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1  | INTRODUC TION

Ants are considered one of the evolutionarily most successful taxa, 
with more than 13,000 described species (Bolton, 2019) exhibiting 
diverse social organizations (Hölldobler & Wilson, 1990). Most spe-
cies of ants form colonies where nestmates permanently live and 
cooperate with each other without any central leadership (Duarte, 
Weissing, Pen, & Keller, 2011; Sendova-Franks & Franks, 1999). 
Workers respond mostly to local cues and tend to specialize on only 
a few tasks, but can act collectively in several situations, for instance 

during nest defence (Detrain, Deneubourg, & Pasteels, 1999; Sakata 
& Katayama, 2001). The behaviour of colonies can depend on the 
collective decisions and the behaviour of group members (i.e., work-
ers in ants) (Bengston & Jandt, 2014).

The field of animal personality investigates the within-individ-
ual stability of behaviour over time and across situations (Sih, Bell, 
& Johnson, 2004). Consistent among-individual differences in be-
haviour are widespread among invertebrates and vertebrates (Réale, 
Reader, Sol, McDougall, & Dingemanse, 2007). However, in social 
insects, not only individuals can behave consistently, but also entire 
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Abstract
In ants, individuals live in tightly integrated units (colonies) and work collectively for 
its success. In such groups, stable intraspecific variation in behaviour within or across 
contexts (personality) can occur at two levels: individuals and colonies. This paper 
examines how colony size and nestmate density influence the collective explora-
tory behaviour of Formica fusca (Hymenoptera: Formicidae), in the laboratory. The 
housing conditions of the colonies were manipulated to vary the size of colonies and 
their densities under a fully factorial design. The results demonstrate the presence 
of colony behavioural repeatability in this species, and contrary to our expectations, 
colonies were more explorative on average when they were kept at lower nestmate 
densities. We also found that experimental colonies created from larger source colo-
nies were more explorative, which conveys that a thorough understanding of the 
contemporary behaviour of a colony may require knowing its social history and how 
it was formed. Our results also convey that the colony size and nestmate density can 
have significant effects on the exploratory behaviour of ant colonies.
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colonies can show stable characteristic behavioural differences 
(Bengston & Jandt, 2014; Jandt et al., 2014; Pinter-Wollman, 2012; 
Wright et al., 2019) and hence can be said to have a collective or 
colony personality. This colonial level consistency might be import-
ant because in highly social organisms like eusocial insects, natural 
selection acts at the colony level (Blight, Albet Díaz-Mariblanca, 
Cerdá, & Boulay, 2016; Bockoven, Wilder, & Eubanks, 2015; 
Hölldobler & Wilson, 1990; Modlmeier, Keiser, Wright, Lichtenstein, 
& Pruitt, 2015; Pinter-Wollman, 2012; Pruitt & Modlmeier, 2015; 
Scharf, Modlmeier, Fries, Tirard, & Foitzik, 2012). For example, in 
Temnothorax nylanderi (Foerster, 1850), colonies show consistency in 
nest reconstruction, relocation after disturbance, removal of corpses 
and in their aggressive behaviour against the intruders (Scharf et al., 
2012). In Veromessor andrei (Mayr, 1886), colonies are consistent in 
both their rate of seed and debris retrieval (Pinter-Wollman, 2012). 
Such colony phenotypes can be shaped by numerous properties, 
such as the distribution of the individual level phenotypes that com-
prise the group (Pruitt, Grinsted, & Settepani, 2013).

In the Formicidae group, different species can live in colonies 
with many different sizes, from a few to 300 million workers (Kaspari 
& Vargo, 1995). During the development of an ant colony, the num-
ber of nestmates usually increases steadily and the rate of colony 
growth can be influenced by a variety of intrinsic (e.g., number of 
egg-laying queens) and extrinsic factors (e.g., predation) (Bourke, 
1999). In general, larger colonies can produce more complex or im-
pressive collective feats and larger colonies can often organize more 
efficient foraging networks as well (Merkle & Middendorf, 2004). 
For instance, in Messor sanctus Emery, 1921 collective digging is pos-
itively correlated with colony size and the tunnel networks of larger 
colonies are conspicuously more complex (i.e., contained more edges 
and vertices) (Buhl, Gautrais, Deneubourg, & Theraulaz, 2004). 
Similar observations have been made in social bees, wasps and so-
cial spiders (Avilés & Tufino, 1998; Donaldson-Matasci, DeGrandi-
Hoffman, & Dornhaus, 2013). Larger colonies of honeybees have a 
more complex dance language, which renders them more efficient at 
recruiting foragers to novel food patches (Donaldson-Matasci et al., 
2013). Empirical evidence suggests that the division of labour and 
task specialization within social groups increases with group size 
(Amador-Vargas, Gronenberg, Wcislo, & Mueller, 2015; Anderson 
& McShea, 2001; Bourke, 1999), though this is not always the case 
(Dornhaus, Holley, & Franks, 2009). In some species, small colonies 
invested more in the consensus decision process than the large ones 
(Cronin & Stumpe, 2014). In aggregate, one can observe that colony 
size can shape a variety of collective attributes in social insect colo-
nies. It, therefore, stands to reach those changes in colony size that 
could shape the expression of colony phenotypes that are commonly 
evaluated in animal personality literature as collective exploration.

Fluctuations in colony size can influence the density of nestmates 
(number of individuals per nest size) which can be another key pa-
rameter affecting within-nest dynamics (Perna & Theraulaz, 2017). 
However, these aspects are rarely examined in social insects under lab-
oratory circumstances (but see in Cao & Dornhaus, 2008; Gordon, Paul, 
& Thorpe, 1993; Modlmeier et al., 2019; Pie, Rosengaus, & Traniello, 

2004). Changes in colony size and social density, for instance, could 
alter the way information is transferred between workers, which in 
turn could shape colony activities (Beshers & Fewell, 2001; O’Donnell 
& Bulova, 2007) and group behaviour (Pacala, Gordon, & Godfray, 
1996). O’Donnell and Bulova’s (2007) simulation model indicates that 
density-mediated changes in social interactions shape the division of 
labour and the organization of work across colonies. Taken together, 
the available evidence suggests that social density within nests could 
be another important factor in determining the phenotypes that colo-
nies express during staged behaviour assays.

A common measure of behavioural repeatability is the rate at 
which individuals move through a novel space or environment, nor-
mally referred to as exploratory behaviour or exploration (Arvidsson, 
Adriaensen, Dongen, Stobbeleere, & Matthysen, 2017; Dingemanse, 
Both, Drent, Oers, & Noordwijk, 2002). In this study, we investigated (a) 
the repeatability of the collective exploratory behaviour in laboratory 
colonies of Formica fusca Linnaeus, 1758 (Hymenoptera: Formicidae) 
and (b) how colony size and nestmate density influence exploratory 
behaviour, using a fully factorial experimental design. We examined 
colony exploration, in particular, because the exploration of the exte-
rior environment is how colonies obtain information about potential 
food sources, competitors and predators (Clobert, Danchin, Dhondt, & 
Nichols, 2001; Devigne & Detrain, 2002). For example, Gordon (1996) 
investigated the exploratory behaviour of colonies of different sizes 
(Linepithema humile, [Mayr, 1868]) and found that the largest number 
of exploring workers were present in the largest colonies. Similar pos-
itive correlation was found between colony size and the number of 
foragers in the studies with Pogonomyrmex salinus Cole 1983 (Porter 
& Jorgensen, 1981), Cataglyphis cursor (Fonscolombe, 1846) (Retana & 
Cerda, 1991) and Temnothorax rugatulus (Emery, 1895) (Charbonneau & 
Dornhaus, 2015). We therefore predicted that the level of exploratory 
behaviour would be more intense in large and dense F. fusca colonies.

2  | MATERIAL S AND METHODS

Formica fusca is a facultative polygynous species (Czechowski, 
Radchenko, Czechowska, & Vepsäläinen, 2012; Seifert, 2018) being 
abundant in Central Europe, especially in areas with abundant dead 
wood. Its nests can be found in dead wood, soil or moss pads. This 
species relies on the swift discovery of ephemeral food patches and 
avoiding workers of dominant heterospecifics. Formica fusca is thus 
generally not aggressive, though particularly large colonies can de-
fend some kinds of resources (Seifert, 2018).

Colonies of F. fusca were collected from Vámospércs, Hungary 
(47.524796 N, 21.886494 E) in May 2014, when the workers were 
active and brood was still not present in nests. These conditions made 
possible the collection of whole colonies and the accurate counting of 
workers and queens (workers: 85–635, queens: 1–10). We collected 
14 colonies (hereafter: source colony) that were divided into 28 sub-
colonies (hereafter: experimental colonies). The subcolonies that were 
considered inappropriate for the observations were removed from 
the study (dead queen or workers), so finally 22 subcolonies were 
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retained. Each new experimental colony contained only one fertilized 
queen (that laid eggs in the laboratory), to diminish the possible effects 
of queen number in determining colonies’ exploratory behaviour. For 
housing the experimental colonies, we used four different sized arti-
ficial nests (made from concrete) with two colony size categories (25 
or 135 workers). This produced two experimental densities of 0.25 or 
0.5 worker/cm2 in a 2 × 2 full factorial design (Table 1). Colonies were 
fed with Bhatkar diet (Bhatkar & Whitcomb, 1970) and were provided 
with water ad libitum. They were maintained at room temperature 
(22–25°C) with a natural light/dark cycle. Colonies were investigated 
in block design, where every block contained one nest from each of 
the four treatment combinations, respectively.

2.1 | Behavioural tests: Exploration of novel 
environment and objects

The exploratory behaviour of F. fusca colonies was investigated in 
circular arenas (diameter: 39.5 cm). Before the assays, we placed two 
pieces of lead into the arena as novel objects and two drops of sugar 
solution as a positive signal to instigate scouting. The novel objects 

were observable for the ants, but they could not remove them. 
During the assay, the colony's nest and the arena were connected 
via a 10-cm-long plastic tube (Figure 1). Thus, workers could freely 
enter the arena, explore it, and return to the nest. After the accli-
matization period (20 min), which permitted the ants to investigate 
and use the tube connecting the nest with the arena, we opened the 
tube towards the arena and video recorded the movement of the 
exploratory workers for 40 min. The camera (Panasonic HC-V510) 
was focused on the exploratory arena, and the MWrap event re-
corder (Bán, Földvári, Babits, & Barta, 2017) was used to code the 
behaviours from the videos. At the time of the analysis, ants entering 
the arena were not distinguished individually, so every behaviour of 
workers from the same colony was analysed together.

The following variables were recorded: the latency of first 
worker entering into the arena (the “entrance,” elapsed time between 
opening the connection and the first worker entering into the arena), 
the latency of the first return home to the nest (“lat. home,” elapsed 
time from “entrance” to the first return to the colony) and the latency 
of the first visit to an object (“lat. sugar water” and “lat. object” sep-
arately, measured from “entrance”). The number of entries into the 
arena (“nr. entries”) and the number of visits to objects (“nr. objects,” 

TA B L E  1   Housing conditions (i.e., treatment) with the number of participating colonies in the behavioural tests (i.e., number of colonies 
tested, per nest types)

Nest type Nest size (cm2) Chamber size (cm2)
Nr. workers in the 
nests

Nestmate density (worker/
nest size) Nr. colonies

1 39.25 4.8 20 0.5 6

2 78.5 9.61 20 0.25 3

3 265.5 32.5 135 0.5 7

4 531 65 135 0.25 6

F I G U R E  1   Experimental set-up of 
the foraging arenas and nests to analyse 
colony level exploration. Different nest 
sizes were used for the different setups 
(see Table 1 for details). The sizes of the 
novel objects are proximate on the figure

Arena Nest

10 cm

39.5 cm
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“nr. sugar water”) were also counted. The number of homecoming 
workers (“nr. returnings”) and the maximum worker number (“max. 
workers”) in the arena were strongly correlated with the “nr. entries” 
(Spearman correlation: rho = 0.978, p < .001, n = 82 and rho = 0.851, 
p < .001, n = 82, respectively), so we omitted them from subsequent 
analyses. We also recorded the encounters between the individuals 
(contact with each other: antennation or trophallaxis; “lat. interac-
tions,” “nr. interactions”). The behavioural tests took a month (from 
13.06.2014 to 14.07.2014). The behavioural assay was repeated 
four times per colony, with approximately 8 days (mean = 8.48, me-
dian = 8, SD = 2.52) separating consecutive assays on the same col-
ony. If the queen of a colony or the colony itself died, no further tests 
were performed with that colony. We only considered colonies that 
completed at least two trials (n = 22).

2.2 | Statistical analysis

All analyses were performed in the R interactive statistical environ-
ment (version 3.3.3, R Core Team 2017). We applied a principal com-
ponent analysis (PCA) (base “stats” package and “prcomp” function) 
on the behavioural variables to test for possible correlations among 
all response variables. The PCA was carried out on the covariance 
matrix based on the average value of the behavioural variables. We 
only analysed those principal components (PCs) further that had ei-
genvalues greater than 1 (Kaiser–Guttman criterion; Jackson, 1993). 
PCA scores (from first (PC1) and second principal components (PC2) 
were analysed using linear mixed-effect models (LMMs). The full 
models included experimental colony size, treatment density, origi-
nal queen number and original colony size as fixed effects, and the 
source colony ID as a random factor. We investigated behavioural 
repeatability at the colonial level by calculating the repeatability 
(marked with R) of each variable using the rptR package (Stoffel, 
Nakagawa, & Schielzeth, 2017) with 1,000 bootstrap steps. p-
Values were obtained by likelihood ratio tests, and confidence in-
tervals (95%) were derived by 1,000 permutations. Repeatability 
values, which are significantly higher than zero, indicate a significant 
among-colony component to the observed intraspecific variation 
(Réale et al., 2007). “Nr. entries” and “lat. home” were log-transformed 
and analysed with Gaussian family, while “entrance,” “lat. sugar water,” 
“lat. object” and “lat. interaction” were binomized by the median and 
analysed with binomial family. “Nr. interactions,” “nr. sugar water” 
and “nr. objects” were analysed with Poisson family and sqrt link. In 
every case concerning repeatability analysis, experimental colony ID 
was entered as a random factor. The number of the trials, original 
queen number, original colony size (recorded at the time of collec-
tion), experimental colony size, treatment density, date of the be-
havioural tests (expressed as Julian date) and time of the behavioural 
tests (expressed in minutes from midnight) were used as fixed ef-
fects. Original colony size was log-transformed prior to our analy-
ses. All models were simplified by removing non-significant terms 
(backward elimination procedure). Significant effects were assessed 
based on the t-values (absolute t-value >2). Tukey's post hoc tests 

(lsmeans package; Lenth, 2016) were used to compare the behaviour 
of the colonies between the four trials.

3  | RESULTS

3.1 | Correlations among the response variables

Principal component analysis is often used to test for the presence 
of behavioural syndromes (Dingemanse, Dochtermann, & Wright, 
2010). In our case, PC1 explained 54.24%, while PC2 explained 
21.88% of the total variance (76.12%). The first component was 
composed of five variables (“entrance,” “lat. home,” “lat. sugar water,” 
“lat. object” and “nr. entries”), and it can be referred to as “activity 
in the arena.” The higher score indicated that the colony showed 
a lower level of activity in the arena with higher latency times and 
fewer entries. The second component was composed of two vari-
ables (“nr. sugar water” and “nr. objects”), and it can be referred to as 
“exploration of the arena” (Table 2).

3.2 | Repeatability of the collective behaviour

We detected temporally consistent among-colony differences 
in the number of entries into the arena (R = 0.321, SE = 0.121, 
CI = [0.082, 0.562], p = .001) and in the latency time of the first 
returning (R = 0.223, SE = 0.116, CI = [0.0072, 0.461], p = .039). 
The repeatability of other behavioural traits was not significant 
(Table 3).

3.3 | Effects of the housing conditions

Principal component 1 scores were positively correlated with nest-
mate density (ß = 1.963, SE = 0.878, t = 2.236, p = .036) suggesting 
that colonies from nests with higher densities showed a higher level 
of activity in the arena during the examination. PC2 was not related 
to any of the housing condition parameters.

Colonies with high nest density treatment exhibited fewer en-
tries into the arena (ß = −0.740, SE = 0.261, t = −2.781, p = .011), 
and the first workers returned earlier to the nests (ß = −0.856, 
SE = 0.344, t = −2.485, p = .022). Larger colonies also exhib-
ited lower latencies for their first workers to return to the nest 
(ß = −0.877, SE = 0.346, t = −2.531, p = .020). No other significant 
effects were detected.

3.4 | Effects of the original colony size on behaviour

Experimental colonies spawned from larger source colonies (at 
collection) initiated exploration earlier (ß = −0.952, SE = 0.383, 
t = −2.481, p = .005) but were contacting slower with novel objects 
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(“lat. object”: ß = 1.035, SE = 0.483, z = 2.143, p = .032). We detected 
no other significant effects of original colony size.

3.5 | Effects of queen number on behaviour

We could not detect any significant association between the number 
of queens within source colonies and any aspect of the exploratory 
behaviour of their descendent experimental colonies.

4  | DISCUSSION

The study herein aimed to explore the extent to which F. fusca colo-
nies exhibit temporal among-colony repeatability in their collective 
exploratory tendencies and how these tendencies are affected by 
the size of the colonies and the densities of workers within the nests. 
The principal component analysis identified two behavioural axes, 

one is related to activity, while the other to exploration. Further 
analyses suggest that activity is influenced by worker density in the 
nests. The separate analyses of the behavioural traits also support 
this effect of colony density.

We detected behavioural repeatability among colonies in the 
total number of entries and the latency of the first worker to return 
to the nest. Both of these features are likely to be tied to the suc-
cessful foraging activity of colonies (according to Gordon, 1983 and 
Byrne, 1994). Consistent with this prediction, between-colony dif-
ferences in collective foraging activity have been linked with colony 
success in several species of ants (e.g. Kühbandner, Modlmeier, & 
Foitzik, 2014 , Modlmeier & Foitzik, 2011, Gordon, 2013, Bengston, 
Shin, & Dornhaus, 2017, Carere, Audebrand, Rödel, & d’Ettorre, 
2018). Carere et al. (2018) found similar associations between 
worker deployment and return rates in F. fusca. We failed to detect 
consistent among-colony differences in the latency of visitations to 
staged patches of sugar water or foreign objects. We predicted that 
worker–worker interactions outside of the nest would be an import-
ant determinant of colonies’ exploratory tendencies and in the ex-
change of information about the foraging landscape (Gordon, 1996; 
Gordon & Mehdiabadi, 1999; Pacala et al., 1996). However, we failed 
to detect repeatability in any of our metrics of worker–worker in-
teractions (latency to first interaction, total interactions). Moreover, 
neither of these interaction metrics were associated with colony 
size, nest density or original queen number. This was at odds with 
our basic prediction that colonies containing more workers or even 
denser colonies would be, by default, exhibiting a larger number of 
worker–worker interactions, as a matter of packing. Recent work on 
Camponotus pennsylvanicus (De Geer, 1773) revealed that colonies 
of ants can maintain homeostasis in their worker–worker interaction 
rates in spite of changes to nest density (Modlmeier et al., 2019), 
which potentially conveys that there is an ambient and optimal level 
of interaction rates necessary for colony functioning. The fact that 
worker–worker interactions were also insensitive to colony size and 

TA B L E  2   Eigenvector loadings, eigenvalues, and proportion and cumulative proportion of variance for the principal components retained 
(PCs 1–3)

Variables PC1 PC2 PC3

“nr. entries” −0.39455988 −0.06825975 −0.004483957

“nr. sugar water” −0.04199912 −0.58687140 0.327155226

“nr. objects” −0.26193725 −0.49338096 0.044376351

“nr. interactions” −0.21141126 −0.47497473 −0.550507271

“entrance” 0.41837646 −0.17094148 0.095105159

“lat. home” 0.38778244 −0.13636886 0.326969438

“lat. interaction” 0.32538215 0.09696564 −0.671917985

“lat. object” 0.40436364 −0.20548686 −0.142037181

“lat. sugar water” 0.36668127 −0.28714484 −0.017874364

 PC1 PC2 PC3

Eigenvalue 4.88190613 1.96878161 0.71669751

Per cent of variance 54.2434015 21.8753512 7.9633056

Cumulative per cent of variance 54.24340 76.11875 84.08206

TA B L E  3   Repeatability (R) of the colony level behaviours. 
Standard error (SE) and 95% confidence interval (95% CI). p-values 
were calculated by likelihood ratio tests. Repeatable results are in 
bold

Variables R SE 95% CI p

“nr. entries” 0.301 0.124 0.058, 0.543 .004

“nr. sugar water” 0.00 0.078 0, 0.266 1

“nr. objects” 0.00 0.076 0, 0.253 0.5

“nr. interactions” 0.00 0.092 0, 0.314 0.5

“entrance” 0.00 0.036 0, 0.124 1

“lat. home” 0.223 0.116 0.006, 0.458 .039

“lat. interaction” 0.091 0.086 0, 0.287 .110

“lat. object” 0.00 0.034 0, 0.118 .380

“lat. sugar water” 0.007 0.036 0, 0.120 .260
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nest density implies that F. fusca can also hone in the level of inter-
actions needed for running the colonies efficiently.

Alterations in group size can have a variety of impacts on the collec-
tive phenotypes. However, in colonies of Temnothorax albipennis (Curtis, 
1854), for instance, collective decision-making was not influenced by 
experimental alterations in colony size (Dornhaus & Franks, 2006). 
Similarly, findings from social spiders convey that colony size does not 
affect the exploratory behaviour in Stegodyphus dumicola Pocock, 1898 
(Keiser & Pruitt, 2014). Yet, alterations in group size are obviously in-
fluential in other systems. The results of Ward, Herbert-Read, Sumpter, 
and Krause (2011), for example indicate that larger fish groups (eastern 
mosquitofish, Gambusia holbrooki Girard, 1859) are better and faster in 
decision-making. We found some support that alterations in nest den-
sity can impact aspects of colony exploration; this was true for the la-
tency of the first worker to return to the nest and for the total number 
of the entries. Here, smaller colonies exhibited longer latencies (i.e., later 
returns) and they showed more entries. Overall the exploration of the F. 
fusca colonies was influenced by the density. Similar density-dependent 
behavioural differences have been found in colonies of the polydomous 
T. rugatulus, where more intense foraging and scouting activity was ob-
served under high-density conditions (Cao, 2013). Similarly, increasing 
group size enhances nest construction rates in Lasius niger (Linnaeus, 
1758) (Toffin, Kindekens, & Deneubourg, 2010), digging rates in some 
termites (Bardunias & Su, 2010) and the speed of worker returns in 
Myrmica punctiventris Roger, 1863 (Herbers & Choiniere, 1996). In ag-
gregate, it seems that there are cases when group size can strongly in-
fluence group behaviour, and in other cases, group phenotypes appear 
entirely resilient to alteration in group size. For now, the reasons behind 
such case-by-case outcomes remain elusive.

At odds with the findings from our experimental colonies, we de-
tected an influence of the size of the source colony on the exploratory 
behaviour of our experimental colonies. Similar effects have been 
detected before (e.g., T. albipennis) (Dornhaus & Franks, 2006). Our 
manipulations to colony size were performed by randomly removing 
subsets of workers from the group. Based on the literature, there is 
a positive relation between the colony size and the rate of individual 
specialization (see in Anderson & McShea, 2001; Charbonneau & 
Dornhaus, 2015; Porter & Jorgensen, 1981) with higher efficiency at 
collective behaviours such as task partitioning (Anderson & Ratnieks, 
1999). So, the faster exploration rates of our experimental colonies de-
rived from large source colonies may reflect on an enhanced searching 
behaviour, since these colonies may contain more foragers who have 
earlier (before splitting) experience in this scope of duties. The ants’ 
individual experience can influence the exploration activity and by this 
the successfulness of the foraging (Pasquier & Grüter, 2016).

In summary, we detected significant among-colony differences 
in the collective foraging behaviour of F. fusca colonies, where larger 
experimental colonies and experimental colonies derived from large 
source colonies were more efficient. Moreover, the exploration of 
the colonies was influenced by the density of the nestmates. The 
results herein convey that a thorough understanding of how a colony 
behaves at present may require knowing its demographic history 
and how the descendant colony came to be.
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