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Chlorophyll (Chl) is essential for photosynthesis and needs to be produced throughout the

whole plant life, especially under changing light intensity and stress conditions which may

result in the destruction and elimination of these pigments. All steps of the Mg-branch

of tetrapyrrole biosynthesis leading to Chl formation are carried out by enzymes

associated with plastid membranes. Still the significance of these protein-membrane

and protein-lipid interactions in Chl synthesis and chloroplast differentiation are not

very well-understood. In this review, we provide an overview on Chl biosynthesis in

angiosperms with emphasis on its association with membranes and lipids. Moreover,

the last steps of the pathway including the reduction of protochlorophyllide (Pchlide)

to chlorophyllide (Chlide), the biosynthesis of the isoprenoid phytyl moiety and the

esterification of Chlide are also summarized. The unique biochemical and photophysical

properties of the light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR)

enzyme catalyzing Pchlide photoreduction and located to peculiar tubuloreticular

prolamellar body (PLB) membranes of light-deprived tissues of angiosperms and to

envelope membranes, as well as to thylakoids (especially grana margins) are also

reviewed. Data about the factors influencing tubuloreticular membrane formation within

cells, the spectroscopic properties and the in vitro reconstitution of the native LPOR

enzyme complexes are also critically discussed.

Keywords: chlorophyll biosynthesis, chloroplast, etioplast, NADPH:protochlorophyllide oxidoreductase, phytol,

prolamellar body, protochlorophyllide, tubular complex

INTRODUCTION

Thylakoid membranes of photosynthetic organisms have a unique and highly conserved lipid
composition: in addition to the phospholipid, phosphatidylglycerol (PG), they predominantly
contain galactolipids (monogalactosyldiacylglycerol—MGDG, digalactosyldiacylglycerol—DGDG,
and sulfoquinovosyldiacylglycerol—SQDG). Galactolipids are major components of plastid inner
membranes that play an important role in chloroplast differentiation from proplastids or
etioplasts, in chlorophyll (Chl) biosynthesis, in the accumulation of light-harvesting proteins
(Fujii et al., 2019a,b), and have been also identified as structural components of several major
protein complexes of the photosynthetic apparatus (PSII, PSI, LHCII, and cytochrome b6f )
(Kobayashi, 2016). In this review, we provide an overview of the Mg-branch of tetrapyrrole
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biosynthesis, leading to Chl biosynthesis, that occurs in plastids
and is associated to plastid membranes. We focus on the
reduction of protochlorophyllide (Pchlide) to chlorophyllide
(Chlide), and the role of lipids and plastid inner membranes in
the process. Two distinct enzymes have been evolved to catalyze
this reaction step: first a nitrogenase-like, oxygen-sensitive dark-
operative NADPH:Pchlide oxidoreductase enzyme (DPOR),
and later a light-dependent NADPH:protochlorophyllide
oxidoreductase (LPOR), which requires light for its activity
(Gabruk and Mysliwa-Kurdziel, 2015; Vedalankar and Tripathy,
2019). There is very low sequence homology between these
two enzymes (Gabruk et al., 2012), and in most organisms they
occur simultaneously. However, angiosperms lack LPOR and
became unable to synthesize Chlide and chlorophylls (Chls) in
the absence of light. Due to this special feature, Chl biosynthesis
has been extensively studied in dark-germinated angiosperm
seedlings which also have agricultural relevance as the seeds
of many crops are sown deep into the soil and thus start to
germinate in the dark. Due to space limitation our focus is on
data available about the role of lipids and membranes on Chl
biosynthesis in angiosperms.

OVERVIEW OF THE MG-BRANCH OF
TETRAPYRROLE BIOSYNTHESIS

Chlorophylls (i.e., Chl a and Chl b) are the main photosynthetic
pigments in plants. Concerning their molecular structure, they
belong to tetrapyrroles (Fiedor et al., 2019). Their biosynthesis
takes place in plastids and shares some common steps with
that of other tetrapyrroles. The tetrapyrrole biosynthesis route
leading to Chl formation is often referred to as the Mg-branch
(for review see Mochizuki et al., 2010; Tanaka et al., 2011;
Tripathy and Pattanayak, 2012; Rebeiz, 2014; Willows, 2019;
Bryant et al., 2020). Several new data indicate that galactolipids
play crucial roles in Chl biosynthesis (Kobayashi et al., 2014;
Fujii et al., 2019b) in addition to other factors regulating the Mg-
branch at various levels and via different mechanisms as reviewed
by Grimm (2010), Stenbaek and Jensen (2010), Zhang et al.
(2011), Czarnecki andGrimm (2012), Richter andGrimm (2013),
Brzezowski et al. (2015), Wang and Grimm (2015), Kobayashi
and Masuda (2016), Yuan et al. (2017), and Herbst et al. (2019).

Formation of Mg-protoporphyrin IX
The incorporation of Mg2+ to protoporphyrin IX is the first
reaction on the Mg-branch of tetrapyrrole biosynthesis and the
protoporphyrin IX is the last common intermediate of both Chl
and heme biosynthesis (Figure 1). This reaction is catalyzed by

Abbreviations: Chl, chlorophyll; Chlide, chlorophyllide; DPOR, dark-operative
NADPH:Pchlide oxidoreductase enzyme; DGDG, digalactosyldiacylglycerol;
DV-Pchlide, divinyl-Pchlide (3;8 vinyl-Pchlide); DVR, divinyl reductase; FNR1,
ferredoxin-NADPH reductase 1; GG-Chlide, geranylgeranyl chlorophyllide;
LPOR, light-dependent NADPH:protochlorophyllide oxidoreductase; MEP,
2-methylerythritol-4-phosphate pathway; MGDG, monogalactosyldiacylglycerol;
MV-Pchlide, protochlorophyllide; Pchlide, protochlorophyllide; PG,
phosphatidylglycerol; PLB, prolamellar body; PTs, prothylakoids; SQDG,
sulfoquinovosyldiacylglycerol.

Mg-chelatase (EC 6.6.1.1) which is a large multisubunit complex
composed of three subunits, CHLI, CHLD, and CHLH. Two
of them, CHLD and CHLI, catalyze ATP hydrolysis, whereas
the third one, CHLH, binds the substrate (protoporphyrin
IX). During the two-steps reaction, first, an ATP- and Mg2+-
dependent activation occurs, leading to the formation of the
active Mg-chelatase complex, which is then followed by the
ATP-dependent chelation step (reviewed by Masuda, 2008;
Bryant et al., 2020). Recent detailed analyses unraveled the
conformational changes and kinetic parameters of CHLH caused
by the substrate binding (Adams et al., 2020). Two CHLI
isoforms, CHLI1 and CHLI2, were found in A. thaliana, both
having similar expression profiles. The dominant CHLI1 isoform
is crucial for the chelatase activity, whereas CHLI2 plays a limited
role in Chl biosynthesis but certainly contributes to the assembly
of the Mg-chelatase complex (Kobayashi et al., 2008).

GUN4 is a positive regulator of Mg-chelatase and is
involved in plastidic retrograde signaling (Larkin et al., 2003;
Davison et al., 2005). Moreover, it is a key regulator of
Chl biosynthesis acting on the posttranslational level (Peter
and Grimm, 2009). Together with protoporphyrin IX, it
was suggested to promote interactions between CHLH and
chloroplast membranes (Adhikari et al., 2009). Changes in the
activity of the Mg-branch under different light conditions is
probably regulated by GUN4 phosphorylation (Richter et al.,
2016).

From Mg-protoporphyrin IX to
Protochlorophyllide
Mg-protoporphyrin is converted to 3,8 vinyl-Pchlide (divinyl-
Pchlide or DV-Pchlide) in two successive reactions. The first
is the methylation of Mg-protoporphyrin IX catalyzed by Mg-
protoporphyrin IX methyltransferase (EC 2.1.1.11). The second
is the formation of the isocyclic ring E catalyzed by different
cyclases in oxygenic and anoxygenic phototrophs, according to
different mechanisms (Chen et al., 2017). In eukaryotic oxygenic
phototrophs that include angiosperms, mostly discussed in
this work, the formation of the E ring is catalyzed by Mg-
protoporphyrin IX monomethyl ester (oxidative) cyclase (EC
1.14.13.81). This is an oxygen-dependent enzyme, composed
of multiple subunits (Chereskin et al., 1982; Wong and
Castelfranco, 1984, 1985; Rzeznicka et al., 2005). To keep
the enzymatic activity, Mg-protoporphyrin IX monomethylester
cyclase (CHL27/CRD1) (Tottey et al., 2003) requires the
presence of an auxiliary factor YCF54, which is the hypothetical
chloroplast open reading frame 54 (Albus et al., 2012; Chen
and Hunter, 2020). Among various factors, YCF54 interacts
with ferredoxin-NADPH reductase (FNR1), which may deliver
electrons from the photosynthetic electron transport chain to the
cyclase (Herbst et al., 2018). However, the exact mechanism of the
formation of the isocyclic E ring is still not fully elucidated.

A specific reductase, 8-vinyl reductase (EC 1.3.1.75 also
called divinyl reductase, i.e., DVR), can reduce one of the
two vinyl groups in DV-Pchlide converting DV-Pchlide to 3-
vinyl Pchlide (monovinyl-Pchlide or MV-Pchlide), a reaction
observed in etiolated seedlings (Belanger and Rebeiz, 1979, 1980;
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FIGURE 1 | The scheme of chlorophyll (Chl) biosynthesis in angiosperms. Reactions of the tetrapyrrole ring formation route (1–6) are catalyzed by: (1) Mg-chelatase,

(2) protoporphyrin IX methyltransferase, (3) Mg protoporphyrin IX monomethyl ester (oxidative) cyclase, (4) light-dependent NADPH:protochlorophyllide

oxidoreductase, (5) divinyl reductase, (6) chlorophyllide oxygenase, (7) chlorophyll synthase, (8) geranylgeranyl reductase. (*) Divinyl reductase (5) can also convert the

indicated divinyl group to a monovinyl group in protochlorophyllide molecule. (#) Methyl group in Chl a, and formyl group in Chl b. Reactions of the isoprenoid chain

formation (9–11) are catalyzed by geranyl diphosphate and geranylgeranyl diphosphate synthases. See text for further explanations.
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Shioi and Takamiya, 1992) but also during the night phases of
photoperiodic growth (Carey and Rebeiz, 1985; Carey et al.,
1985; Tripathy and Rebeiz, 1988). This observation contributed
to the categorization of plants depending on whether they
accumulate predominantly DV-Pchlide or MV-Pchlide during
daytime or nights of photoperiodic growth (Ioannides et al.,
1994; Mageed et al., 1997). In particular, Arabidopsis (DDV-
LDV, i.e., a dark divinyl-light divinyl plant) accumulates mainly
DV-Pchlide independently on light conditions whereas wheat
and rice accumulate MV-Pchlide at night and mostly DV-
Pchlide at daytime and are thus considered as DMV-LDV (i.e.,
dark monovinyl-light divinyl) plants. Further analysis of the
accumulation of other MV- and DV- tetrapyrrole intermediates
and their interconversion in various plant species led to a
multibranched pathway, including parallel MV and DV paths of
Chl biosynthesis interconnected by DVR (Tripathy and Rebeiz,
1986; Rebeiz et al., 1999; Wang et al., 2013). Plant DVR is a
NADPH-dependent enzyme (Parham and Rebeiz, 1992; Whyte
and Griffiths, 1993) and shows a broad substrate specificity
(Wang et al., 2013), however, it is the most active for DV-
Chlide as substrate (Parham and Rebeiz, 1992; Nagata et al., 2007;
Wang et al., 2013). A putative transmembrane α helix has been
identified near the C terminus of DVR (Nakanishi et al., 2005;
Wang et al., 2010).

Both MV-Pchlide and DV-Pchlide are accepted as substrates
by the enzymes catalyzing the subsequent reactions leading
finally to the formation of the Chl a molecule (Knaust et al.,
1993; Nagata et al., 2007). What is more, most literature data
dealing with the last steps of Chl biosynthesis in angiosperms
did not determine the exact nature of Pchlide (e.g., MV- or
DV-Pchlide) in their samples. Therefore, and for simplicity, we
decided to refer to the pigment below as Pchlide. Pchlide is a key
intermediate of Chl biosynthesis in angiosperms. It is a porphyrin
type compound, capable of light absorption. However, its Q
absorption bands are strongly blue-shifted compared to that of
Chls (Fiedor et al., 2019). The photophysical properties of Pchlide
in variousmodel systems and in plastids are thoroughly discussed
in section LPOR—An Enzyme Operating in Lipid Environment.

Light-Triggered Reduction of
Protochlorophyllide to Chlorophyllide
DPOR (EC 1.3.7.7) is an ancestral but oxygen-sensitive enzyme
catalyzing Pchlide reduction. According to a widely accepted
long-held hypothesis, LPOR (EC 1.3.1.33) emerged as an
evolutionary response to the increasing level of atmospheric
oxygen (Fujita, 1996; Schoefs and Franck, 2003; Yamazaki et al.,
2006; Reinbothe et al., 2010) caused by the emergence of
oxygenic photosynthesis around 2.4 billion years ago (Suzuki
and Bauer, 1995), and occurs only in oxygenic phototrophs.
However, LPOR was discovered a few years ago in the aerobic
anoxygenic phototrophic α-proteobacterium Dinoroseobacter
shibae (Kaschner et al., 2014), and in other anoxygenic organisms
(Chernomor et al., 2020), probably as a result of horizontal
gene transfer from cyanobacteria. Further investigations are
required to elucidate the evolutionary origin and distribution of
LPOR. In angiosperms, the LPOR gene was duplicated several

times, leading to the formation of LPOR isoforms in several
species denoted as LPOR-A, LPOR-B, and LPOR-C (Gabruk
and Mysliwa-Kurdziel, 2020) (discussed in detail in section
Biochemical Characterization of LPOR).

In angiosperms, the reduction of Pchlide to Chlide is catalyzed
by LPOR (for review see Scrutton et al., 2012; Gabruk and
Mysliwa-Kurdziel, 2015). The photocatalytic reaction catalyzed
by LPOR is the reduction of one of the conjugated double bonds
in the porphyrin ring of Pchlide, thus converting it to a chlorine.
The photophysical properties of the product, Chlide, are only
slightly different from those of Chl (Fiedor et al., 2003, 2008).
LPOR activity is induced by light and is fully inhibited in the
dark. No chemical LPOR inhibitors are known. The biochemical
characterization of LPOR and the reaction mechanism of the
photoreduction are discussed in section LPOR—An Enzyme
Operating in Lipid Environment.

From Chlorophyllide to Chlorophyll
The esterification of Chlide with an isoprenyl alcohol leads
to the formation of Chl a molecule. Below, we’ll first review
the formation of the phytol chain, and then the esterification
reaction itself.

Biosynthesis of the Isoprenyl Side Chain
The isoprenyl side chain of Chl is a phytyl moiety. Phytol
is a 20-carbon (C20) alcohol, which is structurally related
to geranylgeraniol, however, it is more saturated. The prenyl
backbone of geranylgeraniol is synthesized in chloroplasts via the
2-methylerythritol-4-phosphate (MEP) pathway (Lichtenthaler
et al., 1997), one of two pathways of isoprenoid biosynthesis
present in plant cells. The characterization and detailed
description of these pathways is beyond the scope of this paper
and can be found in Rodriguez-Concepcion (2010), Vranová
et al. (2013), Rodríguez-Concepción and Boronat (2015), and
Gutbrod et al. (2019).

Geranylgeranyl diphosphate (C20) is formed from two
prenyl diphosphate precursors: isopentenyl diphosphate
(C5) and dimethylallyl diphosphate (C5), both produced
in the MEP pathway, in sequential condensation reactions.
Their condensation leads to geranyl diphosphate (C10).
The condensation of geranyl diphosphate (C10) with an
isopentenyl diphosphate (C5) molecule results in the formation
of farnesyl diphosphate (C15), which can further condensate
with another isopentenyl diphosphate (C5) molecule to
form geranylgeranyl diphosphate (C20). These condensation
reactions are catalyzed by the geranyl diphosphate and
geranylgeranyl diphosphate synthases, EC 2.5.1.10 and EC
2.5.1.29, respectively, which are enzymes belonging to the
family of isopentenyl-diphosphate synthases (prenyltransferases)
(Gutbrod et al., 2019). Geranylgeranyl diphosphate (C20) is
an important intermediate not only for Chl synthesis, but also
for other biochemical pathways including the biosynthesis of
carotenoids, prenyllipids and plant hormones (gibberellins).
However, regulatory mechanisms of geranylgeranyl diphosphate
consumption among these biosynthesis pathways are not yet
fully understood.
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Interestingly, isopentenyl diphosphate or farnesyl
diphosphate formed in the cytosol by the alternative pathway
of isoprenoid biosynthesis, the so-called mevalonate pathway
(MVA), can contribute to the synthesis of chloroplast isoprenoids
(Nagata et al., 2002; Bick and Lange, 2003; Opitz et al., 2014;
Manzano et al., 2016; Pellaud and Saffrané, 2017). However,
isoprenoids derived from the mevalonate pathway cannot
substitute for the deficiency in the flux through the MEP
pathway (Nagata et al., 2002). Geranylgeranyl diphosphate
deficiency leads to overaccumulation of Chlide, which can be a
source of photooxidative stress (Kim et al., 2013).

The plastid geranylgeranyl diphosphate synthase was first
purified from Capsicum chromoplasts (Dogbo and Camara,
1987) and Sinapsis alba etioplasts (Laferrière and Beyer, 1991),
and then cloned and further characterized (Kuntz et al., 1992).
Multiple geranylgeranyl diphosphate synthase families were
characterized in Arabidopsis (Beck et al., 2013) and some
other plants (Wang and Dixon, 2009; Zhou et al., 2017; Wang
et al., 2019). They show specific subcellular localizations and
different expression patterns, which may be important for
geranylgeranyl diphosphate synthesis depending on metabolic
pathways, developmental stages, or specific tissues. Seven of
10 synthases found in Arabidopsis were localized to plastids.
One of them (GGPPS11) mainly participates in the biosynthesis
of plastid isoprenoids including Chls (Beck et al., 2013; Ruiz-
Sola et al., 2016). GGPPS11 operates as a dimer with another
geranylgeranyl diphosphate synthase, GGPPS12, which lacks
motifs required for prenyl binding and is catalytically inactive
(Beck et al., 2013; Ruiz-Sola et al., 2016). Binding of this
accompanying protein regulates the enzyme specificity between
the production of geranylgeranyl diphosphate and geranyl
diphosphate. The accompanying protein in rice, which is called a
recruiting molecule, controls the dimerization of geranylgeranyl
diphosphate synthase and enhances its catalytic activity (Zhou
et al., 2017). Moreover, it determines the allocation of the
enzyme from the stroma to the thylakoid membranes, which is
a way to control the flux of geranylgeranyl diphosphate toward
Chl biosynthesis.

It is noteworthy to mention that independently from Chl
biosynthesis, peculiar plastid inner membranes can be observed
in plastids accumulating isoprenoids (Turner et al., 2000, 2012;
reviewed e.g., in Solymosi and Schoefs, 2010) which indicates
some direct or indirect interaction of these lipophilic molecules
with the biomembranes.

Esterification of Chlide
Chlide is esterified with geranylgeranyl diphosphate to form
geranylgeranyl Chlide (GG-Chlide). This reaction is catalyzed by
chlorophyll synthase (EC 2.5.1.62) (Rüdiger et al., 1980). Pchlide
is not accepted as the substrate for this enzyme (Griffiths, 1974;
Rüdiger et al., 1980). However, in the two subsequent reactions,
i.e., the photoreduction of Pchlide and the esterification of
Chlide, the same part of the tetrapyrrole molecule is modified.
Pchlide and Chlide are thus bound to the catalytic site of the
respective enzymes, i.e., LPOR and chlorophyll synthase, in the
same orientations (Helfrich et al., 1994, 1996; Rüdiger et al.,

2005). Chlorophyll synthase binds the isoprenoid chain before
binding of the second substrate, Chlide (Schmid et al., 2002).

Finally, the geranylgeranyl reductase (EC 1.3.1.83) reduces
subsequently three double bonds in geranylgeranyl moiety
of GG-Chlide and converts it to phytyl moiety, yielding
this way Chl a. Observations that mainly GG-Chlide was
detected shortly after illumination of etiolated seedlings (Schoch,
1978) whereas Chl a, having a phytyl moiety, was found
in green barley seedlings (Soll et al., 1983) opened up a
long-lasting discussion on the order of the esterification and
reduction steps in plants. However, Schoefs and Bertrand
(Schoefs and Bertrand, 2000) proved that the transformation
of Chlide to Chl in developing seedlings is a four-steps
process, which includes the successive formation of GG-Chlide,
dihydrogeranylgeranyl Chlide and tetrahydrogeranylgeranyl
Chlide as Chl a biosynthesis intermediates. The reduction of
geranylgeranyl moiety of GG-Chlide was confirmed in tobacco
cell cultures (Benz et al., 1984). Moreover, the preferential
use of geranylgeranyl diphosphate than phytyl diphosphate
by recombined Arabidopsis thaliana chlorophyll synthase was
observed (Gaubier et al., 1995; Oster and Rüdiger, 1997). Chlides
a and b were esterified at the same rate by recombinant
chlorophyll synthase (Oster and Rüdiger, 1997).

In plastids, the same geranylgeranyl reductase may operate in
different pathways of hydrogenation of geranylgeranyl moiety.
The hydrogenation of GG-Chlide for Chl biosynthesis occurs in
thylakoids whereas the reduction of geranylgeranyl diphosphate
to phytyl diphosphate during the synthesis of tocopherols takes
place in the envelopes (Soll et al., 1983; Keller et al., 1998). In
etiolated seedlings the hydrogenation process is slowed down
making it easier to observe than in green leaves. The activity
of geranylgeranyl reductase is more affected by low temperature
(273K) than that of chlorophyll synthase (Schoefs and Bertrand,
2000). Cycloheximide is an inhibitor of the hydrogenation
of geranylgeranyl to phytyl moiety in the irradiated etiolated
seedlings, whereas it has no effect on Chlide esterification with
geranylgeranyol (Rassadina et al., 2004).

Chlorophyll b Formation
Chl b is formed from Chlide in two reactions (Figure 1). The first
is the two-step oxygenation of the side methyl group at the C7
in the ring B to a formyl group using molecular oxygen, which is
catalyzed by chlorophyllide a oxygenase (CAO; EC 1.14.13.122)
(Tanaka et al., 1998; for review see Rüdiger, 2002, 2006; Tanaka
and Tanaka, 2007). Chlide awas shown to be the sole substrate for
CAO activity, because neither Chl a nor Pchlide were accepted
as the substrates of CAO in vitro (Oster et al., 2000; Rüdiger,
2002). The CAO is a membrane-bound protein, localized in
thylakoid and envelope membranes (Eggink et al., 2004). The
biosynthesis of Chl b plays an important regulatory role in the
assembly and stabilization of light harvesting antennae (LHC)
and as a consequence in granum stacking, which rely on the
presence of this pigment (Espineda et al., 1999; Tanaka et al.,
2001; Harper et al., 2004; Reinbothe et al., 2006). Judging from
the low activity of the recombinant CAO in vitro it was suggested
that additional accessory proteins might be required to reach
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the optimal catalytic oxygenase activity (Eggink et al., 2004), but
these are yet unidentified.

Esterification of the D ring of Chlide, a reaction which is
described in section Esterification of Chlide for Chl a formation,
converts Chlide b into Chl b. The Chl a/b ratio in plants is
regulated using the reversible conversion of Chlide a—Chl b—
Chl(ide) a, which is known as “the chlorophyll cycle” (for a
review see Rüdiger, 2002; Tanaka and Tanaka, 2019). Keeping
the optimal level of Chl a/b ratio which correlates with the
amount of the LHC complexes and supramolecular structure of
photosynthetic complexes enables plant adaptation to changing
environmental conditions (for a review see Tanaka and Tanaka,
2011; Voitsekhovskaja and Tyutereva, 2015).

Late Chlorophyll Biosynthesis Is
Associated With Plastid Membranes
The Mg-branch occurs at the plastid membranes and some
enzymes are organized into macromolecular complexes. For
example, LIL3, a protein belonging to LHC family, plays an
essential role in the organization of complexes involved in
Chl biosynthesis and in the delivery of Chls to photosynthetic
complexes. By linking tetrapyrrole and terpenoid biosynthesis,
LIL3 plays a critical role in the organization of later steps in
Chl biosynthesis (Hey et al., 2017). Studies on the Arabidopsis
mutant lacking LIL3 revealed the importance of this protein
for Chl biosynthesis and in the stabilization of geranylgeranyl
reductase (Tanaka et al., 2010). A direct interaction of
geranylgeranyl reductase with LIL3 was demonstrated using a
split ubiquitin assay, bimolecular fluorescence complementation
as well as combined blue-native and SDS polyacrylamide gel
electrophoresis (Tanaka et al., 2010). LIL3 was also shown to
stabilize LPOR, and the direct LIL3-LPOR interaction was also
confirmed using multiple analysis of protein-protein interactions
(Hey et al., 2017). In addition to that, fluorescence in vitro
analysis showed high binding affinity of LIL3 to Pchlide—the
substrate of LPOR. However, no interactions with chlorophyll
synthase were reported in this study. Similar complexes were
detected in etio-chloroplasts and etioplasts of barley, using
native gel electrophoresis with autofluorescence detection and
mass spectrometry (Reisinger et al., 2008; Mork-Jansson et al.,
2015). In these experiments, LIL3 formed complexes with LPOR,
geranylgeranyl reductase and chlorophyll synthase. However,
using split ubiquitin assay, the interaction between LIL3,
LPOR and chlorophyll synthase was demonstrated, whereas no
interaction with gerenylgeranyl reductase was proven (Mork-
Jansson et al., 2015). Studies performed on thylakoids of
rice (Zhou et al., 2017) revealed an additional protein called
geranylgeranyl reductase recruiting protein, regulating the
binding of geranylgeranyl reductase in the complexes clustered
around LIL3.

Membrane complexes composed of Mg-protoporphyrin IX
monomethylester cyclase, CHL27, LPOR (i.e., LPOR-B, LPOR-
C), geranylgeranyl reductase and the FLU protein were identified
in isolated thylakoids of Arabidopsis (Kauss et al., 2012). FLU is
a negative regulator of Chl biosynthesis operating at the step of
delta aminolevulinic acid (ALA) formation (Meskauskiene et al.,

2001; Meskauskiene and Apel, 2002). In the absence of light,
glutamyl-tRNA reductase is bound to FLU in these complexes
and ALA formation is inhibited (Zhang et al., 2015). Formation
of complexes of FLU with enzymes catalyzing the final steps of
Chl biosynthesis was demonstrated using native electrophoresis,
immunoprecipitation andmass spectrometry (Kauss et al., 2012).

It was also shown that, Mg-protoporphyrin IX
monomethylester cyclase forms complexes with YCF54 and
FNR1. However, YCF54 is probably a scaffold protein for a
multi-subunit enzymatic complex, including other enzymes of
late Chl biosynthesis, namely LPOR as well as the DVR and
geranylgeranyl reductases (Kong et al., 2016; Herbst et al., 2018).
Formation of such multi-subunit complexes favors the flow
of intermediates during the Chl synthesis in light as well as
the inhibition of the process in the dark. Taking into account
that FNR1 provides the electrons for the cyclase activity, it
is hypothesized that it might also deliver electrons for LPOR
and DVR in the multi-enzymatic complex (Herbst et al., 2018,
2019). Nevertheless, the direct interaction of YCF54-FNR1
with LPOR and DVR has not yet been shown until now.
Moreover, the question about the regulation of the electron flow
in thylakoids remains open. Finally, it has not been elucidated
how the late Chl synthesis is orchestrated at the beginning of
angiosperm greening.

Another question which also remains open till date concerns
the coexistence of CHL27-YCF54-FLU-LPOR-geranylgeranyl
reductase complex with the LIL3-LPOR-geranylgeranyl
reductase-geranylgeranyl diphosphate synthase-chlorophyll
synthase complex in thylakoid membranes. LPOR and
geranylgeranyl reductase were found in both type of complexes
in thylakoid membranes. However, it remains unknown whether
these complexes are somehow associated or stay separated.
Recent analyses revealed that in Arabidopsis LPOR, curvature
Thy1 (CURT1), the Mg2+-chelatase subunit 1 (CHLI) and Mg2+

protoporphyrin IX methyl transferase (CHLM) are also located
to the granum margins (Wang et al., 2020). Further research is
required to elucidate the exact localization, organization and
regulation of the last steps of Chl biosynthesis. Answering these
questions is important for the understanding of the regulatory
mechanisms of the delivery of prenyl intermediates for Chl and
tocopherol synthesis (Gutbrod et al., 2019).

Dual Localization of the Mg-branch in
Plastids and the Role of Lipids in It
Dual localization of enzymes involved in the Mg-branch in
both chloroplast envelope and plastid inner membranes were
documented based on biochemical studies (Joyard et al., 1990;
Block et al., 2002; Tottey et al., 2003; Eggink et al., 2004; Tanaka
and Tanaka, 2007), and later confirmed by proteomics (for review
see Joyard et al., 2009; Bruley et al., 2012; Salvi et al., 2018).
Dual localization was suggested to supply Chl to different Chl-
binding proteins (PS core complexes and LHC) (Tottey et al.,
2003). Additional research is required to elucidate the functional
meaning of the dual localization and its relation to protein import
mechanisms of plastids. Some yet unsolved problems that need
to be mentioned: (i) interactions among enzymes and regulatory
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factors, (ii) structure and functioning of enzyme complexes, and
(iii) their interaction with lipid membrane components, as well
as (iv) the MV and DV heterogeneity of the biosynthesis route.

An interesting research area is the understanding of the
regulatory networks connecting the biosynthesis of Chls, of
protein components of photosynthetic complexes as well as
lipids with the formation of the thylakoid membranes typical
for chloroplasts. These processes need to be orchestrated to
enable the proper assembly of the photosynthetic apparatus and
to avoid the overaccumulation of unbound tetrapyrroles which
may lead among others to photooxidative damage (Erdei et al.,
2005; Hideg et al., 2010; Kim et al., 2013). It is nowadays known
that the expression of Mg-chelatase and Mg-protoporphyrin
IX monomethyl ester cyclase is linked to the synthesis of
galactolipids (Fujii et al., 2014; Kobayashi et al., 2014; Kobayashi,
2016, 2018; Kobayashi and Masuda, 2016). Coordination of Chl
and galactolipid biosyntheses goes through cytokinin and light
signaling pathways (Kobayashi et al., 2014), however, further
studies are needed to understand the molecular background of
this regulation.

It has been shown that in etioplasts, the Mg-branch is
sensitive to themembrane lipid environment, namely theMGDG
and DGDG levels. Deficiency of any of these galactolipids
in A. thaliana mutants resulted in overaccumulation of Mg-
protoporphyrin IX pointing to the impairment of the following
enzymes in the biosynthetic pathway (Figure 1) and leading
to the accumulation of Pchlide intermediates and low Pchlide
content (Fujii et al., 2017, 2018). On the contrary, the Mg-
branch was reconstituted in E. coli cells from recombined
Synechocystis proteins: Mg-chelatase, Mg-protoporphyrin IX
methyltransferase, Mg-protoporphyrin IX monomethyl ester
cyclase, LPOR, DVR, Chl synthase, and geranylgeranyl reductase
without galactolipids (Chen et al., 2018). Thus, galactolipids
rather enhance the activity of the enzymes, however, the
regulatory mechanisms are yet unknown. Functioning of Mg-
protoporphyrin IX methyltransferase, Mg-protoporphyrin IX
monomethyl ester cyclase in barley etioplasts was also affected
in the absence of carotenoids (La Rocca et al., 2007).

LPOR—AN ENZYME OPERATING IN LIPID
ENVIRONMENT

Among all reaction steps of Chl biosynthesis, the photoreduction
of Pchlide is probably the most studied. This may be a
result of several factors including (i) the unique catalytic
activity of the enzyme involving an ultrafast light-activated
photochemical reaction interesting from the biophysical and
biochemical points of view, (ii) its important role in the
regulation of tetrapyrrole biosynthesis, (iii) its association with
arrested chloroplast differentiation and the formation of peculiar
etioplast inner membranes, and (iv) the fact that dark-grown
angiosperm seedlings represent a convenient plant material to
study the last steps of the biosynthetic pathway in a synchronized
way after illumination. Spectroscopy is also a useful tool to study
this topic because there is a 30–40 nm difference in the spectral
properties of the substrate, Pchlide (a porphyrin containing 11

double bonds in the tetrapyrrole ring) and the product, Chlide
(a chlorine with 10 double bonds). This way and due to the high
sensitivity of the delocalized electron system of the porphyrin
ring to alterations in the molecular environment of the pigment,
the reaction as well as the different populations of the pigments
can be easily studied and characterized by relatively simple
steady-state spectroscopic methods, which is summarized in the
section Spectroscopic Properties of Pchlide in vivo. Pigments
involved in similar molecular interactions and located in similar
molecularmicro-environments within the plastids exhibit similar
spectral properties and thus represent a subpopulation of the
entire pigment pool denoted as a pigment “form.” Pigment forms
are often referred to by using the wavelength of their spectral
maxima, but most of them have been also characterized from the
biochemical and physiological points of view.

However, it is important to mention, that in green leaves
containing significant amounts of Chls in the form of the
various Chl-protein complexes of the photosynthetic apparatus,
the fluorescence emission signal of Chl hinders the detection of
its precursors such as e.g., Pchlide, which are present in much
lower quantities (i.e., three order of magnitude lower amounts).
Similarly, in green plants, the level of enzymes required for
the steady-state Chl synthesis that produces Chl molecules to
replace the pigments damaged during photosynthesis or stress
conditions is very low and is hard to detect with classical
biochemical or spectroscopic methods. Therefore, most studies
related to the last steps of Chl biosynthesis have been performed
on dark-germinated angiosperm seedlings in which the light-
dependent LPOR enzyme is accumulating along with its substrate
Pchlide, while Chl is absent.

When deprived from light during the early stages of their
development, proplastids differentiate into a peculiar plastid
type called etioplast in the photosynthetic tissues of dark-
grown plants. The inner membranes of etioplasts consist of
flat, sac-like membranes called prothylakoids, i.e., lipid bilayers
encircling an inner aqueous phase called lumen, and a unique
non-lamellar, but cubic phase inner membrane structure, the
prolamellar body (PLB). Due to the inhibition of other light-
signaling pathways [e.g., those involving phytochrome and
cryptochrome (Sineshchekov and Belyaeva, 2019)] in darkness,
the development of such dark-grown seedlings is also peculiar
and is called skotomorphogenesis. When etiolated plants get
illuminated, photomorphogenesis proceeds in them in parallel
with the light-induced conversion of Pchlide to Chlide, resulting
in the etioplast-to-chloroplast conversion which includes major
reorganization of the plastid inner membranes, and active
synthesis of the components of the photosynthetic apparatus
(reviewed in Solymosi and Aronsson, 2013; Armarego-Marriott
et al., 2020; Hernández-Verdeja et al., 2020).

Data about LPOR and its native structure and activity are
reviewed below with emphasis on the lipid-protein interactions
in them.

Biochemical Characterization of LPOR
LPOR belongs to the short-chain dehydrogenase/reductase
(SDR) protein superfamily (Yang and Cheng, 2004). It is a nuclear
encoded protein which is then post-translationally imported to
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plastids (Aronsson et al., 2003b; Kim et al., 2005). Based on its
amino acid sequence it is considered as a soluble and globular
protein with surprisingly high contents of basic and hydrophobic
amino acids (Schoefs and Franck, 2003; Masuda and Takamiya,
2004; Heyes and Hunter, 2005; Gabruk and Mysliwa-Kurdziel,
2015). Circular dichroism studies and bioinformatic tools
predicted its secondary and tertiary structure (Schulz et al., 1989;
Darrah et al., 1990; Birve et al., 1996; Dahlin et al., 1999; Townley
et al., 2001; Buhr et al., 2008; Gabruk et al., 2012, 2015; Menon
et al., 2016; Gholami et al., 2018), but hydropathy plots did not
identify potential hydrophobic transmembrane segments in it
(Benli et al., 1991; Spano et al., 1992). This is surprising as 98% of
LPOR present in etioplasts has been localized to PLB membranes
(Ryberg and Sundqvist, 1982a; Ikeuchi and Murakami, 1983),
and it represents the major protein of isolated PLB fractions
(Ryberg and Sundqvist, 1982a; Selstam and Sandelius, 1984;
von Zychlinski et al., 2005; Blomqvist et al., 2008; Kanervo
et al., 2008). Several in vitro and in vivo experiments involving
washing and directedmutagenesis tried to identify themembrane
association mechanism of LPOR. It has been shown that NADPH
and ATP are required for its proper binding to plastid inner
membranes such as PLBs, PTs and thylakoids (Dahlin et al.,
1995; Engdahl et al., 2001). Washing experiments with various
salts, detergents (Grevby et al., 1989; Selstam and Widell-Wigge,
1989) and proteases (Lütz and Tönissen, 1984; Dahlin et al.,
1995; Engdahl et al., 2001) also revealed that LPOR binds more
strongly to etioplast inner membranes (PLBs and PTs) than to
thylakoid membranes. In chloroplasts, LPOR was predominantly
found in the granum margins (Wang et al., 2020) which are,
similarly to PLBs, also highly curved membranes with special
lipid composition and special membrane organization. Based on
its amino acid sequence LPOR is not an integral transmembrane
protein, but because of its strong attachment to PLBs and
PTs due to which it is difficult to solubilize it, it is probably
not a peripheral membrane protein but an integral monotopic
membrane protein which is permanently attached to one side
of the plastid inner membrane. Using mutagenesis experiments,
some amino acid residues (Cys) and the C-terminal have been
shown to be involved in membrane association of LPOR (Dahlin
et al., 1999; Aronsson et al., 2001), and recently a Chaperone-
like Protein of POR1 (CPP1) has been identified which may be
involved in anchoring LPOR to the PLBs (Lee et al., 2013b).

LPOR has a central β-sheet comprised of β-strands
surrounded by α-helices, forming a typical dinucleotide
binding Rossmann fold (Rossmann et al., 1974). The catalytic
YxxxK and the NADPH-bounding G-rich (GxxxGxG) motifs
are conservative (Wilks and Timko, 1995; Schoefs and Franck,
2003; Gabruk and Mysliwa-Kurdziel, 2020). LPOR crystal
structure remained unknown for a long time; the structures of
two cyanobacterial LPOR enzymes have been published only
recently (Zhang et al., 2019; Dong et al., 2020). In general, both
structures are compatible with the homology models, however,
due to slightly different protocols there were some differences
between these two works.

Most SDR proteins have tendency to form dimers and
oligomers (Jörnvall et al., 1995), a property which was also found
in LPOR macrocomplexes isolated from PLBs pre-treated with

chemical cross-linkers (Wiktorsson et al., 1993), or isolated in
fully photoactive native state from PLBs after mild solubilization
and gel chromatography (Ouazzani Chahdi et al., 1998). Circular
dichroism spectra (Mathis and Sauer, 1972; Böddi et al., 1989,
1990) and energy transfer studies (Kahn et al., 1970) also revealed
that dimers or oligomers of the pigments are involved in the
photoreduction of Pchlide. Cross-linking and subsequent mass
spectrometric analysis of recombinant LPOR suggested that
after substrate binding, structural changes occur in the LPOR
oligomers which bring the catalytic motifs and the Pchlide
molecules bound to the active site closer together (Gabruk et al.,
2016). Similar observations were done in case of the analyses
of cyanobacterial LPOR in which substrate binding induced
oligomerization (Zhang et al., 2019) or monomers were observed
in solution but homodimerization was observed during crystal
formation (Dong et al., 2020). Experiments with recombinant
pea LPOR also showed that it can form photoactive dimers in
solution (Martin et al., 1997). A close distance between catalytic
motifs brings the Pchlide molecules bound within the oligomers
into close proximity, which enables energy transfer between them
and also influences their spectral properties (Kahn et al., 1970). It
has to be noted that the enzymatically active LPOR complexes
have unique spectral and biochemical properties that are hardly
reconstituted in vitro, especially in the absence of lipids (Gabruk
et al., 2017). However, recent in vitro reconstitution studies
successfully yielded crystal structures of oligomers: in case of
cyanobacterial LPOR octamers were reported (Zhang et al., 2021)
while in case of Arabidopsis LPOR helical structures associated
with lipids were observed (Nguyen et al., 2021).

Data indicate the role of carotenoids [zeaxanthin and
violaxanthin (Ouazzani Chahdi et al., 1998); neoxanthin and
violaxanthin (Bykowski et al., 2020); the accumulation of poly-
cis xanthophylls (Park et al., 2002; Cuttriss et al., 2007)] and
lipids [MGDG (Aronsson et al., 2008; Fujii et al., 2017); and
MGDG, PG, and SQDG (Gabruk et al., 2017; Nguyen et al.,
2021)] in the formation of the photoactive enzyme complexes
and the PLBs. Similarly, carotenoids (Denev et al., 2005) were
suggested to be involved in the membrane association of LPOR.
Lipid biosynthesis mutants had hindered LPOR activity, no
LPOR oligomerization and abnormal PLB formation (Fujii et al.,
2017, 2018, 2019b) which again outlines the strong relation
between the LPOR oligomers, plastid lipids and inner membrane
structures. Cryo electron microscopic investigations on in vitro
reconstituted LPOR revealed that LPOR oligomers form helical
filaments around lipid bilayer tubes and are inserted in the outer
leaflet of the membranes (Nguyen et al., 2021).

LPOR gene probably appeared ∼1.36 billion years ago, and
since then it underwent several duplication events and mutations
(Figure 2) (Gabruk andMysliwa-Kurdziel, 2020). As a result, few
organisms contain only one LPOR gene and thus one isoform
[e.g., pea (Spano et al., 1992) and cucumber (Fusada et al., 2000)],
but several organisms contain at least two different isoforms
(termed in general or historically as LPOR-A and LPOR-B—
barley, rice, tobacco, and wheat, see later for references) or even
more than that [e.g., Arabidopsis also has LPOR-C (Oosawa
et al., 2000; reviewed in Gabruk and Mysliwa-Kurdziel, 2020)].
The isoforms share ∼75% sequence homology, but according
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FIGURE 2 | Subtree of LPOR sequences from seed plants, with Arabidopsis thaliana’s isoforms AtPORA, AtPORB, and AtPORC being marked, and green dots

indicating duplication events. Republished with permission of Portland Press Ltd., from The origin, evolution and diversification of multiple isoforms of light-dependent

protochlorophyllide oxidoreductase (LPOR): Focus on angiosperms; Gabruk and Mysliwa-Kurdziel (2020), permission conveyed through Copyright Clearance Center,

Inc.

to detailed functional analyses performed on a few species—
barley (Holtorf et al., 1995; Garrone et al., 2015), Arabidopsis
(Armstrong et al., 1995), tobacco (Masuda et al., 2002), wheat
(Blomqvist et al., 2008), and rice (Kwon et al., 2017)—they

have different expression patterns, substrate binding affinities,
different plastid import mechanisms, different localization within
the plastid membranes and different gene regulation patterns
also depending on the developmental stage, temperature and
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light conditions (reviewed in Solymosi and Schoefs, 2008, 2010;
Gabruk and Mysliwa-Kurdziel, 2020). The transport of the
different isoforms into the plastids is peculiar as it shows a
large substrate, cell, tissue, and organ specificity (Aronsson et al.,
2003b; Kim et al., 2005), the detailed discussion of which is
beyond the scope of this review.

LPOR-A and LPOR-B are present in etiolated material, while
LPOR-C is expressed typically in green tissues (Oosawa et al.,
2000; Aronsson et al., 2003a; Masuda et al., 2003; reviewed
in Solymosi and Schoefs, 2010; Gabruk and Mysliwa-Kurdziel,
2015). LPOR-A is transiently expressed during early phases
of development when large amounts of pigments need to be
synthesized quickly, while LPOR-B and LPOR-C are thought
to be responsible for the bulk Chl synthesis of adult or green
plants (Paddock et al., 2010, 2012). Arabidopsis double mutants
lacking LPOR-B and -C were shown to be unable to produce
enough Chl under light conditions, indicating the importance of
these isoforms in the biogenesis of the photosynthetic apparatus
and also its membrane structures such as grana (Frick et al.,
2003). Some ancestral LPOR genes (like that of Synechocystis)
may even have different catalytic activity as they operate
in lipid independent manner in contrast with other LPORs
analyzed so far in angiosperms or gymnosperms (Gabruk and
Mysliwa-Kurdziel, 2020). Taking into account the biochemical
characteristics of LPOR isoforms, their interaction with lipids,
as well as their phylogenetic relationships, Gabruk and Mysliwa-
Kurdziel (Gabruk and Mysliwa-Kurdziel, 2020) proposed a new
classification of LPOR family consisting of three LPOR types
(Figure 2). The first one includes bacterial LPORs, termed “Z-
type,” which are lipid-independent. Two other categories, termed
L-type and S-type LPOR isoforms, are lipid-driven and present
in angiosperms. L-type isoforms preferentially form complexes
on the lipid membranes (like A. thaliana LPOR-A and LPOR-
B), while the S-type ones (like A. thaliana LPOR-C) are active
both with and without lipids. Further biochemical investigation
is required to characterize the effect of lipids on LPOR isoforms
from other angiosperm species.

Spectroscopic Properties of Pchlide in vivo
Native spectral properties of Pchlide complexes in etiolated
seedlings, and the spectral changes following the light-induced
reduction of photoactive Pchlide were described already in
the 50’s (Figure 3) (Shibata, 1957). Photoreduction of Pchlide
can take place at 203K and reversible intermediates can be
observed already at 77K (Sironval and Brouers, 1970; Heyes
et al., 2002, 2003; Belyaeva and Litvin, 2011, 2014), therefore, low
temperature (typically 77K) spectroscopic methods are needed
to characterize the native state of the pigments. The absorption
and fluorescence emission spectra of etiolated leaves contain two
major spectral bands, each attributed to a specific pigment form
also characterized at the biochemical level. Since low temperature
absorption spectroscopy is less frequently used, we will refer to
77K fluorescence properties of the pigments in this work.

The short-wavelength band with fluorescence emission
maximum at 633 nm represents a pool of monomeric Pchlide
pigments bound either to the membrane surface or to a yet
unidentified protein or to LPOR, but not in the active site of

FIGURE 3 | Normalized 77K fluorescence emission spectra of 10-day-old

dark-grown wheat (Triticum aestivum) leaves before (solid line) and after

illumination with white light of 100 µmol s−1 m−2 photon flux density for 10 s

(dotted line) and a subsequent 15min dark incubation to reach the end stage

of Shibata shift (broken line). Experimental conditions were as in Solymosi et al.

(2002) and Smeller et al. (2003).

the enzyme or not to the active form of the enzyme (Figure 3).
These pigments were primarily localized to the prothylakoid
membranes of the etioplasts (Ryberg and Sundqvist, 1982a,b) and
to the cytosolic side of the outer envelope (Joyard et al., 1990).
They are not directly photoconvertible with a flash, and thus
belong to the so-called “non-photoactive” Pchlide pool.

Another major band located at 655–657 nm belongs to the so-
called “photoactive” Pchlide pool, i.e., Pchlide pigments bound
to the active site of LPOR macrodomains, which correspond
to oligomers of Pchlide:LPOR:NADPH ternary complexes and
are strongly associated with the PLB membranes of the
etioplasts (Figure 3) (Ryberg and Sundqvist, 1982a,b). Gaussian
deconvolution and further spectral and biochemical analyses of
isolated and fractionated etioplast inner membranes revealed
the presence of other minor Pchlide forms, like for instance
smaller oligomers (probably dimers) of Pchlide:LPOR:NADPH
ternary complexes with emission maximum at 644 nm which
are also photoactive and are suggested to be located to the
edge of the PLB membranes (Böddi et al., 1990, 1991, 1992).
In addition, a non-photoactive Pchlide molecular subpopulation
hypothetically located to the central regions of PLBs and having
fluorescence emission maximum at around 670 nm was also
described (Figure 3) (Böddi et al., 1990; Bykowski et al., 2020).
Upon short (already µs-long) illumination the fluorescence
emission of Pchlide:LPOR:NADPH oligomers with emission
maxima at 655 nm disappears, and that of the freshly produced
Chlide:LPOR:NADP+ oligomers appears at 690 nm (Figure 3)
(Böddi et al., 1990). After 10–15min these oligomers and the
pigments located in them undergo conformational changes and
disaggregation as reflected by the blue shift of their emission
maximum toward 680 nm, referred to as the so-called Shibata
shift (Figure 3) (Shibata, 1957; Smeller et al., 2003; Solymosi et al.,
2007a).

After the ultrafast transformation of the LPOR-bound, so-
called “photoactive” Pchlide molecules into Chlide, and the
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subsequent slower conformational changes and reorganizations
of LPOR oligomers including the dissociation of Chlide, the so-
called “non-photoactive” Pchlide molecules can bind to the active
site of LPOR and can be then also directly transformed into
Chlide in the same ultrafast photochemical reaction step.

Depending on the oxidation state of NADPH in the ternary
complexes, and also on the studied species and organs (e.g., leaves
or stems) other spectral forms have been also characterized but
discussion about them, as well as about developmental and other
species-specific factors determining the ratios of the different
forms is beyond the scope of this review, and can be found
e.g., in Schoefs (2005), Belyaeva and Litvin (2007), and Solymosi
and Schoefs (2008, 2010). Below we summarize knowledge about
the molecular background of Pchlide photoreduction and the
membrane association of LPOR.

Understanding the Photophysical and
Spectral Properties and Molecular
Organization of Pchlide and LPOR
The major hurdle in understanding LPOR structure and its exact
molecular interaction with PLB membranes is the fact that the
in vivo crystal structure of photoactive LPOR complexes is not
available so far. In addition, photoactive dimeric and oligomeric
complexes of LPOR are also hard to be isolated and fully purified
from etiolated tissues because they often undergo disaggregation
and dissociation during these processes. As stated earlier, it is
even harder to detect or isolate them from fully green plant
material. On the other hand, photoactive LPOR is also hard to
reconstitute in vitro. Below we’ll review some key spectral and
structural features of Pchlide and LPOR, and also discuss how
various in vitro experiments and reconstitution studies helped us
to better understand the native structure of LPOR.

Photophysical and Spectral Properties of Pchlide in

Solvents and Lipid Model Systems
The key role of Pchlide in the light-triggered biosynthesis of Chl is
related to its electronic properties. The Pchlide molecule captures
sunlight and uses the absorbed energy to power the enzymatic
reduction of its C17–C18 double bond. Data for understanding
Pchlide photochemistry were collected from numerous studies
of Pchlide in various model systems. It is now well-documented
that Pchlide is an intrinsically reactive molecule. After light
absorption, an electronically excited Pchlide molecule undergoes
deexcitation using two parallel pathways (Dietzek et al., 2004,
2006b, 2009; Colindres-Rojas et al., 2011). The first one, called
the reactive pathway, goes through an intramolecular charge-
transfer state (SICT), which is non-fluorescent. The other, called
the non-reactive pathway, goes through the lowest excited singlet
state (S1), which then decays via fluorescence or by intersystem
crossing to the long-lived Pchlide triplet state. Charge separation
across Pchlide molecule in the SICT state depends on solvent
polarity and is more stable in polar solvents (Dietzek et al., 2006a,
2010). A carbonyl group (C13) in the Pchlide isopentanone ring
is of special importance for this charge separation (Sytina et al.,
2010; Heyes et al., 2017), and the formation of the SICT state is
important for Pchlide photocatalysis (Dietzek et al., 2006b, 2010;
Heyes et al., 2015).

Fluorescence emission spectra of Pchlide in organic solvents
have the maximum between 626 and 641.5 nm (Mysliwa-
Kurdziel et al., 2004). The photophysical properties of Pchlide
S1 state only weakly depend on non-specific solvation, as
revealed from the small Stokes shifts (between 50 and
300 cm−1) observed in organic solvents (Mysliwa-Kurdziel
et al., 2004). Specific solvation in protic (methanol, ethanol)
and coordinating solvents (pyridine) enlarges the Stokes
shift due to the lowering of the S1 state energy, and
shortens the fluorescence lifetime. The site-specific solvation
in Pchlide excited state via hydrogen bonding was confirmed
experimentally (Mysliwa-Kurdziel et al., 2004; Sytina et al., 2010)
and by theoretical calculation (Zhao and Han, 2008). DV-Pchlide
has slightly red-shifted absorption and fluorescence maxima
and differs in fluorescence lifetime when compared to MV-
Pchlide (Kotzabasis et al., 1990; Kruk and Mysliwa-Kurdziel,
2004; Mysliwa-Kurdziel et al., 2008). The prenyl moiety, present
in protochlorophyll molecule, only slightly changes the spectral
and photophysical properties of the tetrapyrrole ring of Pchlide
(Mysliwa-Kurdziel et al., 2004, 2008).

Pchlide in aqueous solutions forms aggregates even at low
concentrations, which is manifested by a significant red shift of
the absorption and emission maxima, and in strong fluorescence
quenching (Mysliwa-Kurdziel et al., 2004, 2013b; Sytina et al.,
2011a,b). Aggregation of the pigments was also observed in
organic solvents at high Pchlide concentrations (Kotzabasis et al.,
1990; Kruk and Mysliwa-Kurdziel, 2004; Mysliwa-Kurdziel et al.,
2013b).

Liposomes composed of thylakoid lipids were used
to model interactions of free Pchlide molecules with
etioplast inner membranes (Mysliwa-Kurdziel et al.,
2013a,b). Pchlide molecules were found at the interface
area of the liposomes and/or the head-group area of
the lipid bilayer. In the case of high Pchlide contents,
aggregate formation was observed, which was facilitated
in galactolipid liposomes. Pchlide aggregates had similar
fluorescence emission to aggregated Pchlide:LPOR:NADPH
complexes in vivo (i.e., at 656 nm), however, the excitation
maximum was red-shifted to 480 nm. Experiments
performed for Pchlide in reversed micelles from dioctyl
sulfosuccinate sodium salt (AOT)/isooctane mixture
showed that the molecular dynamics of water bound at the
hydrophylic core of micelles is also important for Pchlide
monomer-aggregate equilibrium (Mysliwa-Kurdziel et al.,
2013b).

As observed in the experiments performed with in vitro
enzyme-free model systems, the Pchlide chromophore is very
sensitive to changes in its molecular environment. In the
monomeric state its fluorescence emission varies between 626
and 641.5 nm, fluorescence emission maxima of Pchlide pigment
forms above 641.5 nm can only be obtained when two or more
Pchlide molecules are in close proximity, have overlapping
delocalized electron systems and thus form aggregates in vitro
(see above, and Mysliwa-Kurdziel et al., 2004, 2013a,b; Sytina
et al., 2011a,b). A model summarizing the spectral properties
and the molecular interactions of Pchlide in vitro is presented in
Figure 4.
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Spectral Properties of in vitro Reconstituted

Pchlide:LPOR:NADPH Complexes
Based on data obtained from in vitro model systems as well
as other experimental evidence including CD spectroscopy
of etioplast inner membrane fractions isolated from etiolated
leaves (Böddi et al., 1989, 1990), it seems clear that the
photoactive Pchlide complexes contain Pchlide pigments in
at least dimeric or aggregated forms. This can be probably
achieved by the distinct conformation of the LPOR dimers
or oligomers in which the delocalized electron systems of
neighboring Pchlide molecules overlap. Below we’ll briefly review
the latest in vitro reconstitution experiments of photoactive
LPOR complexes. Again, we should mention that important
pioneering observations have been done on isolated and partially
purified photoactive complexes (in early works referred to as
holochromes) from plants, but detailed discussion of these
complexes and early data is provided elsewhere (e.g., Schoefs and
Franck, 2003; Solymosi and Schoefs, 2010). Similarly, we only
discuss data on in vitro reconstitution experiments of photoactive
plant LPOR complexes, and not those about cyanobacterial
LPOR (reviewed e.g., in Heyes and Hunter, 2005), because the
peculiar membrane structures (prolamellar bodies) and direct
LPOR-lipid and LPOR-membrane interactions have been only
scarcely studied in such organisms (Schneidewind et al., 2019;
Yamamoto et al., 2020).

Martin et al. (1997) successfully reconstituted photoactive
complexes from recombinant pea LPOR with absorption
maximum at around 630 nm, which were—based on their
molecular mass—assigned to LPOR dimers. However, plant
LPOR complexes with fluorescence emission maximum at
655 nm were reconstituted for the first time using a mixture
of LPOR isoforms from barley (i.e., LPOR-A and LPOR-
B), two different zinc derivatives of Pchlide as well as lipids
extracted from isolated PLBs (Reinbothe et al., 1999). Later
in vitro experiments using Pchlide and recombinant LPOR-A
from Arabidopsis thaliana demonstrated that the formation of
ternary LPOR complexes with fluorescence emission maximum
at 655 nm requires the presence of MGDG and a negatively
charged plant lipid (either PG or SQDG) (Figure 4) (Gabruk
et al., 2017; Nguyen et al., 2021). Lipids did not only play a
kind of structural role but also influenced the enzyme activity.
Negatively charged lipids (PG and SQDG) did not influence the
spectral properties of the complexes but affected their NADPH
binding properties. When only PG was present, much lower
concentrations of NADPH were required by the enzyme to form
photoactive complexes, suggesting that these LPOR-A complexes
are preferably associated to the lipidmembranes, especially under
low NADPH concentrations which are common in etiolated
tissues (Gabruk et al., 2017).

Interestingly, the conical shaped, non-bilayer lipid, MGDG
had a strong effect on the spectral properties of LPOR-A
complexes in vitro. In the presence of MGDG, the fluorescence
emission maximum of in vitro reconstituted LPOR complexes
was shifted up to 652 nm, but the formation of complexes with
native-like fluorescence properties (i.e., emission maximum at
655 nm) were only induced in the simultaneous presence of
MGDG and PG (Figure 4) (Gabruk et al., 2017). Successful

cryo electron microscopic analyses of in vitro assembled LPOR,
NADPH, Pchlide in a mixture of lipids revealed that LPOR and
Pchlide are inserted into the outer leaflet of the membranes, and
LPOR forms oligomers arranged in helical filaments which are
strongly associated with the membranes and have an important
role in inducing and shaping their tubular organization (Nguyen
et al., 2021).

Interaction of Pchlide-LPOR Complexes
With Plastid Inner Membranes
As stated above, in etioplasts the photoactive LPOR proteins and
their oligomers are mostly located to the PLBs and are only
present in minor amounts in isolated prothylakoid fractions,
in which monomeric, non-photoactive Pchlide complexes
are dominating (Ryberg and Sundqvist, 1982b). LPOR (and
especially LPOR-A) accounts for the vast majority of the proteins
of the PLBs (Ryberg and Sundqvist, 1982a; Blomqvist et al., 2008).

On the other hand, it has to be added that fluorescence
emission typical for monomeric Pchlide has been described
in the cytosolic side of the outer envelope membranes of
chloroplasts in spinach (Joyard et al., 1990). On the long
term (i.e., after 10min) and in the presence of glycerol slow
transformations of the Pchlide pigments was observed in such
isolated envelope membrane fractions upon illumination. This
indicates that Pchlide-Chlide transformation may take place in
the envelope membrane when the LPOR protein conformation is
influenced by glycerol (Joyard et al., 1990) which is a component
that stabilizes and maybe preferentially favors oligomerization
(Zhong et al., 1996; Klement et al., 2000; Solymosi et al., 2002,
2007a; Smeller et al., 2003).

Information about the transport of the LPOR protein from
the envelope membranes where they were located (Joyard et al.,
1990) toward the internal parts of the plastids is scarce. On the
other hand, Dahlin et al. (1995) did not observe accumulation
of LPOR in the stroma and the envelope membranes, but have
shown that LPOR is a peripheral protein associated with the
stromal side of the thylakoid membranes of chloroplasts where
it is bound more loosely to the membranes than to PLBs or
PTs. Other authors located them to grana margins (Wang et al.,
2020). Concerning the import of LPOR from the envelope toward
the membranes, it may use plastid vesicle trafficking pathways
(Lindquist et al., 2016; Lindquist and Aronsson, 2018).

The Unique Membrane Structure of the PLBs
PLBs represent a highly peculiar membrane structure, in which
the lipids do not form bilayers, but special cubic phase
structures. Such special membranes termed tubular complexes
or tubuloreticular inclusions were observed within various
intracellular compartments of several organisms including
animals, humans or plants. In the former, these are thought
to represent the modification of the (rough) endoplasmic
reticulum, are in general located inside its cisternae or in the
perinuclear space (e.g., Boor et al., 1979) and are rich in acidic
glycoproteins. Tubuloreticular complexes have been observed in
the cytoplasm of various animal [e.g., dog (Krohn and Sandholm,
1975; Madewell and Munn, 1990), Rhesus monkey (Feldman
et al., 1986), cynomolgus monkey (Geisbert et al., 1992), horse
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FIGURE 4 | Model representing spectral properties and molecular interactions of protochlorophyllide in various in vitro model systems as well as in vivo in case of the

major photoactive protochlorophyllide form located to the prolamellar bodies. In case of oligomers for simplicity trimers are represented, although larger aggregates

(e.g., tetramers and octamers) have been also reported. For further details see the text.

and mule (Madewell and Munn, 1989), chicken (Schaff et al.,
1976), rat (Datsis, 1993)] and human cells [e.g., lymphoid cells,
lymphocytes (Schaff et al., 1972, 1973; Grimley et al., 1973,
1985; Splinter et al., 1975; Kang et al., 1984), monocytes (Luu
et al., 1989; Kostianovsky et al., 2016), brain endothelial cells
(Lee et al., 1988), liver endothelial cells (Geisbert et al., 1992),
heart endothelial cells (Boor et al., 1979), renal cells (Hurd et al.,
1969; Grimley et al., 1973; Krohn and Sandholm, 1975; Lee
et al., 1988, 2013a, 2017; Datsis, 1993; Elmaghrabi et al., 2017),
fibroblasts (Boor et al., 1979; Feldman et al., 1986)] where they
were often associated with various, first of all immunological
disorders or viral diseases [lupus erythematosus (Hurd et al.,
1969; Grimley et al., 1973; Schaff et al., 1973), AIDS (Maturi and
Font, 1996), AIDS-associated Kaposi’s sarcoma (Marquart, 2005),
cytomegalovirus infection (Lee et al., 1988), Sjögren’s syndrome
(Daniels et al., 1974), SARS (Almsherqi et al., 2005), many other
types of virus infections (Deng et al., 2010; reviewed in Grimley
and Schaff, 1976; Luu et al., 1989; Almsherqi et al., 2006; Deng
et al., 2010) or certain neoplasms [e.g., pituitary tumors (Landolt
et al., 1976), connective tissue neoplasms (Madewell and Munn,
1989), plasmacytoma (Madewell and Munn, 1990), intracranial
germinomas (Matsumura et al., 1984), lung carcinomas (Schaff
et al., 1976), hepatomas (Schaff et al., 1976), Burkitt’s type
lymphoma (Popoff and Malinin, 1976)].

Tubuloreticular membrane organization has been also
observed inside mitochondria and plastids (Almsherqi et al.,
2009; Almsherqi, 2010). In the former, cubic membrane
formation was induced by starvation and/or autophagy processes

of the amoeba cells, during which they were slowing the
degradation of the organelle and thus contributed to the
survival of the cell upon stress conditions (Chong et al.,
2017). In case of plastids, they occurred either in etioplasts or
etio-chloroplasts in the form of PLBs and were thus strongly
associated with intensive Chl biosynthesis and accumulation of
LPOR (Figure 5) (Solymosi and Schoefs, 2008, 2010; Solymosi
and Aronsson, 2013) or in secretory plastids having active
isoprenoid biosynthesis involving the plastid located MEP-
pathway or biosynthesis of hydrophobic molecules such as cutin
or suberin (Solymosi and Schoefs, 2010; Böszörményi et al.,
2020). Rarely, such tubuloreticular membrane organizations
could be interpreted as vesicle clusters (Lindquist et al., 2016) or
as structures that appeared under various stress conditions [e.g.,
UV irradiation (Kovács and Keresztes, 2002)].

Secretory plastids containing tubuloreticular membranes
were observed in various taxa and secretory tissues including
extrafloral nectaries of Passiflora (Schnepf, 1961), plastids
of various glandular hairs [e.g., Cannabis (Hammond and
Mahlberg, 1978; Kim and Mahlberg, 1997; Solymosi and Köfalvi,
2017), Artemisia (Ascensao and Pais, 1982), Chrysanthemum
(Vermeer and Peterson, 1979), Centrolobium (Matos and Paiva,
2012), Platanthera (Stpiczyńska et al., 2005)], Mentha piperita
(Amelunxen, 1965; Turner et al., 2000, 2012), Perilla ocymoides
(Kashina and Danilova, 1993) and Rosmarinus officinalis
(Böszörményi et al., 2020). Some authors suggested that light
may play a role in the formation of these peculiar membrane
structures in secretory cells (Kashina and Danilova, 1993), while
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FIGURE 5 | Transmission electron micrographs of the prolamellar body (PLB)

present in the etioplast of the cotyledon of a 2-week-old dark-germinated

rosemary (Rosmarinus officinalis) seedling (A), and tubular complex (TC) of a

leucoplast of the neck cell of a peltate glandular hair on the surface of a

light-grown adult rosemary plant (B). Scale bar: 1µm. Sample preparation

was as described in Böszörményi et al. (2020).

others observed identical structures in the neck cells of the
peltate glandular hairs of both light-grown and dark-forced
shoots (Böszörményi et al., 2020). Detailed comparative analyses
about these peculiar non-bilayer membranes of Rosmarinus
officinalis plastids have clearly demonstrated important structural
differences. The PLBs of etioplasts represented a highly ordered
and symmetrical membrane organization when compared with
the loose and irregular tubuloreticular membranes of the
secretory plastids (Figure 5) (Böszörményi et al., 2020).

The PLB should be thus considered as a highly regular
subtype of tubular complexes, in which membrane tubules are
arranged into tetrahedral (Figure 4) or hexapodel units, which
are then joined into a paracrystalline 3D spatial network of
membranes (Figure 5) (Gunning, 1965, 2001; Solymosi and
Schoefs, 2008; Rudowska et al., 2012; Solymosi and Aronsson,
2013; Kowalewska et al., 2019; Bykowski et al., 2020). The
different PLB types observed in different species and plastids,
at different stages of development are beyond the scope of
this review.

In spite of their widespread occurrence, it is still unclear
whether tubuloreticular membranes have any specific function
(e.g., in the production of secreted compounds of plastids or
storage or accumulation of some metabolites) or they simply
reflect some disturbance in the membrane homeostasis. The
latter possibility may be outlined by the fact that such structures
in animals or humans are mostly associated with stressful or
diseased conditions [in case of AIDS tubuloreticular membranes
have even been suggested to represent an ultrastructural
pathological marker of the disease (Almsherqi et al., 2006)]
and may be induced by exogenous or endogenous interferon
(Grimley et al., 1985; Feldman et al., 1986; Orenstein et al.,
1987), halogenated pyrimidines (Hulanicka et al., 1977) or
even pyridoxine deficiency (Datsis, 1993). Stressful conditions
such as starvation (Chong et al., 2017) or UV-irradiation
(Kovács and Keresztes, 2002) also led to the formation of
tubuloreticular complexes in amoeba mitochondria and apple
plastids, respectively. On the other hand, some works suggest
that such structures may be involved in regeneration processes of
endothelial cells in wounded tissues (Eady and Odland, 1975), or
in viral DNA or RNA uptake procedures (Almsherqi et al., 2006;
Almsherqi, 2010).

In case of the PLBs, several data clearly indicate that due to
their very high surface-to-volume ratio, these membranes
represent a kind of membrane depot from which the
photosynthetic membranes of the chloroplasts can be
formed very fast upon illumination (reviewed in Solymosi
and Schoefs, 2010; Solymosi and Aronsson, 2013). Thus, the
etioplast-to-chloroplast transformation is much faster than the
proplastid-to-chloroplast transformation pathway (Liebers et al.,
2017), because during the latter important de novo synthesis
of membrane lipids is required in parallel with protein and
pigment biosynthesis. In addition, the PLBs and the proper
organization and oligomerization of LPOR as well as the
presence of carotenoids clearly play a role in photoprotection of
the porphyrin pigments upon illumination, while in the absence
of them, often photooxidative stress is induced (Sperling et al.,
1997; Erdei et al., 2005; Hideg et al., 2010; reviewed by Solymosi
and Schoefs, 2010). Similarly, cubic membranes efficiently
prevented lipid peroxidation and RNA damage under oxidative
stress conditions (Almsherqi, 2010).

There is no consensus on the factors inducing the formation of
tubuloreticular membrane organization. Some authors suggested
that they are the result of altered lipid (cholesterol) homeostasis,
lipid and fatty acid composition induced by for instance viral
infection (Almsherqi, 2010; Deng et al., 2010), others suggested
that they may be associated with altered carotenoid composition
(Park et al., 2002; Cuttriss et al., 2007), membrane symmetry
(Larsson and Larsson, 2014), special protein-protein interactions
or lipid-to-protein ratio (Almsherqi et al., 2009) or low divalent
ion concentrations (Almsherqi et al., 2006; Brasnett et al.,
2017). Such membrane organization was also observed in the
aqueous lipid-protein film of lung surfactants (Larsson and
Larsson, 2014). Therefore, it might be possible that a kind of
specific water-lipid-protein composition is responsible for the
formation of such structures. Similarly, we may speculate that the
accumulation of lipophilic compounds (isoprenoids, terpenes,
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carotenoids, fatty acids, etc.) within the membranes could be
involved in the formation of the PLBs. In the next section,
we’ll briefly discuss data about factors influencing PLB structure
in etioplasts.

The Role of Lipid-Protein Interactions in the

Formation of the Prolamellar Bodies
The lipid composition of the PLBs of etioplasts and chloroplast
thylakoids is basically similar (Selstam and Sandelius, 1984;
Selstam, 1998; Fujii et al., 2018, 2019a,b; Yu et al., 2020) with
slightly lower amount of unsaturated (18:3) fatty acids being
present in the PLB membranes than in the thylakoids (Selstam
and Sandelius, 1984; Selstam, 1998). The ratio of the non-bilayer
lipid MGDG to DGDG is slightly higher (1.6–1.8) in purified
PLBs and in chloroplast thylakoids (1.7) than in prothylakoids
(1.1–1.4) (Ryberg et al., 1983; Sandelius and Selstam, 1984;
Selstam and Sandelius, 1984). Data on chloroplast structure
of different lipid biosynthesis mutants revealed that minor
alterations in the MGDG:DGDG ratio may have important effect
on plastid structure (Mazur et al., 2019; Yu et al., 2020) and that
dynamic local changes of the neutral/anionic lipid ratios may
have important role in thylakoid arrangement (Kobayashi and
Wada, 2016).

It is also evident from studies using lipid biosynthesis mutants
(Fujii et al., 2017) and from in vitro reconstitution experiments
(Gabruk et al., 2017) that some lipids (MGDG, DGDG and
SQDG) are crucial for the proper assembly of PLBs and also
for their transformation into thylakoids upon illumination (Fujii
et al., 2018). Fujii et al. (2019b) have reviewed in detail the
role of different plastid lipids on the Mg-branch of porphyrin
biosynthesis, therefore, we prefer not to discuss these data in
detail in this work.

In spite of the similar lipid composition, major differences are
observed in the protein composition of chloroplast thylakoids
and PLBs (Ryberg and Sundqvist, 1982a; Selstam and Sandelius,
1984; von Zychlinski et al., 2005; Blomqvist et al., 2008; Kanervo
et al., 2008) with the latter containing much less proteins (and
thus a relatively high lipid to protein ratio) and among them
predominantly LPOR.

The lipid-dependent formation of the photoactive oligomers
was proposed to be a mechanism inducing the formation of
the PLBs (Gabruk et al., 2017), and correlations were found
between PLB formation and proper lipid composition and
accumulation, and proper amounts of LPOR in other works as
well (reviewed in Fujii et al., 2019b). Similarly, a clear relationship
was found between the formation and accumulation of LPOR
oligomers (especially LPOR-A) and the occurrence and size of
PLBs in etioplasts (Sperling et al., 1997; Franck et al., 2000;
Frick et al., 2003; Paddock et al., 2010, 2012). Studies using
Arabidopsis thalianamutants showed that the amounts of LPOR-
A and LPOR-B correlate with PLB size. Inhibition of LPOR-A
expression led to reduced PLB size (Frick et al., 2003; Paddock
et al., 2010, 2012), while its overexpression resulted in larger PLBs
(Sperling et al., 1997; Franck et al., 2000; Paddock et al., 2010,
2012).

Similar data were observed in pea with overexpressed or
antisense-LPOR (Seyedi et al., 2001). Furthermore, in organs

with low LPOR levels, proplastids are present and PLBs
are scarce or small [e.g., in non-leaf organs of pea (Böddi
et al., 1994)]. Recent data on cyanobacterial LPOR indicated
that it is present in dimerized form in vivo (Schneidewind
et al., 2019) and its overexpression induced the formation of
tubuloreticular membranes slightly resembling PLBs within the
cells accumulating LPOR and Pchilde but being deficient in
NADPH (Yamamoto et al., 2020).

Similarly, the disaggregation of the LPOR oligomers or the
degradation of LPOR are also strongly associated with the
disruption of the regular structure of the PLBs (e.g., Ryberg
and Sundqvist, 1988) both under dark conditions (and induced
by stress factors, e.g., Solymosi et al., 2006b) or during the
light-induced greening of etiolated leaves, during which the
PLB is fully reorganized and transformed into developing
thylakoids (Kowalewska et al., 2016; reviewed in Solymosi
and Schoefs, 2010; Solymosi and Aronsson, 2013; Kowalewska
et al., 2019). These large-scale membrane reorganizations occur
in parallel with important spectral changes (e.g., the Shibata
shift—Figure 3, Shibata, 1957) which reflect the disaggregation
of Chlide pigments and further outline the strong structural
connection between LPOR macrodomains and PLB membranes.
The Shibata shift is strongly inhibited by low temperature, high
pressure as well as protein cross-linkers, or glycerol and sugars
(Wiktorsson et al., 1993; Zhong et al., 1996; Solymosi et al., 2002,
2007a; Smeller et al., 2003), i.e., factors and conditions which
stabilize the oligomeric structure, inhibit its conformational
changes, disaggregation or the dissociation of peripheral proteins
from membranes. However, under normal conditions, in parallel
with the disruption of the PLB structure, the LPOR oligomers also
undergo disaggregation and release Chlide from their active site.
After this, the photoactive LPOR oligomers are again regenerated
by binding Pchlide (Granick and Gassman, 1970; Amirjani and
Sundqvist, 2004; Rassadina et al., 2004; Schoefs and Franck, 2008)
from the pool of non-photoactive Pchlide molecules, and they
again catalyze Pchlide photoreduction in them. Several authors
reported that until Chl biosynthesis is still active in organs,
because their final Chl content has not been reached, PLBs
(Ikeda, 1970, 1971) and LPOR oligomers persist in their plastids
and may even accumulate under special light conditions (e.g.,
Solymosi et al., 2006a,b; Schoefs and Franck, 2008; Solymosi et al.,
2012). The plastids of such low-light-grown or partially etiolated
or young tissues contain simultaneously developing grana and
PLBs, thus an important spatial and structural heterogeneity
can be clearly observed in the organization of the plastid inner
membranes in these so-called etio-chloroplasts. Unfortunately,
the PLBs of etio-chloroplasts seem to be versatile structures hard
to isolate, therefore, we have not much information about the
lipid and protein composition of these membranes.

CONCLUDING REMARKS

Most data on Chl biosynthesis and especially about Pchlide
photoreduction and its molecular details were obtained using
etiolated seedlings. The use of etiolated systems to study these
processes were often criticized because the major chloroplast
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differentiation pathway under natural light conditions is the
proplastid-to-chloroplast pathway occurring in most seeds
germinating on the soil surface or in new leaves produced by the
shoot apical meristem (Charuvi et al., 2012; Yadav et al., 2019).
However, several data indicate that etioplasts and accumulation
of Pchlide and LPOR ternary complexes occur also under natural
conditions in seedlings germinating in the soil (e.g., Vitányi et al.,
2013; Kakuszi et al., 2017), in tissues partially covered by other
organs (e.g., Solymosi et al., 2007b), in inner leaf primordia
developing inside closed bud structures (e.g., Solymosi et al.,
2004, 2006a, 2012), and in other systems (water plants, etc.,
reviewed in Solymosi and Aronsson, 2013; Armarego-Marriott
et al., 2020). In such tissues or organs Chl biosynthesis and
etioplast-to-chloroplast transformation may be similar to those
described in completely etiolated seedlings, but the processes
and their regulation still need to be elucidated in such naturally
etiolated tissues.

In addition, photosynthesis requires a constant supply of Chls
especially in plants under fluctuating or stressful conditions.
Several data indicate that for instance after recovery from
desiccation or drought stress (e.g., Solymosi et al., 2013; Liu
et al., 2018, 2020), Chl synthesis genes are upregulated and
an intensive biosynthesis occurs. So far only limited amount
of information is available about LPOR catalytic activity and
macromolecular organization in chloroplasts. Taken together,
a better understanding of the Mg-branch of Chl biosynthesis,
especially of LPOR activity, structure and location, and factors
involved in its regulation in chloroplasts and etio-chloroplasts
of various green (crop) plants may be also important for
agriculture. The recent breakthroughs in molecular biology (e.g.,
next generation sequencing and tremendous developments in
various omics techniques which enable the identification of
different isoforms and their expression and translational patterns
in various plant species and plastid subcompartments) and
microscopic methods, as well as the use of various novel model
systems (i.e., dark-forced tobacco shoots—Armarego-Marriott
et al., 2019, duckweed—Monselise et al., 2015) will probably
provide novel and interesting data on the exact molecular
regulation of these processes and the role of lipids in them.

A large step into the understanding of LPOR-lipid interactions
has been achieved by the in vitro reconstitution of photoactive

LPOR macrodomains in the presence of lipids (Nguyen et al.,
2021). These data demonstrate for the first time directly the
role of LPOR and LPOR-lipid interactions in the formation
of a special membrane phase and helical organization. In
addition to analyses on different mutants, similar in vitro
reconstitution experiments and membrane and lipid binding
assays of various LPOR isoforms as well as other Chl biosynthesis
enzymes of different species should be performed to increase
our understanding of the membrane association and localization
of Chl biosynthesis. It is also important to outline, that at
the moment our data are mostly related to the 3 LPOR
isoforms of Arabidopsis, and the 2 isoforms present in few
crop species (rice, barley), but further experiments with other
crops with less or more isoforms are necessary to understand
LPOR activity and its universal or specific regulation in case
of the various isoforms and species. The same applies to other
enzymes of Chl biosynthesis. Due to its major and central role
in autotrophic plant metabolism, we believe that an increased
understanding of Chl biosynthesis may be crucial to breed plants
with improved quality, e.g., higher yield or performance under
adverse environmental conditions.
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