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Self-testing represents the strongest form of certification of a quantum system. Here, we theoretically and experi-
mentally investigate self-testing of nonprojective quantum measurements. That is, how can one certify, from ob-
served data only, that an uncharacterized measurement device implements a desired nonprojective positive-operator 
valued measure (POVM). We consider a prepare-and-measure scenario with a bound on the Hilbert space dimension 
and develop methods for (i) robustly self-testing extremal qubit POVMs and (ii) certifying that an uncharacterized 
qubit measurement is nonprojective. Our methods are robust to noise and thus applicable in practice, as we demon-
strate in a photonic experiment. Specifically, we show that our experimental data imply that the implemented 
measurements are very close to certain ideal three- and four-outcome qubit POVMs and hence non-projective. In 
the latter case, the data certify a genuine four-outcome qubit POVM. Our results open interesting perspective for 
semi–device-independent certification of quantum devices.

INTRODUCTION
Measurements in quantum theory were initially represented by com-
plete sets of orthogonal projectors on a Hilbert space. Such measure-
ments are standard in a multitude of applications. Nevertheless, 
in a modern understanding of quantum theory, measurements are 
described by positive-operator valued measures (POVMs), i.e., a set 
of positive semi-definite operators summing to identity. POVMs 
are the most general notion of a quantum measurement; all projective 
measurements are POVMs, but not all POVMs need be projective.

Nonprojective measurements are widely useful in both conceptual 
and applied aspects of quantum theory, as well as in quantum informa-
tion processing. In several practically motivated tasks, they present 
concrete advantages over projective measurements. Nonprojective 
measurements enhance estimation and tomography of quantum states 
(1, 2), as well as entanglement detection (3) and unambiguous state 
discrimination of nonorthogonal states (4, 5). They have also found 
applications in quantum cryptography (6, 7) and randomness gen-
eration (8). In addition, nonprojective measurements can be used to 
maximally violate particular Bell inequalities (9) (assuming a bound 
on the Hilbert space dimension), a fact that has been applied to im-
prove randomness extraction beyond what is achievable with pro-
jective measurements (10, 11).

In view of their diverse and growing applicability, it is important 
to develop tools for certifying and characterizing nonprojective mea-
surements under minimal assumptions. The strongest possible form 
of certification involves a “black-box” scenario, where the quantum 
devices are a priori uncharacterized. Astonishingly, it is possible in 
certain cases to completely characterize both the quantum state and 
the measurements based only on observed data, which is referred to 
as “self-testing” (12). A well-known example is that the maximal 
violation of the Clauser-Horne-Shimony-Holt Bell inequality (13) 
implies (self-tests) a maximally entangled two-qubit state and pairs 

of anticommuting local projective measurements (14–16). Self-testing 
can also be made robust to noise (17, 18).

However, for the purpose of characterizing nonprojective mea-
surements in the black-box scenario, methods based on Bell in-
equalities encounter a challenge. Because of Neumark’s theorem, 
every nonprojective measurement can be recast as a projective measure-
ment in a larger Hilbert space. That is, any nonprojective measure-
ment on a given system is equivalent to projective measurement 
applied to the joint state of the system and an ancilla of a suitable 
dimension [see, e.g., (19)]. Since one usually considers no restriction on 
Hilbert space dimension in the Bell scenario, it is nontrivial to charac-
terize a nonprojective measurement based on a Bell inequality. While 
this is possible in theory (in the absence of noise) (10), it appears 
challenging in the more realistic scenario where the experiment fea-
tures imperfections. To the best of our knowledge, robust self-testing 
methods for nonprojective measurements in Bell scenarios have not yet 
been developed. A possible way to circumvent the problem is to consider 
a Bell scenario with quantum systems of bounded Hilbert space dimen-
sion. In particular, Gómez et al. (11) and Gómez et al. (20) recently 
reported the experimental certification of a nonprojective measurement 
in a Bell experiment assuming qubits. However, these experiments do 
not represent self-tests, as they certify the nonprojective character of a 
measurement, but not how it relates to a specific target POVM.

Here, we investigate the problem of self-testing nonprojective 
measurements under the assumption of bounded Hilbert space 
dimension. We follow a different approach, by considering a prepare- 
and-measure scenario instead of a Bell scenario. First, this scenario 
offers a natural framework for certifying and characterizing non-
projective measurements. The reason is that, as argued above, the 
notion of nonprojectiveness almost inherently involves a notion of 
Hilbert spaces of fixed dimension. Then, the prepare-and-measure 
scenario is arguably the simplest scenario in which the problem can be 
studied without further assumptions. Second, the prepare-and-measure 
scenario offers a very significant practical advantage as compared to 
Bell experiments. The reason is that there is no need to involve distant 
observers and entangled states. This makes prepare-and-measure 
scenarios simpler to implement (21–26). Moreover, prepare-and- 
measure scenarios are easier to analyze theoretically, which allows 
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us to develop self-testing methods that are versatile and highly robust 
to noise. Third, the assumption of a dimension bound is reasonable 
for characterization schemes. This is due to the fact that characteriza-
tion schemes are not adversarial; i.e., they do not involve malicious 
devices. The experimenter typically knows which degrees of freedom 
are relevant; for example, the polarization of photons. However, every 
experiment is subject to unavoidable errors due, e.g., to technical 
noise and alignment errors. Characterization of quantum devices in 
this realistic setting is well captured by our assumption of a dimen-
sion bound.

In the first part of the paper, we present methods for character-
izing nonprojective measurements. First, we present a method for 
self-testing a targeted nonprojective measurement in noiseless 
scenarios. Second, since noiseless statistics never occur in practice, 
we present methods for inferring a lower bound on the closeness of 
the uncharacterized measurement and a given target POVM, based 
on the observed noisy statistics; specifically, we lower-bound the 
worst-case fidelity between the real measurement and the ideal 
target one. Third, we introduce a method for determining whether 
the observed statistics could have arisen from some (unknown) pro-
jective measurements. If not, the measurement is certified as non-
projective. These methods have twofold relevance. On the one hand, 
they enable foundational insights into physical inference of non-
projective measurements in a semi–device-independent setting. On 
the other hand, they provide tools for assessing and certifying the 
quality of an experimental setup. We demonstrate the practicality of 
these self-testing methods in two experiments. In the first, we target a 
symmetric informationally complete (SIC) qubit POVM and demon-
strate an estimated 98% worst-case fidelity. In addition, our data certify 
a genuine four-outcome qubit POVM. In the second experiment, we 
target a symmetric three-outcome qubit POVM and certify a worst-case 
fidelity of at least 96%. Last, we discuss some open questions.

THE SELF-TESTING PROBLEM, THE SCENARIO,  
AND OVERVIEW OF RESULTS
Self-testing is the task of characterizing a quantum system based only 
on observed data. In other words, it is about gaining knowledge of the 
physical properties of initially unknown states and/or measurements 
present in an experiment by studying the correlations observed in 
the laboratory.

In this work, we focus on prepare-and-measure scenarios. They 
differentiate themselves from Bell scenarios in two important ways. 
First, prepare-and-measure scenarios involve communicating ob-
servers and thus no space-like separation. Second, they do not in-
volve entanglement, whereas Bell scenarios do. Prepare-and-measure 
scenarios can generally be modeled by two separated parties, Alice 
and Bob, who receive random inputs x and y, respectively. Alice 
prepares and sends a quantum state x to Bob who performs a mea-
surement y with outcome b, represented by a POVM   { M y  b }  b    with

   M y  b  ≥ 0 and  ∑ 
b
      M y  b  = 𝟙 ∀ y  (1)

This generates a probability distribution

  P(b ∣ x, y ) = tr( ρ  x    M y  b )  (2)

To make the problem nontrivial, an assumption on Alice’s prepa-
rations is required; otherwise, Alice could simply send x to Bob and 

any probability distribution P(b∣x, y) would be achievable. The 
assumption we consider in this work is that Alice’s preparations, 
i.e., the set of states x, can be represented in Hilbert space of given 
dimension d. By choosing d < ∣ x∣, we prevent Alice from communi-
cating all information about her input x to Bob. There exist distribu-
tions obtained from quantum systems of a dimension d that cannot 
be simulated classically [see, e.g., (27)]. That is, no strategy in which 
Alice communicates a classical d-valued message to Bob can possibly 
reproduce the observed data. Such distributions that cannot be classi-
cally simulated are candidates for self-testing considerations.

The problem of self-testing consists in characterizing the set of 
states {x} and/or the set of measurements  { M y  b }  based only on the 
distribution P(b ∣ x, y). This characterization can usually be done only 
up to a unitary transformation and possibly a relabeling. In a recent work 
(28), methods were presented for self-testing sets of pure quantum states 
and sets of projective measurements in the qubit case. These were 
subsequently extended to higher dimensional systems in (29, 30).

Formally, a self-test can be made via a witness, which is a linear 
function of the probability distribution P(b ∣ x, y)

   A [  P (  b ∣ x, y )   ]   =  ∑ 
x,y,b

     α  xyb   P (  b ∣ x, y )     (3)

where xyb are real coefficients. Moreover, given a witness, one can 
determine its maximal witness value   A   Q   achievable under quantum 
distributions (Eq. 2) in a bounded Hilbert space. The witness can then 
be used for self-testing a set of quantum states and/or measure-
ments, whenever there is a unique combination of states and/or 
measurements that achieves   A   Q  . Then, it is clear that when the ob-
served distribution P(b∣x, y) leads to   A   Q  , a specific set of states 
and/or measurements is identified (up to a simple class of transfor-
mations). A necessary condition for a witness to be useful for self-testing 
is that, for a given dimension d, quantum systems outperform classical 
ones; if not, several strategies would generally be compatible with 
the data [see (21, 21, 27) for examples of such witnesses]. In the 
“Self-testing nonprojective measurements: Noiseless case” section, 
we present a method for constructing witnesses whose maximal value 
can self-test a targeted nonprojective qubit measurement Mtarget.

Next, we turn to robust self-tests, i.e., self-tests that can be applied 
even when the statistics is not ideal, causing the witness value to be 
less than   A   Q  . This is fundamental to make our methods applicable 
in practice, as any realistic experiment is prone to noise. The influence 
of noise makes it impossible to perfectly pinpoint the states and 
measurements. This motivates the following question. Given an ob-
servation of a witness value  A <  A   Q  , how close are the states and 
measurements to the ideal ones, i.e., those that would have been 
perfectly self-tested if we had observed  A =  A   Q  ? In the “Robust 
self-testing of nonprojective measurements” section, we develop methods 
for robustly self-testing nonprojective qubit measurements by lower- 
bounding the fidelity between the implemented measurement and the 
ideal one. A tight robust self-testing would give the fidelity between the 
measurement that is most distant from the ideal one and that could 
have generated a witness value  A <  A   Q  . Since the presented method 
does not apply to all types of self-tests, we complement it with a numerical 
method based on random sampling, which efficiently estimates the 
robustness of self-testing nonprojective qubit measurements.

Whereas robust self-testing represents a quantitative physical 
inference, it is also relevant to consider a more qualitative inference. 
On the basis of the witnesses we develop for self-testing, we show 
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how to certify that the uncharacterized measurement is nonprojective. 
In the “Certification methods for nonprojective measurements” 
section, we determine the largest value of our witness that is compatible 
with qubit projective measurements. When observing a larger value, 
the nonprojective character of the measurement is certified. In a similar 
spirit, we determine a bound on our witness above which a genuine 
four-outcome (nonprojective) qubit measurement is certified.

An overview of all the self-testing methods developed in this 
work is illustrated in Fig. 1. The methods will be applied in the 
“Qubit SIC-POVM” section to self-test particularly relevant non-
projective qubit measurements. For these examples, we will demon-
strate the usefulness of our methods by implementing them in a 
photonic experiment. Specifically, our experimental data imply 
that the implemented measurements are very close to certain 
ideal three- and four-outcome qubit POVMs and hence are non-
projective. In the latter case, the data certify a genuine four-outcome 
qubit POVM.

RESULTS
This section presents how to certify and characterize nonprojective 
measurements in prepare-and-measure scenarios with both noiseless 
and noisy statistics. The focus will be on qubit systems. Therefore, 
we begin by summarizing the properties of qubit POVMs.

A POVM with O outcomes is a set of operators   { E  i  } i=1  O    with the 
property that Ei ≥ 0 and that   ∑ i      E  i   = 𝟙. In the case of qubits, Ei can 
be represented on the Bloch sphere as

   E  i   =    i  (𝟙 +    → n    i   ·   →  )  (4)

where     → n    i    (with     → n    i   ≤ 1 ) is the Bloch vector, i ≥ 0, and    →   = (   x  ,    y  ,  
  z  )  are the Pauli matrices. Positivity and normalization imply that

    ∑ 
i=1

  
O

       i   = 1 and   ∑ 
i=1

  
O

       i      → n    i   = 0  (5)

The set of POVMs is convex, and a POVM is called extremal if it 
cannot be decomposed as a convex mixture of other POVMs. For 
qubits, extremal POVMs have either O = 2,3,4 outcomes (31). In the 
case O = 2, extremal POVMs are simply projective, whereas for O = 3 
and O = 4, they are nonprojective; an extremal three-outcome qubit 
POVM has three unit Bloch vectors in a plane, and an extremal 
four-outcome qubit POVM has four unit Bloch vectors of which no 
choice of three are in the same plane (31). An extremal qubit POVM 
is therefore characterized by its Bloch vectors. As the statistics of 
nonextremal POVMs can always be simulated by stochastically im-
plementing extremal POVMs, it is clear that only extremal POVMs 
can be self-tested.

Self-testing nonprojective measurements: Noiseless case
Consider a target extremal nonprojective qubit POVM Mtarget, with 
O = 3 or O = 4 outcomes, for which we associate the outcome b to 
the unit Bloch vector     → v    b   . Our goal is now to construct a witness  A  
such that its maximal value self-tests Mtarget. The method consists 
of two steps summarized in Fig. 2.

Step 1. First, we construct a simpler witness   A ′    featuring O prepa-
rations; i.e., Alice has O inputs. Bob receives an input y = 1, …, Y 
and provides a binary outcome. The goal of this simpler witness is 
to self-test a particular relation among the prepared states ∣x〉. Specifi-
cally, we would like to certify that their unit Bloch vectors     → u    x    point 
in opposite direction (on the Bloch sphere) to those of the target 
POVM Mtarget; i.e.,     → u    x   = −    → v    x    for x = 1, …, O. Let us define

   A ′   =   ∑ 
x,y,b

     c  xyb   P(b ∣ x, y)  (6)

with real coefficients cxyb chosen such that the maximal value    A ′     Q   of 
the witness for qubits self-tests the desired set of prepared states {∣x〉} 
(up to a global unitary and relabelings). In general, we believe that 
it is always possible to find such a self-test by considering enough 
inputs for Bob, corresponding to well-chosen projective measurements, 
and suitable coefficients cxyb [see (28) for examples]. Furthermore, 

Fig. 1. Graphical overview of the self-testing methods and steps presented in Results. 

 on M
arch 31, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Tavakoli et al., Sci. Adv. 2020; 6 : eaaw6664     17 April 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 10

note that one could also, in principle, have more than O prepara-
tions for Alice and then self-test that O of them have the desired 
relation to Mtarget. In addition, we remark that the construction of 
an adequate witness   A ′    is not unique in general.

Step 2. We construct our final witness  A  from   A ′   . Specifically, we 
supply Bob with one additional measurement setting called povm. 
This setting corresponds to a measurement with O outcomes. Since 
the intention is to self-test the measurement corresponding to 
this setting as Mtarget, we associate the setting povm to O outcomes. 
We define

  A =  A ′   − k  ∑ 
x=1

  
O

   P(b = x ∣ x, povm)  (7)

for some positive constant k. A maximal witness value   A   Q  =   A ′     Q   
now implies that the setting povm corresponds to Mtarget (up to a 
unitary and relabelings). This is because a maximal witness value 
implies that (i) the set of prepared states {∣x〉} have Bloch vectors 
anti-aligned with those of Mtarget and (ii) P(b = x∣x, povm) = 0 for 
all x; hence, the Bloch vectors of the setting povm are of unit length 
and aligned with those of Mtarget. Moreover, as a qubit POVM is 
characterized by its Bloch vectors, we see that Mtarget is the only 
POVM that can attain the maximal witness value   A   Q  . Therefore, we 
obtain a self-test of the target POVM Mtarget.

In the “Qubit SIC-POVM” section, we will apply this method to 
self-test symmetric qubit POVMs with three and four outcomes.

Robust self-testing of nonprojective measurements
No experiment can achieve the noiseless conditions needed to ob-
tain exactly a maximal value of  A . Therefore, it is paramount to 
discuss the case when a nonmaximal value of  A  is observed. We will 
show that, in this case, one can nevertheless make a statement about 
how close the uncharacterized measurement E performed in the 
laboratory (corresponding to the setting povm) is to the target 
POVM Mtarget.

To address this question, we must first define a measure of close-
ness between two measurements. A natural and frequently used dis-

tance measure in quantum information is the fidelity, F, between 
two operators. We consider a measure of closeness amounting to 
the best possible weighted average fidelity between the extremal qubit 
target POVM elements Mtarget = {Mi} and the actual POVM elements 
E = {Ei}. That is, we allow for a quantum extraction channel  to be 
applied to the actual POVM. The set of allowed extraction channels 
is the set of unital channels in the relevant Hilbert space dimension. 
This is understood from the fact that the extraction channel must 
map O-outcome POVMs to O-outcome POVMs in the given Hilbert 
space dimension. Because of linearity, this implies that the channel 
is unital. Conversely, since every channel preserves positivity, every 
unital channel in the relevant Hilbert space dimension maps POVMs 
to POVMs. We look for the best possible extraction channel. We 
thus define the quantity

  F(E,  M   target  ) =  max  


      1 ─ 2     ∑ 
i=1

  
O

      tr ( [  E  i   ]  M  i  ) ─ tr ( M  i  )
    (8)

Since the target measurement is extremal, the POVM elements 
are proportional to rank-one projectors; Mi ∝ Pi. Because of Eq. 4, 
we can write  Λ [  E  i   ] =  λ  i  (𝟙 +    → n    i   ·   → σ )  subject to the constraints (Eq. 5). 
By evaluating Eq. 8, we find that  F = 1 / 2 + 1 / 2  ∑ i        i   tr ( P  i      → n    i   ·    →    i   ) ≤ 1 . 
To saturate the inequality, each Bloch vector     → n    i    must be of unit length, 
i.e.,  ∣   → n    i  ∣= 1 , and aligned with the Bloch vector of Pi. Hence, Mi and 
[Ei] are both proportional to the same rank-one projector. Since 
a POVM with Bloch vectors of unit length is fully characterized, i.e., 
all coefficients i are fixed by the conditions (Eq. 5), this implies that 
Mi = [Ei]. Thus, a maximal fidelity of F = 1 is uniquely achieved 
when the actual POVM is equal to the target measurement.

In general, a nonmaximal value of the witness  A  can arise from 
many different possible choices of states and measurements. We 
denote by  S(A)  the set of all O-outcome POVMs that are compatible 
with a given observed value  A . Our goal is now to find a lower-bound 
on the average fidelity F that holds for every measurement   E ′  ∈ S(A) . 
Therefore, the quantity of interest is the worst-case average fidelity:

  ℱ(A ) =  min  
 E ′  ∈S(A)

   F( E ′  ,  M   target )  (9)

Calculating this quantity, or even lower-bounding it, is typically 
a nontrivial problem even in the simplest case. We proceed with 
presenting two methods for this task.

We remark that the definition (Eq. 8), given for qubits, could 
potentially be extended to higher-dimensional systems (replacing the 
factor 1/2 by 1/d). This could work for POVMs where all elements 
are proportional to rank-one projectors. However, the latter are only 
a strict subset of general extremal POVMs. Finding a more general 
figure of merit is thus an interesting open question.
Robust self-testing with the swap method
A lower-bound on the worst-case average fidelity can be obtained 
via semidefinite programming (32). The method combines the so-
called swap method (33, 34), introduced for self-testing in the Bell 
scenario, and the hierarchy of dimensionally bounded quantum cor-
relations (35). Such adaptations of the swap method to prepare- 
and-measure scenarios were introduced in (28) to self-test pure state 
and projective measurements. In section S1, we outline the details 
of how the swap method is adapted to robustly self-test nonprojective 
measurements. This method benefits from being applicable in a 
variety of scenarios and for returning rigorous lower bounds on ℱ. 
Nevertheless, it suffers from two drawbacks. First, the method only 
overcomes the fact that self-tests are valid up to a global unitary, but 

Fig. 2. Method for self-testing a targeted nonprojective qubit measurement by 
exploiting simpler self-tests of preparations. Step 1: tailor scenario and witness 
such that a maximal   A ′    self-tests Alice’s preparations to have Bloch vectors that are 
anti-aligned with those of the target measurement. Step 2: Add an extra setting to 
Bob and modify the witness to self-test the target non-projective measurement.
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not that they may be valid up to relabelings. Thus, it is only useful 
for target measurements that are self-tested up to a unitary. Second, 
while rarely producing tight bounds on ℱ, the computational re-
quirements scale rapidly with the number of inputs, the number of 
outputs, and the chosen level of the hierarchy. In the “Qubit 
SIC-POVM” section, we will show that the method can be efficiently 
applied for robustly self-testing a three-outcome qubit POVM.
Numerically approximating robust self-testing
To also address cases in which self-tests are valid up to both a unitary 
transformation and relabelings, we can estimate ℱ based on random 
sampling. The approximation method benefits from being straight-
forward and broadly useful, while it suffers from the fact that it 
merely estimates the value of ℱ instead of providing a strict lower 
bound. The key feature is that the minimization appearing in Eq. 9 
is replaced by a minimization taken over data obtained from many 
random samples of the setting povm. We detail this method in section S2 
and apply it to an example in the “Qubit SIC-POVM” section.

Certification methods for nonprojective measurements
Whereas robust self-testing considers quantitative aspects of physical 
inference from noisy data, it is important to also consider the qualita-
tive inference. An important qualitative statement is to prove that 
the uncharacterized measurement is nonprojective or, more generally, 
that it cannot be simulated by projective measurements. It is known 
that when POVMs are sufficiently noisy, they become perfectly 
simulable via projective measurements (19, 36, 37). The witnesses 
we construct can address this question. We will see that whenever 
the observed value of the witness  A  is sufficiently large, one can 
certify that the setting povm necessarily corresponds to some non-
projective measurement and could not have been simulated via pro-
jective measurements. Specifically, we derive an upper bound on  A  
for projective measurements (or convex combination of them). The 
violation of such a bound thus certifies a nonprojective measurement 
or, more precisely, a genuine three-outcome (or four-outcome) 
POVM. At the end of this subsection, we also show how to certify a 
genuine four-outcome POVM.

A projective qubit measurement has binary outcomes and can 
therefore be represented by an observable M ≡ M0 − M1, where Mi 
is the measurement operator corresponding to outcome i = 0,1. Let 
us consider the case where the O-outcome measurement povm is 
projective. One may assign two outcomes to rank-one projectors and 
the rest to trivial zero operators. Note that it is enough here to con-
sider these cases, as the witness  A  is linear in terms of the measure-
ment operators. Projectors can thus be assigned in three (O = 3) or 
six (O = 4) different ways, of which the optimal instance must be 
chosen. Let the outcomes in the optimal instance be o0∣povm and 
o1∣povm and associate the observable   M  povm   ≡  M  Y+1   =  M povm   o  0∣povm    −  
M povm   o  1∣povm    . The witness (Eq. 7) can be written as

  A = C(k ) +  ∑ 
x
     tr[   x    ℒ x  (k) ({ M  y  })]  (10)

where C(k) is a constant and   ℒ x  (k) ({ M  y  })  is a linear combination of 
the observables {M1, …, MY + 1}. Note that   ℒ x  (k) ({ M  y  })  does not de-
pend on the index y but on the collection of observables. Using the 
Cauchy-Schwarz inequality for operators, we obtain

  A ≤ C(k ) +  ∑ 
x
      √ 

_______________
  tr[   x    ℒ x  (k)   ({ M  y  })   2 ]    (11)

Because of projectivity, we have   M  y   =    → n    y   ·   →   , where     → n    y    is of unit 
length. Using  { M  k  ,  M  l  }= 2    → n    k   ·    → n    l   𝟙 , one finds   ℒ x  (k)   ({ M  y  })   2  =  t x  (k) ({   → n    y  }) 𝟙 , 
for some function t, which is a weighted sum of scalar products of 
the Bloch vectors of the observables. Consequently, to bound  A  under 
all projective measurements, we have

  A   ≤   
Proj

  C(k ) +  max  
{   → n    y  }

     ∑ 
x
      √ 
_

  t x  (k) ({   → n    y  })   ≡ ℬ(k)  (12)

Thus, ℬ(k) bounds the value of  A  for projective measurements. 
The evaluation of this bound only depends on Bob’s Bloch vectors 
and is further simplified by their parameterization in terms of two 
angles. The effort needed to evaluate the bound depends on the chosen 
prepare-and-measure scenario. Typically, considering scenarios with 
some symmetry properties is beneficial.

Moreover, when targeting a four-outcome qubit POVM, we 
consider also a finer form of qualitative characterization by consider-
ing whether  A  can be simulated by the setting povm being 
some three-outcome POVM. If not, the measurement is certified 
as a genuine four-outcome measurement. This amounts to bound-
ing the value of  A  achievable under any two- or three-outcome 
qubit POVM and then observing a violation of that bound. For this 
purpose, one may use the hierarchy of dimensionally bounded 
quantum correlations (35), which can be used to upper-bound  A  
under three-outcome POVMs. Since the hierarchy is built on pro-
jective measurements, one must embed Alice’s preparations in 
a larger Hilbert space with the dimension chosen such that 
three-outcome POVMs can be recast as projective measurement 
following Neumark’s theorem. To obtain tight bounds, one may need 
a reasonably high hierarchy level, which can be efficiently imple-
mented using the methods of (30).

Next, in the “Qubit SIC-POVM” section, we will apply the out-
lined methods to specific nonprojective measurements and experi-
mentally demonstrate the certification of both nonprojective and 
genuine four-outcome measurements.

Relevant examples and their experimental realization
In the above, we have discussed methods for self-testing a target 
nonprojective measurement. Here, we put these methods in 
practice in a photonic experiment. We implement three- and 
four-outcome symmetric qubit POVMs, with Bloch vectors form-
ing a star (trine-POVM) and a tetrahedron (SIC-POVM), respec-
tively. In the first case, we certify a nonprojective measurement 
and apply our methods for robust self-testing, demonstrating 
worst-case average fidelity of at least 96% compared to an ideal 
trine-POVM. In the second case, we certify a genuine four-outcome 
qubit POVM and demonstrate worst-case average fidelity of approxi-
mately 98% with respect to an ideal SIC-POVM. We consider each 
example separately by first applying the methods of Results to obtain 
adequate witnesses and then present the corresponding experimental 
realization. The setup common to both experiments is presented in 
Materials and Methods.
Qubit SIC-POVM
We begin by illustrating the self-testing methods for a frequently 
used nonprojective measurement, namely, the qubit SIC-POVM, 
which we denote   M  SIC   . This measurement has four outcomes, 
and its four unit Bloch vectors   {   → v    b  }  b    form a regular tetrahedron on 
the Bloch sphere, with weights b = 1/4. Such a regular tetrahedron 
construction can be achieved via two different labelings of the 
four outcomes that are not equivalent under unitary transformations. 
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Up to a unitary transformation, each such SIC-POVM can be written 
with Bloch vectors

      
→ v    1   = [1, 1, 1 ] /  √ 

_
 3       → v    2   = [1, − 1, − 1 ] /  √ 

_
 3      

   → v    3   = [− 1, 1, − 1 ] /  √ 
_

 3       → v    4   = [− 1, − 1, 1 ] /  √ 
_

 3  
   (13)

and the set of Bloch vectors   {−    → v    l  }  l   , respectively.
Noiseless self-test
We find a prepare-and-measure scenario for self-testing   M  SIC   . Fol-
lowing step 1 in the “Self-testing nonprojective measurements: 
Noiseless case” section, we introduce a prepare-and-measure scenario 
in which Alice has four preparations, x ∈ {1,2,3,4}, and Bob has 
three binary-outcome measurements, y ∈ {1,2,3}. The witness is 
chosen as

   A  SIC  ′   =   1 ─ 12    ∑ 
x,y

     P(b =  S  x,y  ∣x, y)  (14)

where S1, y = [0,0,0], S2, y = [0,1,1], S3, y = [1,0,1], and S4, y = [1,1,0]. 
The maximal value,   A  SIC  ′   = 1 / 2(1 + 1 /  √ 

_
 3  ) , can be achieved by 

Alice preparing her four states forming a regular tetrahedron, e.g., 
with the Bloch vectors in Eq. 13, and Bob performing the measure-
ments x, y, and z. In section S3, we prove the maximal witness 
value and show that it self-tests that Alice’s preparations indeed 
must form a regular tetrahedron on the Bloch sphere. By step 2 in 
the “Self-testing nonprojective measurements: Noiseless case” section, 
we supply Bob with an additional four-outcome measurement povm 
and consider the modified witness

   A  SIC   =   1 ─ 12    ∑ 
x,y

     P(b =  S  x,y  ∣x, y ) − k  ∑ 
x=1

  
4
   P(b = x∣x, povm)  (15)

Thus, we conclude that   A  SIC   = 1 / 2(1 + 1 /  √ 
_

 3  )  self-tests   M  SIC   .
We note that there also exist other prepare-and-measure scenarios 

fulfilling the requirements of step 1. For example, one may achieve 
the desired self-test using the so-called 3 → 1 random access code 
whose self-testing properties were considered in (28). However, this 
prepare-and-measure scenario requires more preparations than the 
one presented here.
Robust self-test
Next, we consider the worst-case fidelity (given in Eq. 9) of the mea-
surement corresponding to the setting povm with   M  SIC   . Since the 
self-test of   M  SIC    is valid up to a relabeling and a collective unitary, 
we cannot use the swap method to lower-bound ℱ. Instead, we use 
the numerical approximation method (see section S2 for details). 
Figure 3 displays roughly 3 × 105 optimal pairs  ( A  SIC  , F)  each evalu-
ated from a randomly sampled measurement for the setting povm. 
The evaluation was done for k = 1/5 (which, as will soon be shown, 
turns out to be the most noise-resilient choice of k). We see that the 
minimal sampled fidelity as a function of   A  SIC    describes a curve, 
which constitutes the approximation of ℱ.
Certifying nonprojective and genuine four-outcome POVMs
Last, we derive a tight bound valid for all qubit projective measure-
ments on the value of   A  SIC   . Because of the symmetries of   A  SIC   , we 
can, without loss of generality, let the nontrivial (nonzero measure-
ment operator) outcomes of the measurement povm be the outcomes 
b = 1,2. Hence, we define the observable   M  povm   ≡  M  4   =  M povm  1   −  M povm  2   . 
Then, we follow the steps outlined in the “Certification methods for 
nonprojective measurements” section. First, we re-write   A  SIC    in the 
form of Eq. 10. We find C(k) = (1 − 2k)/2 and

   
 ℒ x=0,1  (k)  ({ M  y  }) =   1 ─ 24   [ 1,  (− 1)   x ,  (− 1)   x ,  (− 1)   x+1  12k ] ·  → M  

     
 ℒ x=2,3  (k)  ({ M  y  }) =   1 ─ 24   [ − 1,  (− 1)   x ,  (− 1)   x+1 , 0 ] ·  → M  

    (16)

where    → M   = [ M  1  ,  M  2  ,  M  3  ,  M  4  ] , with   M  y   =    → n    y   ·   →   . After applying the 
Cauchy-Schwarz inequality, we obtain a cumbersome expression of 
the form of Eq. 11. To evaluate its maximal value (following Eq. 12), 
we use the following concavity inequality:   √ 

_
 r   +  √ 

_
 s   ≤  √ 
_

 2(r + s)    for 
r, s ≥ 0, with equality if and only if r = s. Apply this inequality twice 
to the expression (Eq. 12), first to the two terms associated to x = 
0,1, and then to the two terms associated to x = 2,3. After a simple 
optimization over     → n    3    and denoting  x =    → n    1   ·    → n    2   , one arrives at

   
 A  SIC   ≤   1 − 2k ─ 2   +    √ 

_
 2   ─ 24    √ 
_

 6 − 4x  
    

 +     √ 
_

 2   ─ 24    √ 
____________________

  2  r  k   + 4x + 48k  √ 
_

 2    √ 
_

 1 + x     ≡  f  k  (x)
   

where rk = 3 + 144k2. This bound is valid for a particular value of x. 
To hold for all projective measurements, we simply maximize fk(x) 
over x. This requires only an optimization in a single real variable x 
∈ [ − 1,1], which is straightforward. The optimal choice is denoted 
x*. Setting ℬ(k) = fk(x*), we have   A  SIC   ≤ ℬ(k)  for all projective 
measurements. Although the expressions involved are cumbersome, 
the analysis is simple and straightforward. We have considered the 
tightness of the projective bound for k ∈ {1/100,2/100, …,1} by 
numerically optimizing   A  SIC    under unit-trace measurements (which 
includes all rank-one projective measurements). In all cases, we 
saturate the bound ℬ(k) up to machine precision with a projective 
measurement.

Furthermore, we have also considered bounding   A  SIC    under 
three-outcome qubit POVMs using the hierarchy of dimensionally 
bounded quantum correlations (as described in the “Certification 
methods for nonprojective measurements” section). In our imple-
mentation of (35), we have embedded the qubit preparations into a 
three-dimensional Hilbert space and optimized   A  SIC    under projective 
measurements of the only existing nontrivial rank combination. 
The relaxation level involved some monomials from both the second 
and third level, and the size of the moment matrix was 126. This was 

Fig. 3. Numerical approximation of the worst-case fidelity of the unknown 
measurement (setting povm) with the qubit SIC-POVM by roughly 3×105 random 
three- and four-outcome POVM samples for which the optimal values of  (A, F)  
were calculated. The figure also displays the critical limits on   A  SIC    and ℱ for 
projective and three-outcome POVMs, respectively, as well as the experimentally 
measured values.
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done for all k ∈ {1/100,2/100…,1}, and each upper bound was saturated 
up to numerical precision using lower bounds numerically obtained 
via semidefinite programs.

To study the robustness of both the nonprojective and the genuine 
four-outcome certification, we have considered the critical visibility 
of the system needed when exposed to noise. This is modeled by the 
preparations taking the form x(v) = vx + (1 − v)noise, where v ∈ 
[0,1] is the visibility and noise is some arbitrary qubit state. A 
straightforward calculation shows that the critical visibility for 
violating some given bound ℬ is

   v  crit  (k ) =   ℬ(k ) −  A   rand  + k  ─  
 A   Q  −  A   rand  + k

    (17)

where   A   rand   is the witness value obtained from the optimal measure-
ments performed on the maximally mixed state. Notably, this expres-
sion is independent of the specific form of noise. We have applied 
this to   A  SIC    with ℬ(k), corresponding to the bounds on projective 
and three-outcome measurements, respectively. The corresponding 
critical visibilities are plotted in section S5. In both cases, we find that 
the largest amount of noise is tolerated for k = 1/5, corresponding to 
vcrit = 0.970 and vcrit = 0.990, respectively.
Experimental result
Wave-plate settings for Alice’s prepared states in Eq. 13 and Bob’s mea-
surements x, y, z, and the four-outcome SIC-POVM anti-aligned 
to the vectors in Eq. 13, are reported in section S5. In section S5, we 
also report a state tomography of Alice’s preparations.

Optimally choosing k = 1/5, the measured value of the witness as 
compared to the relevant bounds is

    A  SIC     ≤   
projective

  0.7738   ≤   3−outcome  0.7836   ≤   
qubit

  0.7887.     
 A SIC  Lab  = 0.78514 ± 5 ×  10 stat  

−5   ± 1.0 ×  10 syst  −4  
    (18)

The statistical error originates from Poissonian statistics, and the 
systematic error originates from the precision of the wave-plate 
settings. More details about the errors are discussed in section S5.

We observe a substantial violation of both the projective measure-
ment and the three-outcome measurement bounds. Thus, we can 
certify that Bob’s measurement povm is a genuine four-outcome qubit 
POVM. Furthermore, as illustrated by the results in Fig. 3, we certify 
approximately a 98% worst-case fidelity with the qubit SIC-POVM.
Qubit trine-POVM
We consider a second example in which the target POVM is the so-
called trine-POVM. This measurement has three outcomes, and its 
Bloch vectors form an equilateral triangle on a disk of the Bloch 
sphere, with l = 1/3. The Bloch vectors are hence defined by

     → v    1   = [0, 0, − 1 ],    → v    2   =   1 ─ 2   [ −  √ 
_

 3  , 0, 1 ],    → v    3   =   1 ─ 2   [  √ 
_

 3  , 0, 1]  (19)

Noiseless self-test
We introduce a prepare-and-measure scenario in which Alice has 
three inputs x ∈ {1,2,3}, and Bob has two binary-outcome measure-
ments labeled by y ∈ {1,2}, and consider the witness

   A  tri  ′   =   ∑ 
x,y,b

     T  x,y    (− 1)   b  P(b∣x, y)  (20)

where Tx,1 = [1,1, − 1] and   T  x,2   = [ √ 
_

 3  , −  √ 
_

 3  , 0] . In section S3, we show 
that its maximal value is   A  tri  ′   = 5 , and that this value implies that 
Alice’s three preparations form an equilateral triangle on the Bloch 

sphere. Then, we add an additional input povm for Bob and consider 
the witness

   A  tri   =   ∑ 
x,y,b

     T  x,y    (− 1)   b  P(b∣x, y ) − k  ∑ 
x=1

  
3
   P(b = x∣x, povm)  (21)

for some k > 0. Then,   A  tri   = 5  self-tests the setting povm as the 
trine-POVM up to a unitary.
Robust self-test
We now turn to considering its robust self-testing properties, i.e., 
lower-bounding the worst-case fidelity of the unknown measure-
ment (setting povm) with the target measurement for a given value 
of   A  tri   . Since the above self-test is achieved only up to unitary trans-
formations, we may find rigorous lower bounds on the worst-case 
fidelity ℱ using semidefinite programming. In accordance with the 
“Robust self-testing of nonprojective measurements” section, we have 
performed the swap-operation on Bob’s side and used the hierarchy 
of finite-dimensional correlations to lower-bound ℱ. The hierarchy 
level was an intermediate level containing some higher-order 
moments corresponding to an SDP matrix of size 105. In addition, 
for the sake of comparison, we have implemented the numerical 
approximation method for robust self-testing to estimate the accuracy 
of the bound obtained via the swap method. The results are shown 
in Fig. 4. A comparison suggests that the swap method returns a 
suboptimal bound. Its accuracy could potentially be improved by 
using a higher hierarchy level. Nevertheless, the obtained bound will 
prove sufficient for the practical purpose of experimentally certifying 
the targeted POVM with high accuracy.

Last, we have also self-tested the trine-POVM in a different 
prepare-and-measure scenario (see section S3). In section S4, we use 
this prepare-and-measure scenario to derive a tight bound on pro-
jective measurements by evaluating the right-hand side of Eq. 12.
Experimental realization
The witness in Eq. 21 is maximized if Alice’s three Bloch vectors 
point to the vertices of an equilateral triangle on a disk of the Bloch 
sphere. We take that disk to be the xz plane, taking     → t    i   = −    → v    i    (from 
Eq. 19), and Bob performs one of three measurements z, x, and the 
three-outcome POVM with vectors anti-aligned to Alice’s states. 
See section S5 for state tomography of Alice’s preparations. In con-
trast to the previous experiment, output 2 of Bob’s measurement 
station only consists of one detector (D3) and no wave plate or po-
larizing beamsplitter (PBS) (see Fig. 5). The wave-plate settings cor-
responding to the above states and measurements are reported in 
section S5.

Fig. 4. Lower bound on  ℱ( A  tri  )  for k=1 obtained from the swap method, togeth-
er with roughly 3000 points  ( A  tri  , ℱ )  obtained via the numerical approxima-
tion method. This is displayed next to the experimentally achieved results.
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With the said settings, we have obtained the experimentally mea-
sured value of   A  tri    as a function of k. Since we aim to demonstrate a 
large worst-case fidelity with the trine-POVM, we have computed 
the lower bound on  ℱ( A  tri  )  for many different values of k and found 
that choosing k = 1 leads to the optimal result. The corresponding 
experimentally measured witness is

   A  tri  (k = 1 )   ≤   
projective

  4.89165   ≤   
qubit

  5  (22)

    A tri  
Lab  (  k = 1 )   = 4.9659 ± 7 ×  10 stat  

−4   ± 1.7 ×  10 syst  −3     (23)

This data point and its relation to the worst-case fidelity of the 
laboratory measurement with the targeted POVM are depicted in 
Fig. 4. From   A tri  

Lab  , we infer a closeness of at least 96%. This can be 
compared to the largest possible fidelity between a projective measure-
ment and the trine-POVM, which is straightforwardly found to be 
 (2 +  √ 

_
 3   ) / 4 ≈ 0.933 . However, as indicated by the results of the 

sampling-based numerical approximation method for robust self- 
testing (presented in Fig. 4), a better bound of ℱ may allow us to 
rigorously infer a worst-case fidelity of at least 97.3%.

Furthermore, we have considered the possibility of the experi-
mental data certifying a nonprojective qubit measurement. However, 
to this end, we found that another choice of k is optimal with respect 
to the witness value that is achievable under projective measurements. 
We found that the optimal choice is k ≈ 4.5. The corresponding ex-
perimentally measured value becomes

    A  tri  (k = 4.5 )   ≤   
projective

  4.71139   ≤   
qubit

  5    
 A tri  

Lab (k = 4.5 ) = 4.93613 ± 5 ×  10 stat  
−5   ± 1.0 ×  10 syst  −4  

   (24)

We conclude that our experimental data certifies a nonprojective 
qubit measurement.

DISCUSSION
We investigated the problem of self-testing nonprojective measure-
ments. We argued that a prepare-and-measure scenario with an upper 
bound on the Hilbert space dimension represents a natural frame-
work for investigating this problem. We considered both the qualita-
tive certification of a measurement being nonprojective and/or 
genuine four-outcome, as well as a quantitative characterization in 
terms of worst-case fidelity to a given target POVM. We demonstrate 
the practical relevance of these methods in two experiments in which 
we both certify a genuine four-outcome POVM and infer a high 
worst-case fidelity with respect to target symmetric qubit POVMs.

It would be interesting to overcome the limitation of the swap 
method and develop a rigorous robust self-testing method for general 
four-outcome qubit POVMs. Also extending these methods to 
high-dimensional POVMs would be relevant since there exist ex-
tremal nonprojective measurements that feature the same number 
of outcomes as projective measurements (contrary to the qubit case). 
Moreover, it would be interesting to investigate self-testing of non-
projective measurements using different assumptions as in our work. 
One could consider for instance prepare-and-measure scenarios 
with a bound on the entropy (38), the overlap between the prepared 
states (8), or their mean energy (39). Last, one may ask whether it 
would be possible to robustly self-test a nonprojective measurement 
in the fully device-independent case, i.e., returning to the Bell scenario 
without any assumption on the dimension.

MATERIALS AND METHODS
In the experiment, the qubit states are encoded in the polarization 
degree of freedom of a single photon, with the convention of ∣H〉 ≡ 
∣0〉 and ∣V〉 ≡ ∣1〉. The setup is depicted in Fig. 5.

Alice’s station includes a heralded single-photon source where 
femtosecond laser pulses at 390 nm are converted into pairs of photons 
at 780 nm, through type I spontaneous parametric down-conversion 
in two orthogonally oriented beta-barium borate crystals. Photon 

Fig. 5. Experimental setup. More details, including labeling, can be found in the main text. Pol, polarizer.
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pairs go through 3-nm spectral filters and are then coupled into 
two single-mode fibers for spatial mode filtering. The idler photon 
is sent to the trigger avalanche photodiode (APD) detector (T) and 
heralds the presence of a signal photon. The latter is then emitted 
again into free space and undergoes Alice’s state preparation, con-
sisting of a fixed linear polarizer, a /4 wave plate [or quarter–wave 
plate (QWP)], and a /2 wave plate [or half–wave plate (HWP)].

Upon preparing the required qubit state, Alice forwards the signal 
photon to Bob’s measurement station, where it goes through a 
double-path Sagnac interferometer, each path of which contains an 
HWP. The interferometer mixes the polarization degree of freedom 
with path, effectively enabling Bob to perform either projective or 
nonprojective measurements in the original polarization Hilbert 
space where the qubit was prepared, thanks to the two polarization 
analyzers at the outputs. Each of these consists of a phase plate, an 
HWP, and (in output 1) a QWP, a polarizing beam splitter and 
two single-photon detectors. Outputs from all detectors (T and D1 
to D4) are sent to a coincidence unit connected to a computer.

All measurements were performed with heralded photon rates 
of approximately 1 × 104 counts per second, while each setting was 
measured for 500 s. We have made an assumption of fair sampling, 
i.e., that the detection events are representative of the total number 
of signal photons. This assumption is reasonable for tasks that do 
not include a notion of an adversary. The quality of state prepa-
ration and measurement can be estimated by preparing states 
∣H〉,  ∣+ 〉 = (∣H〉 + ∣V 〉 ) /  √ 

_
 2   , and  ∣R〉 = (∣H〉 + i ∣V 〉 ) /  √ 

_
 2    and 

measuring them in the Pauli bases z, x, and y, respectively. The 
three visibilities obtained in our setup with this characterization 
measurement were

   
 V     z     = (99.91 ± 0.02 ) %

    V     x     = (99.31 ± 0.01 ) %   
 V     y     = (99.23 ± 0.02 ) %

    (25)

While the almost optimal   V   σ  z      is a direct consequence of the high 
extinction ratios of the PBSs used, the lower visibilities in the inter-
ference bases are mainly due to the double-path Sagnac interferometer, 
which showed a visibility of around 99.4%, therefore effectively 
bounding from above the results we can achieve in the experiments.

Note added. During the completion of this manuscript, we became 
aware of an independent work (40) discussing the certification of 
qubit POVMs.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/16/eaaw6664/DC1
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