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a b s t r a c t

A convergence result is stated for the numerical solution of space-fractional diffusion
problems. For the spatial discretization, an arbitrary family of finite elements can be
used combined with the matrix transformation technique. The analysis covers the
application of the implicit Euler method for time integration to ensure unconditional
stability. The spatial convergence rate does not depend on the fractional power of the
Laplacian operator. An efficient numerical implementation is developed avoiding the
direct computation of matrix powers.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Many observations confirmed the presence of the fractional diffusion in the natural sciences. Tracking the motion
f food-seeking animals, the presence of ‘‘anomalous’’ diffusion was reported earlier [1,2]. In concrete terms, assuming
iffusion, the flight x(t) of the individuals during time t obeys a normal distribution. Consequently, the flight-length mean
|x(t)|⟩ of the individuals should be proportional with

√
t .

Due to accurate measurements in the last decade, the dynamics of individual molecules could also be observed: in many
ases, it exhibits a subdiffusive behavior such that instead of the above proportionality, the linear relation ⟨|x(t)|⟩ ∼

√
t
α

as detected. See a detailed overview of these measurements in [3]. A possible explanation of this dynamics can be found
n [4].

A number of different mathematical models have been suggested to simulate this dynamics. Among the PDE models, in
ase of homogeneous Dirichlet boundary conditions, a possible choice is taking the fractional Laplacian on the entire space
d (see [5]) and restricting to functions which are identically zero outside of the computational domain. The numerical
nalysis and implementation for the corresponding elliptic problems can be found in [6] and [7], respectively. In the
ne-dimensional case, an interesting, physically motivated approach is analyzed in [8].
Another conventional choice, which is used in the present work, is the spatial differential operator −(−∆D)α , where

D denotes the Dirichlet Laplacian.
For a systematic comparison of the different approaches, we refer to [9,10] and [11].
For the numerical solution of problems with −(−∆D)α , the fractional power can be applied also at the discrete level,

pproximating (−∆D)α with the power of the discretization of −∆D . This was first observed in [12] and analyzed in [13]
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for the corresponding elliptic problems. A similar analysis – based on a general integral form of operator powers – was
performed in [14] using an efficient numerical integration technique.

Regarding the full discretization with an implicit time stepping and efficient implementation issues, three main
pproaches were proposed in the literature. In [15], the authors propose a direct approximation of the solution operator
which is a matrix-power exponential) based on the elliptic theory in [14]. The corresponding contour integral is recasted
s a real improper integral and approximated using an exponentially convergent quadrature.
In the works [16] and [17], explicit and implicit time discretizations are used. In [17], again using an integral

epresentation, an efficient simple quadrature is proposed to approximate time steps in an implicit method, which is
hown to be unconditionally stable.
A related approach was recently developed in [18], where the best rational approximation (BURA) of the implicit

ime-step operators – including matrix powers – is constructed.
Dealing with the full matrices arising from the discretization of non-local operators is a challenging topic. One can also

xplore their structure, which makes possible to develop an efficient solution of the corresponding linear problems, see,
.g., [19] and [20].
The aim of the present contribution is to propose an alternative approach, which has the following advances.

• The analysis for the full discretization error is simple.
• The spatial convergence order is independent of the power α and can ensure a higher-order accuracy.
• The numerical method is simple and applicable without any extra computations for all exponents α.

To compare which the earlier achievements, note that in the literature, a spatial error of order hα appears in the error
stimates for any initial conditions, see, e.g., Theorem 3.1 in [15]. We point out that assuming smooth initial condition, this
an be changed to hk, where k is the polynomial order in the finite element approximation. The smoothness condition will
e discussed after Theorem 2. Also, in the computationally most efficient BURA approach (see [18]), the determination of
he coefficients for an arbitrary rational function rα needs efforts.

The main ideas of our works are the following:

• For the analysis of the spatial discretization error we have used a weak form, which, for the FE discretization is
sufficient.

• The computation algorithm is based on the matrix power–vector product in [21] combined with a conjugated
gradient method such that the entire algorithm is composed of sparse matrix–vectors products.

. Mathematical preliminaries

We investigate the numerical solution of space-fractional diffusion problems. Recall that the (negative) Dirichlet
aplacian operator −∆D : L2(Ω) → L2(Ω) is positive and has a compact inverse. The complete orthonormal system
of its eigenfunctions and the corresponding eigenvalues will be denoted by

{
φj
}
j∈N and

{
λj
}
j∈N, respectively. Then the

ractional Dirichlet Laplacian, which is investigated here, is defined with

Dom (−∆D)α = {u =

∞∑
j=0

ujφj :

∞∑
j=0

u2
j · λ2α

j < ∞}, (−∆D)αu =

∞∑
j=0

ujλ
α
j φj.

or more details, we refer to [22].
With this, the space-fractional diffusion equation reads as{

∂tu(t, x) = −(−∆D)αu(t, x) x ∈ Ω, t ∈ R+

u(0, x) = u0(x) x ∈ Ω,
(1)

here Ω ⊂ Rd (d = 1, 2, 3) is a Lipschitz domain. Note that the definition of the Dirichlet Laplacian involves the
omogeneous Dirichlet boundary condition.
We use the notion of Sobolev spaces Hk(Ω) and Hk

0(Ω) with a non-negative index k; the corresponding inner product
s denoted with (·; | ·)k and the notation ∥ · ∥k will be used for the corresponding Sobolev norm. In case of k = 0, we
sually omit the subscript. To depict clearly the matrix–vector operations in the practical computations, the Euclidian
calar product in RN will be denoted with (·, ·).
In the estimates, the relation r1 ≲ r2 means that r1 ≤ cr2 is valid with a positive mesh-independent constant c .
The spatial discretization is performed using a generic finite element space V k

h ⊂ Hk
0(Ω) and the corresponding elliptic

rojection Ph : Hk
0(Ω) → V k

h , which satisfies

(∆DPhv|vh) = (∆Dv|vh) ∀vh ∈ V k
h . (2)

e assume that V k
h is chosen so that

∥v − P v∥ ≲ hk
∥v∥ ∀v ∈ Hk(Ω). (3)
h 0 k 0
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For the corresponding requirements, we refer to [23, Corollary 1.109]. Using a finite element basis
{
ϕj
}
j=1,...,N of V k

h , one
an define the finite element mass matrix Mh ∈ RN×N and the stiffness matrix Sh ∈ RN×N , the entries of which are given
y

[Mh]i,j = (ϕj|ϕi) and [Sh]i,j = (ϕj|ϕi)1 = (∇ϕj|∇ϕi). (4)

In the discrete setting, we use the following expansion of uh ∈ Vh:

uh = u1ϕ1 + u2ϕ2 + · · · + uNϕN (5)

which defines a natural linear bijection

πh : Vh → RN , with πh(uh) = u = (u1, u2, . . . , uN )T . (6)

For the approximation of the differential operator, we apply the so-called matrix transformation technique. According
to this approach, the operation (−∆D)αv is approximated with Dα

hπh(vh), where Dh ∈ RN×N denotes a matrix correspond-
ing to −∆D in V k

h . In case of finite difference discretization, this is straightforward [24], but for finite element methods
combined with implicit time-stepping the definition of Dh needs a special care.

3. Results

Using the variational principle together with the backward Euler time stepping for α = 1, the full discretization of (1)
an be given as(

un+1
h − un

h

δ
|ϕj

)
= −

(
∆Dun+1

h |ϕj
)

j = 1, 2, . . . ,N,

here δ > 0 is the time step and

un
h = un

1ϕ1 + un
2ϕ2 + · · · + un

NϕN ∈ H1
0 (Ω)

is the approximation of u(nδ, ·) : Ω → R. According to (4), this can be recasted into the matrix–vector form

un+1
− un

δ
= −Dhun+1,

where Dh = M−1
h Sh. An important observation here, that for using the matrix transformation method, we need to take

the power of Dh instead of the stiffness matrix Sh. With this, the matrix transformation method for a general α ∈ R+,
ombined with the time discretization above, can be given as

un+1
− un

δ
= −Dα

hu
n+1. (7)

We perform an error analysis for this approach.

3.1. Spatial discretization

For the error analysis of the spatial discretization, we need the following identities.

Lemma 1. For any a ∈ RN and vh ∈ Vh we have

(π−1
h a|vh) = (Mha, πhvh) (8)

and

(∇π−1
h a|∇vh) = (Sha, πhvh). (9)

Proof.
Using the definition of πh, and the expansion in (5), we have

(π−1
h a|vh) = (a1ϕ1 + · · · + aNϕN |v1ϕ1 + · · · + vNϕN ) = Mha · (v1, v2, . . . , vN )T

= (Mha, πhvh),

s stated. The derivation of the second equality can be performed in a similar way. □

For the brevity, we also use the notation

(−∆D,h)α = π−1
h Dα

hπh, (10)

hich gives an approximation of (−∆D)α on V k
h .

To obtain a sharp estimate of this term, we use a weak formulation of Balakrishnan’s representation [25] in the case
f Hilbert space operators. Henceforth, in the article, we assume that α ∈ (0, 1).
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Theorem 1. Let A denote a positive self-adjoint operator on a Hilbert space H and α ∈ (0, 1) an arbitrary exponent. Then for
ll u ∈ Dom A and v ∈ H we have the following equality:(

Aαu|v
)

=
sin(πα)

π

∫
∞

0

(
sα−1A(sI + A)−1u|v

)
ds. (11)

Henceforth, we analyze the case A = −∆D and Ah = −∆D,h. The basis of the spatial error estimation is the following
statement.

Proposition 1. Using the above notations, we have the following inequality for each eigenfunction φj of −∆D:⏐⏐(((−∆D)α − (−∆D,h)αPh)φj|vh
)⏐⏐ ≲ hkλα

j ∥φj∥k∥v∥.

Proof. Using Balakrishnan’s representation in (11), we have(
(Aα

− Aα
hPh)φj|vh

)
=

sin(πα)
π

∫
∞

0
sα−1((A(sI + A)−1

− Ah(sI + Ah)−1Ph)φj|vh
)
ds. (12)

sing the definition of Ph in (2), then (9), (8) and (10), we obtain that for an arbitrary w ∈ Hk
0(Ω) the following identity

s valid:
(Aw|vh) = (APhw|vh) = (∇Phw|∇vh) = (ShπhPhw|πhvh)

= (MhDhπhPhw|πhvh) =
(
π−1
h DhπhPhw|vh

)
= (AhPhw|vh) .

sing this with w = (sI + A)−1φj, we can rewrite the scalar product on the right hand side of (12) as follows:(
(A(sI + A)−1

− Ah(sI + Ah)−1Ph)φj|vh
)

=
(
Ah(Ph(sI + A)−1

− (sI + Ah)−1Ph)φj|vh
)

=
(
(Ph(sI + A)−1

− (sI + Ah)−1Ph)φj|Ahvh
)
.

(13)

nserting the identity

Ph(sI + A)−1
− (sI + Ah)−1Ph = (sI + Ah)−1

[(sI + Ah)Ph − Ph(sI + A)](sI + A)−1

nto the last term of (13), using the self-adjoint property of (sI + Ah)−1 and (12) again, we obtain that(
(A(sI + A)−1

− Ah(sI + Ah)−1Ph)φj|vh
)

=
(
(sI + Ah)−1

[(sI + Ah)Ph − Ph(sI + A)](sI + A)−1φj|Ahvh
)

=
(
(sI + Ah)−1

[AhPh − PhA](sI + A)−1φj|Ahvh
)

=
(
[AhPh − PhA](sI + A)−1φj|(sI + Ah)−1Ahvh

)
=
(
[I − Ph]A(sI + A)−1φj|(sI + Ah)−1Ahvh

)
.

(14)

pplying the approximation property in (3) with (13) and (14) with the Cauchy–Schwarz inequality we finally have that⏐⏐((A(sI + A)−1
− Ah(sI + Ah)−1Ph)φj|vh

)⏐⏐ =
⏐⏐([I − Ph]A(sI + A)−1φj|(sI + Ah)−1Ahvh

)⏐⏐
≤ ∥[I − Ph]A(sI + A)−1φj∥∥(sI + Ah)−1Ahvh∥ ≤ hk

∥A(sI + A)−1φj∥k∥(sI + Ah)−1Ahvh∥

= hk
∥λj(sI + λj)−1φj∥k∥(sI + Ah)−1Ahvh∥.

(15)

ince Ah is a positive operator on Vh, we also have

∥(s + Ah)−1Ahvh∥ ≤ ∥vh∥

or every s ≥ 0. Inserting this estimate with (15) into the right-hand side of (12), we get

|
(
(Aα

− Aα
hPh)φj|vh

)
|≤

sin(πα)
π

chk
∫

∞

0
sα−1λj(s + λj)∥φj∥k∥vh∥ ds ≲ hkλα

j ∥φj∥k∥vh∥,

s stated in the proposition. □

Using the orthonormal system
{
φj
}
j∈N, we have the following expansions in (1):

u(0, ·) =

∞∑
j=1

u0jφj, u(t, ·) =

∞∑
j=1

ujφj, (16)

where
{
u0j
}
j∈N ,

{
uj
}
j∈N ⊂ R, and in the second case, the t-dependence of the coefficients uj is not displayed.

Theorem 2. Assume that
∞∑
j=0

|λ
k/2+α

j u0j|= C0 < ∞. Then the following estimate holds for a general u = u(t, ·) in (1):

|
(
(Aα

− Aα
hPh)u|vh

)
|≲ C0hk

∥vh∥.
2108
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The solution of (1) can be given as

u(t, ·) =

∞∑
j=0

e−λα
j ·tu0,jφj,

see [26], such that |uj| < |u0j| and the assumption imply that
∞∑
j=0

|λ
k/2+α

j uj| < C0 (17)

uniformly for all t ∈ R+.
We also recall a growth condition for the Hk(Ω)-norm of the Dirichlet-Laplacian eigenfunctions:

∥φj∥k ≲ λ
k
2
j . (18)

ote also that by the assumption, ujλj → 0. Hence, there is an index j0 such that for all j ≥ j0, the following estimate is
alid: (

ujλ
α
j

)2
≤ |ujλ

α
j | ≤ λ

k
2
j |ujλ

α
j |.

ccordingly, we have
∞∑
j=0

(
ujλ

α
j

)2
< ∞, and therefore, u ∈ D(Aα) with

Aαu =

∞∑
j=0

ujλ
α
j φj =

∞∑
j=0

Aα
(
ujφj

)
. (19)

In other words, (19) means for α = 1 that

lim
K→∞

A
K∑

j=0

ujφj = lim
K→∞

K∑
j=0

ujAφj =

∞∑
j=0

ujAφj = A
∞∑
j=0

ujφj = Au.

In this way, the limit

lim
K→∞

K∑
j=0

ujφj = u =

∞∑
j=0

ujφj

is also valid in the H1(Ω)-norm so that using the H1(Ω)-orthogonality of the projection Ph and (16), we finally have

Ph
K∑

j=0

ujφj = Phu =

∞∑
j=0

Ph
(
ujφj

)
= lim

K→∞

K∑
j=0

Phujφj (20)

Applying the continuous linear operator Aα
h : Vh → H1

0 (Ω) in (20), using (19), the estimate in Proposition 1, the estimate
in (18) and finally the assumption in (17), we have

⏐⏐((Aα
− Aα

hPh)u|vh
)⏐⏐ =

⏐⏐⏐⏐⏐⏐
⎛⎝(Aα

− Aα
hPh)

∞∑
j=0

ujφj|vh

⎞⎠⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐
⎛⎝Aα

∞∑
j=0

ujφj − Aα
hPh

∞∑
j=0

ujφj|vh

⎞⎠⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
⎛⎝ ∞∑

j=0

ujAαφj −

∞∑
j=0

ujAα
hPhφj|vh

⎞⎠⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐
⎛⎝ ∞∑

j=0

uj(Aα
− Aα

hPh)φj|vh

⎞⎠⏐⏐⏐⏐⏐⏐ ≤

∞∑
j=0

⏐⏐(uj(Aα
− Aα

hPh)φj|vh
)⏐⏐

≲ ∥vh∥

∞∑
j=0

⏐⏐uj
⏐⏐ hkλα

j ∥φj∥k ≲ hk
∥vh∥

∞∑
j=0

⏐⏐uj
⏐⏐ λα+

k
2

j ≲ hk
∥vh∥,

which proves the statement. □
2109
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Remark. If the fractional-order diffusion is observed from t0 > 0, i.e. u(0, ·) = u∗(t0, ·) for some u∗, the exponential decay
f the coefficients uj implies that

∑
∞

j=0(j+1)Ku0j < ∞ for any power K . Therefore, the relation λj ≈ j
d
2 immediately gives

∞

j=0 λK
j u0j < ∞, as we have assumed in Theorem 2.

.2. Time discretization

Now we can prove the convergence of the full discretization. Since for the solution u of the problem in (1), we have
u(t, ·) ∈ C∞(Ω) for every t ∈ (0, T ] (see Proposition 1 in [9]), we only need the assumption in Theorem 2 for the
initial data. Note that regarding the stability, a related result was established in [16] including also second order time
discretizations with a possible source term. Here, we also give the convergence rate explicitly.

Theorem 3. Using the assumption in Theorem 2 for u(0, ·) in (1), the full discretization in (7) is convergent of order O(δ+hk),
where k is the approximation order of the finite element discretization.

Proof. Rewriting (7) in V k
h gives the scheme

1/δ
(
uj+1
h − uj

h|vh
)
+
(
Aα
hu

j+1
h |vh

)
= 0 ∀vh ∈ V k

h , j = 0, 1, . . . , (21)

where uj
h is the numerical solution at t = jδ. □

To analyze this scheme, we use the notation uj
= u(jδ, ·) with u the analytic solution of (1) and the elliptic projection

Ph introduced in (2) to obtain the following equality:

1/δ
(
Phuj+1

− Phuj
|vh
)
+
(
Aα
hPhu

j+1
|vh
)

= 1/δ
(
uj+1

− uj
|vh
)
+
(
Aαuj+1

|vh
)
+ 1/δ

(
(Phuj+1

− uj+1) − (Phuj
− uj)|vh

)
+
(
Aα
hPhu

j+1
− Aαuj+1

|vh
)

=
(
1/δ(uj+1

− uj) − ∂tuj+1
|vh
)
+ 1/δ

(
(Phuj+1

− uj+1) − (Phuj
− uj)|vh

)
+
(
Aα
hPhu

j+1
− Aαuj+1

|vh
)

:= (z j|vh),

(22)

where z j can be recognized as a consistency error, which we estimate termwise.
Obviously, using the general mean value theorem, and the smoothness of the analytic solution, we obtain

∥1/δ(uj+1
− uj) − ∂tuj+1

∥ =

1/δ ∫ δ

0
∂tu(jδ + s, ·) − ∂tu((j + 1)δ, ·) ds


≤ 1/δ

∫ δ

0
∥∂tu(jδ + s, ·) − ∂tu((j + 1)δ, ·)∥ ds ≤ 1/δ

∫ δ

0
δ max

ξ∈[0,δ]
∥∂ttu(jδ + ξ, ·)∥ ds ≲ δ.

Similarly, the general mean value theorem and the approximation property in (3) imply

∥1/δ((Phuj+1
− uj+1) − (Phuj

− uj))∥ ≤ chk
∥∂tu∥L∞([jk,(j+1)k];Hk(Ω)).

Combining these estimates with Theorem 2, we get

|
(
z j|vh

)
|≤ (O(δ) + O(hk+1))∥vh∥. (23)

Using the notation yjh = Phuj
− uj

h in the difference of (21) and (22), we obtain that

1/δ
(
yj+1
h − yjh|vh

)
+
(
Aα
hy

j+1
h |vh

)
=
(
z j|vh

)
∀vh ∈ Vh.

Taking here vh = yj+1
h and rearranging the equality, we have

∥yj+1
h ∥

2
+ δ

(
Aα
hy

j+1
h |yj+1

h

)
=
(
yjh + δz j|yj+1

h

)
,

and therefore, using the positivity of Aα
h and (23), we get

∥yj+1
h ∥

2
≤ ∥yjh∥∥y

j+1
h ∥ + δ

(
z j|yj+1

h

)
≤ ∥yjh∥∥y

j+1
h ∥ + δ · O(δ + hk)∥yj+1

h ∥,

which results in the following estimate:

∥yj+1
h ∥ ≤ ∥yjh∥ + δ(O(δ + hk)).

A consecutive application of this inequality gives

max ∥yjh∥ ≤ ∥y0h∥ + T · O(δ + hk),

0≤j≤M

2110
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which, together with (3) can be used to get the final error estimator

max
0≤j≤M

∥uj
− uj

h∥ ≤ max
0≤j≤M

(
∥uj

− Phuj
∥ + ∥Phuj

− uj
h∥

)
= max

0≤j≤M
(∥uj

− Phuj
∥ + ∥yjh∥) = O(δ + hk),

s stated in the theorem.

. Numerical method

For the numerical solution of problem (1), we need to use an efficient method avoiding the direct computation of the
-th power of the matrices. Such an approach was first proposed in [21], which can be applied immediately only for
xplicit time stepping. Here we propose an algorithm to approximate the implicit time stepping uj+1

= (I + δAα
h )

−1uj,
.e. un

= (I + δAα
h )

−nu0 without computing matrix powers or solving linear systems with a dense matrix. We also assume
ere that Ah is symmetric, which will be satisfied for the finite element space in the numerical experiments.
n a general situation, it is also satisfied if the finite element basis functions are translations of each other. In practice, we
an use this if the domain is approximated using a square grid.
In a general situation, for arbitrary finite elements, an L2-orthogonal basis implies Mh = Ih such that Ah = I−1

h Sh
ecomes symmetric. This, however, leads to a full matrix Ah, which will slow down our algorithm.
For this, we will combine the algorithm in [21] with a conjugate gradient method.

.1. The algorithm

The proposed method consists of the following steps.

(i) Following the method in [21], we compute the k1 smallest and k2 largest eigenvalues. In an increasing order
with k̄ = k1 + k2 these and the corresponding eigenvectors are denoted by λ1, λ2, . . . , λk̄ of Ah and x1, x2, . . . , xk̄,
respectively.

(ii) Let X = [x1, x2, . . . , xk̄] ∈ Rn×k̄ denote the matrix composed of these eigenvectors, and Qk̄ = XXT the orthogonal
projection matrix to the subspace span {x1, x2, . . . , xk̄}. In this case, I −Qk̄ is the orthogonal projection matrix to the
complementary subspace.

(iii) The problem is divided then into two parts:

(I + δAα
h )

−nuj
= (I + δAα

h )
−nQk̄u

j
+ (I + δAα

h )
−n(I − Qk̄)u

j (24)

(a) We can directly compute the first part, since we already know the corresponding eigenvalues:

(I + δAα
h )

−nQk̄u
j
= XΛnXTuj,

where Λ denotes the diagonal matrix consisting of the elements 1
1+δλα

1
, 1

1+δλα
2
, . . . , 1

1+δλα
k̄
.

(b) To approximate (I + δAα
h )

−n(I − Qk̄)uj, we apply a conjugate gradient method CG, see, e.g. [], such that

CG w ≈ (I + Aα
h )

−1w.

In the steps of the conjugate gradient algorithm, we use an approximation of the matrix–vector products (I + δAα
h )w

without computing Aα
h . This is performed using the Taylor series approach(

2Ah

σ (A)

)α

w =

∞∑
n=0

(
α

n

)(
2Ah

σ (A)
− I
)n

w ≈

K∑
n=0

(
α

n

)(
2Ah

σ (A)
− I
)n

w :=

(
2

σ (A)

)α

T (Ah, α)w, (25)

where σ (A) denotes the spectral radius of A.

Remark. The conjugate gradient algorithm is suitable here as we have a symmetric positive definite matrix I + Aα
h . The

topping criterion (or tolerance) for this procedure is given by discussing the numerical experiments.

An important parameter in the approximation in (25) is the parameter K . An estimation of this is given in Section 2.3
n [21], which motivated our choice in Section 4.3.

The operations of the conjugate gradient method are invariant to the subspace ran(I − Qk̄), thus the Taylor-series
ethod will converge quickly in every time step. Also, in the Taylor series approach, we use only sparse matrix–vector
roducts such that beyond the eigenvalue approximation, the entire algorithm involves only these very quick operations.

.2. Error analysis of the algorithm

Recall that in Theorem 3, we estimated the difference between the analytic solution and the numerical solution based
n the implicit Euler time stepping. In the practice, however, according to (iii)(b) in the above algorithm, we do not apply
irectly the implicit time steps. In concrete terms, we compute CGnw0 instead of (I + δAα)−nw0, where w0

= (I − Q )u0.
h k̄
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To estimate the extra error term arising from this approximation, we also use the notation T (Ah, α) for the Taylor series
pproximation of Aα

h . We assume that T (Ah, α) gives also a positive definite matrix with the minimal eigenvalue λ1,T ,
hich is satisfied for any reasonable approximation. Since Aα

h is also positive definite, for all exponents n ∈ N, we have

∥(I + δT (Ah, α))−1
∥≤

1
1 + λ1,T

≤ 1 and ∥((I + δAα
h ))

−1
∥ ≤ 1. (26)

ith these, a triangle inequality gives

∥(I + δAα
h )

−nw0
− CGnw0

∥

≤ ∥(I + δAα
h )

−nw0
− (I + δT (Ah, α))−nw0

∥ + ∥CGnw0
− (I + δT (Ah, α))−nw0

∥,
(27)

here the first term, using (26) can be estimated further as

∥(I + δAα
h )

−nw0
− (I + δT (Ah, α))−nw0

∥

≤ ∥(I + δAα
h )

−n
[(I + δAα

h )
n
− (I + δT (Ah, α))n](I + δT (Ah, α))−n

∥ · ∥w0
∥

≤ δ · ∥w0
∥ · ∥(I + δAα

h )
−n

∥ · ∥(I + δT (Ah, α))−n
∥

· ∥(Aα
h − T (Ah, α)) · ((I + δAα

h )
n−1

+ (I + δAα
h )

n−2(I + δT (Ah, α)) + · · · + (I + δT (Ah, α))n−1)∥

≤ nδ · ∥w0
∥ · ∥[Aα

h − T (Ah, α)]∥ = T · ∥w0
∥∥Aα

h − T (Ah, α)∥.

(28)

ote that a computable upper bound for the Taylor’s remainder term ∥Aα
h − T (Ah, α)∥ was developed in [21].

To estimate the second term in (27), we recall that a time step in (iii)(b) has the form

wj+1
= CGwj,

uch that we define the computational error ej+1 regarding the CG method as

ej+1
= (I + δT (Ah, α))−1wj

− CGwj
= (I + δT (Ah, α))−1wj

− wj+1, j = 0, 1, . . . ,N − 1,

hich implies

(I + δT (Ah, α))−1wj
= wj+1

+ ej+1, j = 0, 1, . . . ,N − 1. (29)

ote that the error term, using again (26), can be controlled easily based on the estimation

∥ej+1
∥ ≤ ∥(I + T (Ah, α))−1

∥∥(I + δT (Ah, α))ej+1
∥

= ∥(I + T (Ah, α))−1
∥∥(I + δT (Ah, α))((I + δT (Ah, α))−1wj

− wj+1)∥ ≤ ∥wj − (I + δT (Ah, α))wj+1
∥,

here the right-hand side can be computed using a sparse matrix–vector product.
Using (29) in the second term of (27), we obtain

(I + δT (Ah, α))−nw0
− CGnw0

= (I + δT (Ah, α))−(n−1)w1
+ (I + δT (Ah, α))−(n−1)e1 − CGn−1w1

= (I + δT (Ah, α))−(n−2)w2
+ (I + δT (Ah, α))−(n−2)e2 + (I + δT (Ah, α))−(n−1)e1 − CGn−2w2

· · · = wn
+ en + (I + δT (Ah, α))−1en−1

+ · · · + (I + δT (Ah, α))−(n−1)e1 − wn.

ccordingly, using (26), we obtain the estimate

∥CGnw0
− (I + δT (Ah, α))−nw0

∥ ≤ max
j=1,2,...,N

∥ej∥ ·

n−1∑
j=0

∥I + δT (Ah, α)∥−j

= max
j=1,2,...,N

∥ej∥ ·

n−1∑
j=0

1
(1 + λ1,T )j

≤ max
j=1,2,...,N

∥ej∥ ·

1 −
1

(1+λ1,T )n

1 −
1

1+λ1,T

≤ max
j=1,2,...,N

∥ej∥ ·
1

1 −
1

1+λ1,T

= max
j=1,2,...,N

∥ej∥ ·

(
1 +

1
λ1,T

)
.

(30)

ummarized, the inserting (28) and (30) into (27) gives the following upper bound for the computational error:

∥(I + δAα
h )

−nw0
− CGnw0

∥ ≤ T · ∥w0
∥∥Aα

h − T (Ah, α)∥ + max
j=1,2,...,N

∥ej∥ ·

(
1 +

1
λ1,T

)
. (31)

ere, as mentioned, all of the terms can be controlled, moreover, the estimate is independent of the number of time steps.
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4.3. Numerical experiments

We investigate the model problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu(t, y) = −10−3(−∆D)0.75u(t, x, y) t ∈ (0, 1], (x, y) ∈ (0, 1) × (0, 1)
u(t, x, y) = 0 t ∈ (0, 1], (x, y) ∈ ∂Ω

u(0, x, y) =

100∑
j=1

1
j2

sin(7π jx) · sin(9π jy) (x, y) ∈ (0, 1) × (0, 1),

which has the analytic solution

u(t, x, y) =

100∑
j=1

1
j2

sin(7π jx) sin(9π jy) exp
[
−10−3(t((7j)2 + (9j)2)π2)0.75

]
.

The computational domain was tessellated uniformly and locally, Q1 elements were used to constitute the finite element
space. Since they contain all piecewise linear functions, by means of Corollary 1.109 in [23], the spatial approximation
order is k = 2 in (3). Therefore, according to 3, we expect second-order convergence spatially. Also, this choice ensures
that Ah is symmetric.

In the conjugate gradient algorithm, we have used the tolerance max
j=1,2,...,N

∥ej∥ = 10−6 and for a fine spatial grid, K=100,

00 and 300 terms in the Taylor expansion. To accelerate the convergence of this, we have computed 10 eigenvalues in
tep (i) of our algorithm. Corresponding to (31), these are the chief parameters in our estimation.
In each case, the computational error was computed in a discrete L2 norm and we have displayed the computing time

n seconds.
After the consecutive refinements, we have estimated the convergence rate, which is shortly called rate in the tables.
In the first table, the result for different time discretizations is given estimating also the temporal convergence rate by

ixing h = 0.005.

δ 0.1 0.05 0.025 0.02 0.0166 0.0125
error 0.0018 7.305 · 10−4 2.011 · 10−4 1.038 · 10−4 6.3449 · 10−5 1.017 · 10−4

time 39.6 53.97 77.46 89.24 99.08 120.74
rate 1.0923 1.2847 1.8612 2.3187 2.5675 0.9832

In a second series of experiments, we investigated the spatial convergence rate using for several spatial discretization
parameters h by fixing δ = 0.01 such that, practically, the accuracy depends mainly on the spatial discretization parameter
h. To depict the efficiency of the algorithm, we have also displayed the number of unknowns (DOF) in the corresponding
linear system and the effect of choosing different number K of terms in the Taylor expansion. An extra step in our
algorithm compared to any other approaches is the computation of some eigenvalues of the stiffness matrix. Therefore,
the corresponding computing time is also shown in the following table.

h 0.025 0.0166 0.0125 0.01 0.00833 0.00714 0.00625 0.005
DOF 1521 3481 6241 9801 14161 19321 25281 39601
eig. time 0.026 0.065 0.117 0.207 0.325 0.411 0.678 1.133
time, K=100 1.19 2.97 5.36 12.14 17.96 26.61 34.17 56.04
time, K=200 2.28 5.64 10.45 23.52 33.47 48.4 63.52 96.58
time, K=300 3.34 8.36 15.58 34.76 48.86 69.44 90.17 139.03
error, K=100 0.0101 0.0042 0.0022 0.0013 7.96 · 10−4 5.19 · 10−4 6.58 · 10−4 0.0019
error, K=200 0.0101 0.0042 0.0022 0.0013 7.84 · 10−4 5.13 · 10−4 3.46 · 10−4 2.61 · 10−4

error, K=300 0.0101 0.0042 0.0022 0.0013 7.84 · 10−4 5.12 · 10−4 3.41 · 10−4 1.52 · 10−4

rate, K=100 1.713 2.043 2.218 2.329 2.406 2.346 1.723 −0.558
rate, K=200 1.713 2.043 2.219 2.331 2.428 2.528 2.649 2.269
rate, K=300 1.713 2.043 2.219 2.331 2.428 2.531 2.670 3.052

One can observe that in this case, an optimal choice of K is a few hundreds, which ensures already the desired
onvergence rate. It is also clear, that we really need ‘‘long’’ Taylor approximations. An error analysis for this can be
ound in [21]. It also clear that the computation of the eigenvalues requires minimal extra efforts.

Also, the convergence results in the tables are in a good accordance with our theoretical results: the spatial convergence
rder is above two and the temporal order is about one. Finally, the computational time remains proportional with the
umber of unknowns. This indicates that only operations with sparse matrices were used in the algorithm.
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