missing information on pregnancy length 
or birth date (less than 1% of all singleton births in total). Our dataset covers 
1,532,661 singleton newborns.

1 Each year is divided into 52 weeks, which means that the 52th week is 8 days long (9 days in leap 
years).
2 By using a sample that is selected on the date of conception instead of the date of birth, we can avoid 
the bias that (for some conception weeks) pregnancies with a shorter gestation are missed at the start of 
the study period and pregnancies with a longer gestation are missed at the end (Strand et al., 2011).
3 In accordance with the Nomenclature of Territorial Units for Statistics (NUTS) classification system, 
Budapest (the capital of Hungary) is considered an individual county; thus, we have 20 counties. Figure 
A1 (Electronic Supplementary Materials) displays the twenty counties of Hungary and the yearly average 
number of singleton births by county.
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Weather data

We use weather data from the E-OBS 19.0e dataset of the European Climate Assess-
ment and Dataset project (Cornes et al., 2018), which provides daily weather meas-
ures for Europe. Using information on mean temperatures, eight weekly level tem-
perature indicators are created that show the number of days in a given year-week 
and given county when the daily mean temperature falls in a certain temperature 
bin (below −5 °C, −5 to 0 °C, 0 to 5 °C, …, 15 to 20 °C, 20 to 25 °C, over 25 °C).4 
In addition, we create four precipitation variables that indicate the number of days 
when the amount of daily precipitation falls in a certain precipitation bin (0 mm, 0–1 
mm, 1–5 mm, over 5 mm). The temperature and precipitation variables are linked to 
the birth records by the county of residence of the mother.

The annual distribution of daily mean temperature by county is summarized in 
Table A1 (Electronic Supplementary Materials), whereas Fig. A2 (Electronic Sup-
plementary Materials) shows the average temperature exposure for a 39-week-long 
pregnancy by conception week during 2000–2016. For further details, see the Elec-
tronic Supplementary Materials.

Climate change projections

We use projections of 21 climate models of the NASA Earth Exchange Global 
Daily Downscaled Projections (NEX-GDDP) dataset to calculate the impact of cli-
mate change by the mid-twenty-first century (2040–2059). The NEX-GDDP dataset 
provides daily maximum and minimum temperatures for 2006–2100 and retrospec-
tively simulated temperatures for 1950–2005 (Thrasher et  al., 2012). We use pro-
jected temperature changes under the representative concentration pathway scenario 
(RCP) 8.5, which represents a business-as-usual scenario (greenhouse gas emissions 
continue to rise in the twenty-first century) (Moss et al., 2010).

As for the historical weather data, we created eight temperature indicators to 
describe the temperature distributions in the periods of 2040–2059 and 1986–2005 
by county and calendar week for each climate model. The mean temperature is cal-
culated as the mean of the maximum and minimum temperatures. The period of 
1986–2005 serves as a baseline, and the within-model changes in temperatures 
are calculated by differencing the temperature distributions (the eight temperature 
variables) between 2040–2059 and 1986–2005. To make a projection for the whole 
country, we average the county-level temperature changes. For this aggregation, 
we use the counties’ average number of births conceived between 2000 and 2016 
as weights. As a result, we have calendar-week-level temperature changes by cli-
mate models. For the calculation of the projected impacts of climate change, we use 
these country-level changes. For further details, see the Electronic Supplementary 
Materials.

4 In Hungary, daily mean temperature of 25 °C is the threshold for first-level warning of extreme heat.
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Methods

Historical relationship between temperature and birth weight

We estimate the effect of in utero temperature exposure on birth weight as follows:

where Y is the birth weight or an indicator for LBW of newborn i conceived at 
time t (conception year y, conception week w) in county c. T is a vector of weekly 
level temperature variables that shows the number of days in temperature category 
j (below −5 °C, −5–0 °C, 0–5 °C, 5–10 °C, 10–15 °C, 15–20 °C, 20–25 °C, or 
above 25 °C). The temperature variables entered in the regression show the tem-
perature exposure during the entire pregnancy, assuming a 39-week-long gestation 
period (started with the week of conception). In this analysis, the number of days 
with a mean temperature of 15–20 °C is the omitted category. That is, coefficient 
βj shows the effect of one additional day during a 39-week-long gestation period 
when the daily mean temperature falls into temperature bin j on birth weight/LBW 
(relative to a day with a mean temperature of 15–20 °C). We use temperature expo-
sure during a 39-week-long gestation period rather than temperature exposure 
during the observed average gestation length, as there is a mechanical correlation 
between pregnancy length and the number of days when the daily mean tempera-
ture falls into different temperature bins. This approach is frequently used in the 
empirical in utero exposure literature (Chen et  al., 2020; Currie & Rossin-Slater, 
2013; Deschênes et al., 2009). The descriptive statistics of the dependent and main 
right-hand-side variables are shown in Table 1, whereas Table A2 (Electronic Sup-
plementary Materials) summarizes the descriptive statistics of the control variables.

P is a vector of precipitation controls, which shows the number of days where the 
amount of daily precipitation falls in precipitation bin k (0 mm, 0−1 mm, 1−5 mm, over 5 
mm). X is a vector of the observable characteristics of the parents and births and includes 
the education of the mother, her employment status, her age, her marital status, and her 
history of pregnancies (number of previous pregnancies, live births, and abortions). We 
control for education, age, and employment of the father and sex of the newborns. All 
of these characteristics are captured by categorical variables. Some of these control vari-
ables directly influence health at birth, whereas most of them are related to other impor-
tant factors (e.g., diet, smoking, stress, maternal health, access to medical care) that are 
unobserved in the administrative data we use but shape health at birth (Aizer & Currie, 
2014; Currie, 2011); thus, they could improve the precision of the estimations. In addition, 
they might help to partially control the fact that in utero temperature exposure changes the 
composition of fetuses that survive to live birth (Basu et al., 2016; Davenport et al., 2020; 
Ha et al., 2017; Hajdu & Hajdu, 2021; Li et al., 2018; Rammah et al., 2019; Strand et al., 
2012), often called the “culling” effect. As in utero selection due to an adverse event is 
likely to remove male fetuses and fetuses with below-average health, the impacts of a fetal 
health shock are underestimated (Almond & Currie, 2011; Bruckner & Catalano, 2018; 
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Catalano et al., 2012). We aim to estimate the “scarring” effect of in utero temperature 
exposure on birth weight (and not only the effect on “survivors”); therefore, the culling 
effect should be controlled for as much as possible. Although we cannot completely rule 
out its influence, by including the sex of the newborn and the characteristics of the par-
ents, we might capture some of the impacts of in utero selection (although the extent is 
unclear), as changes in the observed characteristics are controlled for.

Time-invariant seasonal differences in average birth weight and prevalence of low 
birth weight across counties are captured by county-by-calendar-week fixed effects 
(ρcw). County-by-year fixed effects (μcy) control for county-specific shocks in a given 
conception year. In sum, we exploit the year-to-year variation in the calendar-week-
specific in utero temperature exposure. The effect of temperature is identified from this 
interannual temperature variation after adjusting for differences in county-specific sea-
sonality and county-specific shocks to health at birth at the year level.

We also examine the impact of temperature exposure by trimesters. Trimester 1 is 
defined as the first 13 weeks of the gestation period (including the conception week), 
whereas weeks 14–26 and weeks 27–39 are assigned to trimesters 2 and 3, respectively:
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Table 1  Descriptive statistics

The in utero exposure period is defined as a 39-week-long period 
starting with the week of conception

Variable Mean SD Min Max N

Birth weight 3287.7 557.5 301 6499 1,532,661
LBW 0.067 0.251 0 1 1,532,661
Temperature exposure 

during pregnancy (in 
days)
  Below −5°C 7.9 7.6 0 36.4 1,532,661
  −5 to 0 °C 24.1 14.0 0 64.7 1,532,661
  0 to 5 °C 41.3 15.8 0 75.0 1,532,661
  5 to 10 °C 45.6 16.1 9.9 90.8 1,532,661
  10 to 15 °C 46.5 13.4 8.3 82.7 1,532,661
  15 to 20 °C 54.1 17.4 13.6 99.8 1,532,661
  20 to 25 °C 42.9 18.5 0.9 84.2 1,532,661
  Above 25 °C 11.6 9.0 0 40.3 1,532,661
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From this estimation, we can infer which pregnancy period is the most sensitive 
to temperature exposure.

Standard errors are clustered by county and conception year × conception week 
(two-way clustering). For the estimations, we use STATA package reghdfe (Correia, 
2014).

Projected impacts of climate change

The impacts of climate change are quantified by combining the estimates of the 
effect of in utero temperature exposure on birth weight/LBW with the projected 
within-model changes in temperature distribution between the periods of 1986–2005 
and 2040–2059. Specifically, we take β coefficients from Eq. 1 and multiply them 
by the projected temperature changes, assuming a 39-week-long pregnancy period:

where m denotes the climate model and w denotes calendar week. ∆Y is the pro-
jected change in birth weight or prevalence of LBW for live births started in calendar 
week w. βj is the estimated relationship between temperature category j and the birth 
weight or prevalence of LBW (from Eq. 1). ∆T is a vector that shows the projected 
change in weekly temperature distribution between 1986–2005 and 2040–2059 for 
calendar week w and climate model m. That is, the results of this calculation are the 
projected impact of climate change by the calendar week of conception.

The average (overall) impact of climate change is calculated by averaging the pro-
jected calendar-week-level impacts. For this calculation, we use a weight (denoted 
by f; scaled to mean 1) based on the calendar weeks’ average number of live births 
in our sample:

We use projections from 21 climate models to account for climate uncertainty. 
Furthermore, we account for uncertainty in the historical relationship between tem-
perature exposure and birth weight/LBW by bootstrapping the coefficient estimates 
of Eq. 1 (1000 times, sampling with replacement).5 Using the coefficients from the 
1000 estimations and the projections of the 21 climate models, we construct 21,000 
possible projections of the impact of climate change (1000 projections by climate 
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5 In each estimation, a random sample is taken from the 1,532,661 observations by using sampling with 
replacement. The new sample, as the original data, has a sample size of 1,532,661, but a given newborn 
can be selected more than once. Next, we estimate Eq. (1) on this new sample. The sampling process and 
the estimation are repeated by 1000 times. As a result, we have 1000 coefficients for each temperature 
category that incorporate the uncertainty in the historical relationship between temperature exposure and 
birth weight/LBW.
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model) by which we can incorporate both climate and regression uncertainty into 
the projected impacts of climate change (Burke, Dykema et al., 2015a, 2015b).

In these calculations, we assume that the future relationship between temperature 
and birth weight/LBW will be the same as in the past. We cannot rule out that future 
adaptation might change the observed temperature-birth weight/LBW relationship. 
However, credible empirical estimates are missing regarding a possible future adap-
tation process. In addition, projecting impacts in the absence of future adaptation 
is a standard approach in the empirical literature on the impacts of climate change 
(Barreca & Schaller, 2020; Burke et al., 2018; Burke, Hsiang, et al., 2015a, 2015b; 
Deschênes et al., 2009; Obradovich et al., 2017).

Results

Impact of in utero temperature exposure

Figure 1 summarizes the impact of in utero temperature exposure on birth weight 
(panel “a”) and low birth weight (panel “b”). We find that temperature exposure dur-
ing pregnancy has a significant influence on birth weight. Exposure to one addi-
tional > 25 °C day in utero, relative to a day with a mean temperature of 15–20 °C, 
reduces birth weight by 0.46 g (95% CI −0.71 to −0.21, p = 0.001). The effect of 
exposure to an additional 20–25 °C day is also negative but slightly lower in mag-
nitude: −0.36 g(95% CI −0.54 to −0.17, p = 0.001). Colder temperatures below the 
omitted category (15–20 °C) seem to have small positive effects; however, all the 
95% confidence intervals include zero. Thus, our findings suggest that temperature 
has a nonlinear effect on birth weight.

Fig. 1  Effect of in utero temperature exposure on birth weight/LBW. The effect of in utero exposure to 
one additional day with different mean temperatures on birth weight (a) and LBW (b) relative to a day 
with a mean temperature of 15–20 °C. The circles/diamonds are the point estimates, and the error bars 
represent 95% confidence intervals. The estimations come from Eq.  1. The model has county-by-year 
fixed effects and county-by-calendar-week fixed effects. Precipitation, sex of the newborns, and the char-
acteristics of the parents (age, education, employment, marital status of the mother, pregnancy history of 
the mother) are controlled for. The in utero exposure period is defined as a 39-week-long period starting 
with the week of conception. Standard errors are clustered by county and time (conception year × con-
ception week). N = 1,532,661
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Regarding the impacts on low birth weight, we find no significant effects.6 Nev-
ertheless, the estimated impacts are in line with the harmful effect of exposure to 
heat. The point estimates for temperature categories above the reference category 
are positive, whereas they are negative for colder temperature bins below the refer-
ence category. However, as prenatal selection is likely to remove “weaker” fetuses, 
the estimations using LBW as dependent variable (a direct indicator of “weaker” 
newborns) might be more strongly influenced by the culling effect.

The sensitivity of the results is tested by additional model specifications: exclud-
ing live births with less than 26 weeks of gestation, including county-by-calendar-
week-specific quadratic time trends, using less restrictive fixed effects, and adding 
municipality of residence fixed effects. Models without the control variables and 
including gestation length are estimated as well. We also use log birth weight as a 
dependent variable. The results of these estimations for the two outcome variables 
are summarized separately in Tables A3 and A4 (Electronic Supplementary Materi-
als). We also apply alternative clustering of the standard errors (Tables A5 and A6, 
Electronic Supplementary Materials). None of the changes alter the main conclu-
sion. In general, the alternative specifications give similar results to the baseline esti-
mations. Importantly, the specification including gestational length as an additional 
control variable indicates that newborns exposed to hot temperatures are likely to 
have slower intrauterine growth rather than shorter pregnancy.7

It might be interesting to note that the estimated temperature effects alone cannot 
explain the observed seasonal patterns of birth weight and LBW. In fact, differences 
in temperature exposure across the conception weeks would result in larger seasonal 
differences (Fig. A3, Electronic Supplementary Materials). If health at birth would 
be influenced only by in utero exposure to temperatures, the newborns conceived 
between July and October should have higher birth weight and lower LBW rate than 
newborns conceived in the first half of the year and the last few weeks. In contrast, 
the observed seasonal patterns are remarkably different. These results are not very 
surprising since many factors play a role in shaping seasonal differences in birth 
weight. For example, the pregnancies starting between July and October are exposed 
to the elevated air pollution of the autumn and winter months (e.g., due to solid fuel 
heating) (Bodor et al., 2020; Cichowicz et al., 2017), which might lower their health 
at birth (Currie et al., 2014; Pedersen et al., 2013). Exposure to sunshine, influenza, 
or other seasonal pandemics also vary depending on the conception week, therefore 
could contribute to the observed seasonal pattern of birth weight (Azziz Baumgartner 
et al., 2012; Nunes et al., 2016; Rasmussen et al., 2012; Trudeau et al., 2016; Zhang 
et al., 2020).

Next, we estimate the impacts of in utero temperature exposure by trimester. 
These estimations come from Eq. 2 and are summarized in Fig. 2. In general, these 

6 However, as prenatal selection is likely to remove “weaker” fetuses, the estimations using LBW as 
dependent variable (a direct indicator of “weaker” newborns) might be more strongly influenced by the 
culling effect.
7 No significant and substantial differences are observed estimating the baseline specification for new-
borns of high or low educated mothers (Fig. A5, Electronic Supplementary Materials), or newborns in 
counties with higher or lower yearly average temperature (Fig. A6, Electronic Supplementary Materials).
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estimations show large uncertainty, which is indicated by the large standard errors. 
The coefficients are not different from each other across trimesters. Nevertheless, 
temperature exposure may have a weaker impact during the first trimester than dur-
ing the second and third trimesters. It is especially apparent for LBW; however, even 
for birth weight, the impacts of cold and hot temperatures are less different in the 
first trimester.

As a placebo test, we estimate Eq. 1 with exposure to temperature in the future 
instead of exposure to temperature during the actual gestation period. Specifically, 
the exposure variables (temperature and precipitation) are replaced with weather 
data that were measured exactly one year later. Since the birth weight of the new-
borns could not have been affected by temperature exposure 1 year after concep-
tion (that is, several months after the birth), insignificant and close to zero coeffi-
cients are expected in these placebo regressions if our model is correctly specified. 
In general, the estimated impacts are substantially different from the baseline results 
(Fig. A4, Electronic Supplementary Materials). Importantly, we do not observe sim-
ilar patterns as in Fig. 1. The estimated impacts show fairly random patterns, and 
positive and negative point estimates can be found both below and above the ref-
erence category. We can conclude that temperature 1 year later does not have any 
impact on birth weight or LBW. In sum, these estimations support the credibility of 
the baseline results.

Impacts of climate change

Figure 3 depicts the projected impacts of climate change on birth weight and prevalence 
of LBW by the mid-twenty-first century from Eq. 4. We present medians, interquartile 

Fig. 2  Effect of in utero temperature exposure by trimester. The effect of in utero exposure to one addi-
tional day with different mean temperatures on birth weight a and LBW b relative to a day with a mean 
temperature of 15–20 °C. The circles/diamonds/squares are the point estimates, and the error bars rep-
resent 95% confidence intervals. The estimations come from Eq. 2. The model has county-by-year fixed 
effects and county-by-calendar-week fixed effects. Precipitation, sex of the newborns, and the character-
istics of the parents (age, education, employment, marital status of the mother, pregnancy history of the 
mother) are controlled for. The in utero exposure period is defined as a 39-week-long period starting with 
the week of conception. Standard errors are clustered by county and time (conception year × conception 
week). N = 1,532,661
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ranges, and the ranges containing 99% of the projections.8 For birth weight, the projec-
tions suggest a sizeable decline. The median projection is −15.3 g. The interquartile 
range of the projections spreads from −20.2 to −11.2 g. The upper bound of the ranges 
containing 99% of the projections is −34.2 g, whereas the lower bound is −4.3 g.

For LBW, some of the projections predict a decrease by 2040–2059, but most of 
them project an increased prevalence of LBW. The median projection is an increase 
of 0.19 percentage points. The interquartile range spread from 0.08 to 0.31 percent-
age points, whereas some projections are as high as 0.78 percentage points. The 
lower bound of the ranges containing 99% of the projections is −0.27 percentage 
points. These are nonnegligible changes considering that 6.7% of the singleton new-
borns were born with low birth weight in our sample, which means that the inter-
quartile range represents an increase of 1.3–4.6%.

The projected impacts vary considerably across climate models. Figure A7 (Elec-
tronic Supplementary Materials) shows that projecting the impacts of climate change 
separately by the 21 climate models results in a wide range of projections. For exam-
ple, the median projections regarding the impact on birth weight range between −25.7 
and −8.5 g, whereas for LBW, they range between 0.11 and 0.33 percentage points. 
These differences stress the importance of accounting for climate uncertainty (Burke 
et al., 2015a, 2015b). However, accounting only for climate uncertainty might also 
lead to false certainty regarding the possible impacts of climate change. In Fig. A8 
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8 We took the 0.5th and 99.5th percentiles to calculate the ranges containing 99% of the projections.
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(Electronic Supplementary Materials), we show projections where regression uncer-
tainty is excluded by using the coefficients from the baseline estimation (depicted in 
Fig. 1). The ranges containing 99% of the projections are much narrower in this case, 
which might be positive from a certain analytic point of view (higher degree of preci-
sion), but these projections would serve as misleading inputs for climate policy. In 
sum, credible projections on the impact of climate change require accounting for both 
climate and regression uncertainty.

Next, we investigate the impact of climate change-induced temperature changes 
by the calendar week of conception (Fig. 4). These calculations are based on Eq. 3. 
The results of these exercises suggest that although the impacts on births conceived 
in different parts of the year are all negative, the magnitudes are somewhat different. 
The impacts are projected to be more severe for births conceived during the winter and 
spring months. For example, the largest impacts are projected for calendar week 11: the 
median projection in terms of the impact on birth weight is −21.2 g, whereas the inter-
quartile range spreads between −27.9 and −15.3 g. In contrast, the median projection 
for calendar week 38 is −7.3 g and the interquartile range is −10.7 to −4.7 g, an almost 
three-fold difference. For LBW, we observe similar differences but that are lower in 
magnitude. However, we note that the 99% ranges of the projections overlap for all cal-
endar weeks. Nevertheless, these projections indicate that there is a nonnegligible dif-
ference in the severity of impacts of climate change across conception weeks.

Discussion and conclusion

In this paper, we studied the effect of in utero temperature exposure on birth 
weight and the prevalence of low birth weight. We used administrative data that 
covers more than 1.5 million singleton live births conceived between 2000 and 
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2016 in Hungary. We showed that exposure to one additional day with a mean 
temperature >  25  °C reduces birth weight by 0.46 g, whereas the impact of a 
20–25 °C day is −0.36 g. Colder temperatures below the omitted category (15–20 
°C) seem to have rather positive, but small and statistically insignificant effects 
on birth weight. The impacts of temperature exposure on the probability of low 
birth weight are more modest.

As previous papers examined different countries that might have different cli-
matic conditions, therefore, the comparison of our estimations with these studies 
is not straightforward. Nevertheless, our finding of a negative impact of exposure 
to hot temperatures is in line with the results of previous research (Chen et  al., 
2020; Davenport et  al., 2020; Deschênes et  al., 2009; Grace et  al., 2015; Molina 
& Saldarriaga, 2017; Sun et al., 2019). Regarding the impact of cold temperature, 
the results of the previous papers have been inconsistent. Although the results are 
mixed in terms of the sign of the impact, almost every study found that the impacts 
of cold temperatures are weaker (in absolute terms) than the impacts of hot tem-
peratures, relative to a mild temperature (Chen et al., 2020; Deschênes et al., 2009; 
Molina & Saldarriaga, 2017; Sun et al., 2019). Importantly, weaker impacts of in 
utero temperature exposure on LBW have been usually found in the related research 
(Andalón et al., 2016; Davenport et al., 2020; Molina & Saldarriaga, 2017; Ngo & 
Horton, 2016).

We also projected the impacts of climate change by the mid-twenty-first cen-
tury (2040−2059). We showed that the average birth weight is likely to decrease 
due to climate change in Hungary, whereas we project an increase in the preva-
lence of low birth weight. Accounting for both climate and regression uncertainty, 
the interquartile ranges of the projections spread from −20.2 to −11.2 g for birth 
weight, and from 0.08 to 0.31 percentage points (or 1.3–4.6%) for LBW. We also 
showed that the impacts of climate change vary across births conceived in differ-
ent parts of the year. Births conceived during the winter and spring months are 
projected to be affected more severely.

To put the magnitude of the projected impacts of climate change into con-
text, we note that workplace smoking bans increase the birth weight of the most 
affected newborns by 50–60 g (Bharadwaj et al., 2014; Hajdu & Hajdu, 2018). A 
recent study shows that a 1000 dollar increase in annual family income from the 
minimum wage increases birth weight by 4 g in the USA, while it has no effect 
on LBW (Wehby et al., 2020). The Women, Infants, and Children (WIC) program 
is reported to increase the birth weight of the participants’ newborns by 20–60 
g (Bitler & Currie, 2005; Hoynes et  al., 2011), while the estimated impacts on 
LBW are mixed (Bitler & Currie, 2005; Currie & Rajani, 2015; Hoynes et  al., 
2011). An Uruguayan social assistance program that targeted the poorest and 
increased household income by 25% is reported to decrease LBW by 20% and 
increase birth weight by 30 g (Amarante et al., 2016). The Food Stamp Program 
(FSP) increased birth weight by 15–40 g and decreased LBW by approximately 
8% (Almond et al., 2011).

Finally, as discussed earlier, in utero temperature exposure is likely to cause in 
utero selection that removes fetuses with below-average health (Almond & Currie, 
2011; Bruckner & Catalano, 2018; Catalano et al., 2012). Therefore, our estimates 
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do not simply reflect the scarring effect of temperature exposure but are influenced 
by this selection. As the bias stemming from prenatal selection cannot be completely 
controlled, our estimates can be considered as a lower bound of the true scarring 
effect of temperature exposure. As most fetal losses occur during the early period of 
pregnancy, even before clinical recognition (Jarvis, 2016; Wilcox et al., 2020), the 
first trimester estimates are more likely to be affected by selection-induced bias.

Supplementary information The online version contains supplementary material available at https ://doi.
org/10.1007/s1111 1-021-00380 -y.
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