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Kleptoparasitism can be considered as a game theoretical problem and a foraging tactic at the same time,
so the aim of this paper is to combine the basic ideas of two research lines: evolutionary game theory and
optimal foraging theory. To unify these theories, firstly, we take into account the fact that kleptopara-
sitism between foragers has two consequences: the interaction takes time and affects the net energy
intake of both contestants. This phenomenon is modeled by a matrix game under time constraints.
Secondly, we also give freedom to each forager to avoid interactions, since in optimal foraging theory for-
agers can ignore each food type (we have two prey types: either a prey item in possession of another
predator or a free prey individual is discovered). The main question of the present paper is whether
the zero-one rule of optimal foraging theory (always or never select a prey type) is valid or not, in the
case where foragers interact with each other?
In our foraging game we consider predators who engage in contests (contestants) and those who never

do (avoiders), and in general those who play a mixture of the two strategies. Here the classical zero-one
rule does not hold. Firstly, the pure avoider phenotype is never an ESS. Secondly, the pure contestant can
be a strict ESS, but we show this is not necessarily so. Thirdly, we give an example when there is mixed
ESS.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Kleptoparasitism is the stealing of already procured food by one
individual from another (Brockmann and Barnard, 1979), and it is
observed across several taxonomic groups, including spiders
(Coyle et al., 1991), insects (Erlandsson, 1988), mammals (Janson,
1985; Carbone et al., 2005), and birds (Barnard, 1990). The advan-
tage of kleptoparasitic behavior is that it allows individuals to
avoid some of the costs of the foraging cycle (searching for, acquir-
ing and handling food items) by exploiting food discovered by
another individual’s effort (Giraldeau and Caraco, 2000). Clearly,
kleptoparasitism can be considered as a game theoretical problem
and a foraging tactic at the same time. Starting from this point, the
aim of this paper is to combine the basic ideas of two research
lines.

The first research line is optimal foraging theory (Stephens and
Krebs, 1986). The main assumptions of optimal foraging theory are
the following:

a) the focal forager has all necessarily information about its
prey (cf. omniscient forager e.g. Schmidt and Brown, 1996,
and Garay and Móri, 2010);

b) the focal forager has absolute control of its own food prefer-
ences, i.e. the forager freely accepts or ignores any of its prey
types (food items);

c) energy collection by a forager does not depend on the food
preferences of other foragers, and finally;

d) an individual’s fitness is its net energy intake rate, which is
given by the functional response (Holling, 1959, Jeschke
et al., 2002). The overwhelming majority of the derivation
of functional responses (see e.g. Garay, 2019) are based on
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the assumption that either the prey density is renewed after
each killing (Cressman et al., 2014, McNamara et al., 2006) or
the predators have no (or only a negligible) effect on prey
density during the duration of the foraging time (Garay
and Móri, 2010, Holling, 1959), thus classical optimal forag-
ing theory assumes that the prey density is fixed.

In the prey choice model (where each forager has different prey
types providing different energy intakes and with different han-
dling times), the basic result of optimal foraging theory is the
zero-one rule, which claims that a predator accepts a given prey
type if its energy/handling time ratio is bigger than the average
intake rate on the whole foraging process (Charnov, 1976). In other
words the predator either ignores or accepts a given prey type, so it
never uses a mixed prey preference.

The second research line is evolutionary game theory (Maynard
Smith and Price, 1973) focusing on the fitness consequences of
interaction between conspecifics, when individuals’ behavior have
effects on the fitness of others, often through direct contests. In
such contests, they assumed that when two individuals encounter
each other then they always play a game. Observe that the latter
assumption is not in harmony with the basic view of the optimal
foraging, see assumption c) above, where the individual can ignore
any interaction with its prey types. In this paper we concentrate on
the case where each individual has freedom to interact or not to
interact with others it encounters, and each activity needs a period
of time.

There are three points, which offer us a way to make a connec-
tion between the above two research lines. Firstly, the functional
response can take account of the interference between predators,
which has an effect on the functional response, since this interfer-
ence takes time. DeAngelis et al.’s (1975) and Beddington’s (1975)
functional response takes account of the time duration of the inter-
actions between predators, but these interactions have no effect on
the energy intake of predators. In this paper we consider the case
when this interference has an effect on the net energy intake of
predators as well, i.e. there are game theoretical conflicts between
predators for prey. Secondly, in the classical matrix model of evo-
lutionary game theory, Maynard Smith (1982) included a positive
basic fitness, which is independent from the phenotypes (i.e. the
strategy of players), in order to avoid a negative total fitness. But
‘‘There is no such thing as a free lunch”. In biology, the collection
of basic fitness at least needs time, as in optimal foraging theory.
Thus, the concept of time constraints gives us a way to introduce
the ‘‘time cost” of collecting the basic fitness of Maynard Smith
(1982). Thirdly, the Nash principle can make a bridge between
game theory and optimal foraging theory, namely the zero-one
rule and the Nash-equilibrium condition are connected by the rule
of time averages (Garay et al., 2015), claiming that ‘‘the optimal
predator behavior involves those activities that ensure larger time
average intake than the time average of all activities”.

Furthermore, there are game theoretical models, which are
related to the present paper. Firstly, kleptoparasitism is modeled
by ecological games with time constraints (e.g., Broom and
Ruxton, 1998; Broom et al., 2004, 2008, 2009, 2010; Broom and
Rychtář, 2013; Sirot, 2000). The models of Broom and colleagues
are compartmental, where individuals follow a Markov transition
process between searching, handling and contesting states, with
each behavior taking (an exponential amount of) time. Unlike in
the present paper, strategic decisions are made at the transition
stage, so a searching individual can decide whether to challenge
a handler for a food item, after which the handler decides whether
to defend it, the winner being decided at random, with no further
decisions. The game is thus a type of sequential game. The model of
Sirot (2000) had a similar basis, but here individuals made simul-
taneous decisions when contesting a food item. Secondly, the pre-
sent paper builds on a general game-theoretical modeling
methodology, namely a matrix game under time constraints
(Křivan and Cressman, 2017, Garay et al., 2018a), when each inter-
action between players has a time duration. Matrix games under
time constraint are then characterized by two matrices, the intake
matrix A ¼ ðai;jÞn�n and the time constraint matrix T ¼ ðti;jÞn�n, i.e.
when the focal individual uses the i-th pure strategy and its oppo-
nent the j-th one, the focal individual’s payoff is ai;j, and the focal
individual cannot play the next game during an average time dura-
tion ti;j � 0. If this time duration depends on the strategies that the
players use in the interaction, then the matrix game’s evolutionary
outcome is no longer given solely through its payoff matrix.
Instead, an individual’s payoff is given at the stationary distribu-
tion of a Markov chain that depends on the time constraint matrix.
A similar process is followed for the more complex kleptopara-
sitism model developed that follows.

The aim of this paper is to combine the basic ideas of optimal
foraging theory and evolutionary game theory with time con-
straints. A good combination of two theories should get back these
theories as special cases. Clearly, for this aim, we have to keep as
many basic assumptions of these theories as possible. From opti-
mal foraging theory we keep the following three assumptions:

1. The predators have no (or a negligible) effect on prey density
during the foraging time duration, so the prey density is fixed.
In other words, we use one of the basic assumptions of optimal
foraging theory: prey renewal, see assumption d) above.

2. The predator is searching for food, and there are two types of
food: (i) free food means that there is no other predator nearby;
(ii) not free food means that the predator finds the food of a
conspecific, but the acquired food has still not been consumed
by the killer. Here we assume the interaction is symmetric,
i.e. there is no ownership. In other words, when a predator kills
a prey, then the ‘‘ownership” has no effect on the behavior of
the killer. The difference between a symmetric game, e.g.
hawk-dove game, and an asymmetric version of this game,
the hawk-dove-bourgeois game (Maynard Smith, 1982), is well
known.

3. As in optimal foraging theory, each forager can neglect all types
of food. In other words, when two predators have only one food
item, the interaction between them is not a must, as in the basic
evolutionary matrix game model. If an individual can evade the
interactions, then this kind of individual has two extreme
behaviors: either it evades the interactions (thus collects ‘‘basic
fitness” alone, i.e., only looking for free food), or it interacts with
others, i.e. plays a game.

Thus we will introduce a situation dependent sequential game
with time constraints. The first level gives the ratio of the materi-
alization of the interaction. When two foragers encounter each
other and one of them has killed but not eaten a prey individual,
then they either interact for this killed prey (we call an individual
playing this strategy a contestant) or they do not interact (we call
an individual playing this strategy an avoider). The avoider (non-
contesting) strategy means that before any interaction the avoider
predator leaves the place, thus it has neither payoff nor extra time
cost. The second level of our sequential game describes the situa-
tion when both foragers use the contestant strategy, and we con-
sider the hawk-dove game as a mathematical description of the
interaction between predators, when they find the same food item.
So the hawk-dove game is a subgame in the sequential game intro-
duced here. Now let us make clear the difference between a non-
contest and a non-fight. The contest but not-fight behavior is the
dove strategy, needing some extra time when interacting with a
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hawk and it has extra time and some payoff when interacting with
another dove strategy user. We will assume a symmetric situation
where all individuals can evade the interactions, so interaction
takes place if and only if both individuals want to play the game.
We emphasize that this situation is a combination of the basic
problem of the optimal foraging theory (where the forager has a
free decision on the acceptance of any type of prey) and the matrix
game under time constraints, since both methods take account of
the time constraints of different activities. In the present paper
we will investigate this combined model. The main question of
the present paper is whether the zero-one rule remains valid when
the foragers interact with each other and assumption c) of optimal
foraging theory does not hold.
2. Optimal foragers face game theoretical conflicts with others:
a general monomorphic model

2.1. Model description

We start from an optimal foraging model (e.g. Stephens and
Krebs, 1986, Garay and Móri, 2010), but now we consider two
types of food: free food that has not been found by a forager and
food in the possession of another forager (called discovered food).
A focal individual forager begins in the searching stage, the average
time duration of which will be denoted by ss. During this time, the
focal forager can either find free food or discovered food. The
model described here concentrates on the following question:
which foraging behavior is optimal, engaging in a contest with
the other forager over discovered food or avoiding contests by
focusing only on free food.

Firstly, consider the case where a searching focal forager has
found free food without another forager. Then it starts to handle
the food item without consuming it (e.g. killing, transporting the
food, etc). We call this period the vulnerable stage, the average time
duration of which will be denoted by sv . This is the only stage
where there is the possibility for the interaction with another for-
ager, one result of which may be the theft of the food item. During
the vulnerable stage, either the focal individual does not encounter
a searching forager, or such an intruder arrives from the whole
population and these two individuals will or will not interact. If
there is no encounter, the focal forager passes to the digestive stage,
the average time duration of which will be denoted by sd. If there is
an encounter, there are the following four conditional events. (i)
The focal individual does not retire and the intruder leaves. (ii)
The focal individual retires and the intruder does not. In both these
cases, there is no interaction between them and the forager who
does not retire starts to digest the food in the digestive stage and
the other returns to the searching stage. (iii) Both the focal individ-
ual and the intruder retire, in which case there is no interaction
and each gets the food item with probability ½. Finally, when
(iv) neither the focal nor the intruder retire, they interact in a con-
test, called the subgame, which is modelled as a symmetric matrix
game with time constraints. In the interaction in this subgame
between the two foragers, one of them possesses the food item
and digests it before returning to the searching stage while the
other returns to the searching stage. Note that we split the stan-
dard notion of ‘‘handling time” into two stages, the vulnerable
stage and the digestive stage (cf. Jeschke 2002). Moreover, all time
durations are assumed to be independent and exponentially
distributed.

Here we assume that the subgame is based on the classical
hawk-dove game where pairs of foragers are engaged in a contest
over the food item (i.e. the resource) of value B. Prior to the contest,
neither forager has any information concerning the behavior (i.e.
strategy) of the other forager. Moreover, we assume that this con-
test is symmetric (i.e., there is no ownership, so the winning prob-
abilities of the contestants can only depend on the strategies they
use, and not on which one discovered the food item and which is
the intruder). The subgame is then specified as a matrix game
under time constraints characterized by the following intake and
time constraint matrices:

A :¼
B�CHW�CHL

2 B
0 B

2

� �
and T :¼

sHWþsHL
2 0
0 sDWþsDL

2

� �
,

where the entries of A (respectively, T) are the intake (respectively,
time duration) of the row player when interacting with the column
player. When two hawks interact, they engage in an escalated fight
with one of them winning without getting injured and the other
losing with injuries. This is reflected in matrix A where CHW is
the winner’s cost and CHL is the losing hawk’s cost (including the
cost of fighting and the cost of recovery). Moreover, sXW (respec-
tively,sXL, X ¼ D;H) is the time duration for the winner (respec-
tively, loser) that is associated with this interaction, including
fighting and recovery time. When a hawk and dove interact, the
hawk gets the food item immediately (i.e. the time duration is 0),
which accounts for the off diagonal terms in matrices A and T.
Finally, when two doves interact, there is no fight (one wins the
food item and the other loses) and the time duration is sDW for
the winner and sDL for the loser (they can differ, e.g., in the time
of digestion). We emphasize that, from the game theoretical per-
spective, the subgame is symmetric. Indeed, in hawk-hawk and
dove-dove interactions, both contestants win with the same prob-
ability (i.e. who wins the contest does not depend on who discov-
ered the food). Since all time durations are exponentially
distributed, the matrix T contains the means of these independent
exponential random variables.

We note that here we follow the basic modelling methodology
of our earlier paper (Garay et al., 2017) on matrix games with time
constraints. Namely, the intake matrix A and the time constraint
matrix T are independent parameters and the time constraints
decrease the number of interactions between individuals. In
essence, we build our model in two distinct steps. After setting
up a continuous time Markov chain, first we look for the stationary
distribution of the chain. This depends on the time constraint
matrix. Then we calculate the average payoff determined by the
intake matrix at this equilibrium. Thus our model is a static one,
similar to the basic model of Maynard Smith and Price (1973),
since we are interested in the set of conditions under which a suf-
ficiently rare mutant cannot invade the resident population, but
we are not interested in the dynamical frequency change of differ-
ent phenotypes. In particular, we do not use replicator dynamics
(cf. Garay et al., 2018b, Varga et al., 2019).

Secondly, consider the case where the focal forager finds discov-
ered food (i.e. food with another forager who is in the vulnerable
stage). In this case, the focal forager is the intruder, and these
two individuals will or will not interact, leading to a similar ‘‘story”
to the one above. If the focal individual leaves, then it starts a new
search. If the focal individual does not leave and the other forager
retires, then the focal individual gets the food and enters the diges-
tive stage. (For the sake of simplicity, we assume throughout that
at most one intruder can find a given food item that is with a for-
ager in the vulnerable stage; i.e., no sequence of encounters can
occur among foragers over the same food item.) When the focal
individual does not leave and the other forager does not retire,
then the above subgame (a matrix game under time constraints)
takes place.

In this model, each forager has two types of decision. When a
forager in the vulnerable stage and an intruder encounter each
other, they can choose to interact or not to interact. Their strategies
can be characterized by a real numberr 2 0;1½ �; namely, a r-
strategist is willing to interact with probability r. Observe that
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the subgame will be realized if and only if both foragers are willing
to interact. Furthermore, in the subgame under time constraints,
an individual forager can use a mixed strategy that can be
described by a discrete probability distribution p ¼ ðp1; p2Þ where
p1 (respectively p2Þ is the probability that the forager plays hawk
(respectively, dove) in the subgame. A forager’s phenotype is then
characterized by its choice of r and p.
2.2. Mathematical model

Suppose there are m phenotypes in the forager population with
yi the number of foragers with phenotype i (i ¼ 1; � � � ;m). Then
y ¼ y1 þ y2 þ � � � þ ym is the total number of foragers. An individual
forager, labelled as the ordered pair ði; jÞ, corresponds to the j-th
forager (where 1 � j � yiÞof the phenotype i. An individual can be
in one of the following stages at any moment:

� searching stage, denoted by s,
� vulnerable stage, denoted by v ,
� subgame stage, denoted by g u;wð Þ or simply by g. This means
that the forager, using pure strategy u in the subgame, is inter-
acting with another forager who is using pure strategy w. The
duration of this stage depends on the strategies used and may
differ for the two contestants.

� digestive stage, denoted by d.

We emphasize that in our model the subgame stage includes
digestion and hence it is not followed by staying in the digesting
stage. This is because the duration of digestion may depend on
the amount of food, and in a subgame we allow the contestants
to share the food in an undetermined proportion. Therefore, sepa-
rating digestion from the subgame would make the mathematical
model significantly more complicated. In all other cases, i.e. when
food is acquired outside of a subgame, digestion always presumes a
digestive stage. Note that the subgame stage may include recovery
from injuries, which can also be different for the contestants.

Here we assume that there are n possible pure strategies a for-
ager can use in the subgame (in the model description of Sec-
tion 2.1, n ¼ 2). If a forager uses the pure strategy u against an
opponent using pure strategy w, its intake is au;w, and the average
time it spends in the subgame stage is tu;w. Thus, following Garay
et al. (2017), the subgame is characterized by the intake matrix
A ¼ ðai;jÞn�n and the time constraint matrix T ¼ ðti;jÞn�n. Phenotype
i is then determined by the probability ri that such a forager is
willing to interact in the subgame combined with the strategy dis-
tribution vector pi ¼ ðpi1; � � � ; pinÞ, where piu is the probability that
this phenotype uses the pure strategy u in the subgame; thusPn

u¼1piu ¼ 1.
Further notations: Let x denote the number of food items in the

habitat. Food is assumed to regenerate at the same rate as it is con-
sumed, thus x is assumed constant in time, in other words, we
assume food renewal. We introduce

hi ¼ yi
x
; 1 � i � m; h ¼ y

x
¼

Xm
i¼1

hi; ð1Þ

here hi is the number of foragers of phenotype i per one food item,
and h is the same quantity with respect to all foragers, regardless of
the phenotype. Let qs;i;qv;i;qg;i;qd;i denote the proportions of phe-
notype i in the searching, vulnerable, subgame, and digestive stages,
respectively. Moreover, let qs;qv ;qg ;qd be the equivalent propor-

tions for the whole population. Clearly, qs ¼
Pm

i¼1
yi
y qs;i, and analo-

gous equations can be established for the vulnerable, subgame,
and digestive stages.
The state of the population can be described with a vector of the
form

z ¼ z 1;1ð Þ; � � � ; z 1;y1ð Þ z 2;1ð Þ; � � � ; z 2;y2ð Þ
�� �� � � � jz m;1ð Þ; � � � ; z m;ymð Þ

� �
;

each coordinate being an element of the stage set
s; v;df g [ fg u;wð Þ : u;w ¼ 1; � � � ;ng. Here z i;jð Þ is the stage of individ-

ual ði; jÞ. Thus, the cardinality of the state space S is ð3þ n2Þy, since
we have searching, vulnerable and digestive stages, and, in addition,
the subgame stage can be realized in n2 different ways (pure strat-
egy pairs). Let us introduce the following Markov dynamics on the
state space S. In the state transitions we only indicate the coordi-
nates that change. An individual searching for food finds it with
constant rate 1

ss, i.e. spends an average time ss searching. In our Mar-
kov process all transitions occur at a constant rate, so all of our
events have durations that follow an exponential distribution with
means corresponding to the stated times, equivalently transitions
out of these states occur at rates 1 divided by this time. The possible
transitions from the searching stage (listed in the first three follow-
ing bullet points) depend on whether the food is free or already dis-
covered. The remaining bullet points describe transitions from the
other stages.

� z i;jð Þ : s#v with transition rate x�qvy
xss ¼ 1�qv h

ss
— individual ði; jÞ finds free food. Note that 1=x is the probability
that a given searcher finds a prescribed food item, thus 1=xss is
the rate of this transition. There are x� qvy free food items, thus
the probability that the food item found by the searcher is still
free is 1� qvh. (We keep the basic assumption of optimal forag-
ing theory, namely, that the food density is fixed.)

� z i;jð Þ : s#g ðu;wÞ and z k;‘ð Þ : v#gðw;uÞ with rate 1
xss rirkpiupkw,

where ði; jÞ–ðk; ‘Þ
— individual ði; jÞ finds food discovered by forager ðk; ‘Þ, both are
willing to interact, and they use game strategies u and w,
respectively.

� z i;jð Þ : s#d and z k;‘ð Þ : v#s with rate rið1�rkÞ
xss þ 1

2
ð1�riÞð1�rkÞ

xss ¼
ð1þriÞð1�rkÞ

2xss
— the first term corresponds to the case where individual ði; jÞ
finds food discovered by forager ðk; lÞ, the former is willing to
interact but the latter is not. If both retire, then each has prob-
ability 1

2 to win the food, thus the second term in the rate stands
for the case where chance favors individual ði; jÞ. Only pheno-
type i receives an intake (which we will denote by GiÞ: Gi ¼ B.

� z i;jð Þ : v#d with rate.

� 1
sv þ 1

xss

Pm
k¼1qs;kyk 1� rkð Þ ri þ 1�ri

2

� �
¼ 1

sv þ
ð1�r�Þð1þriÞ

2ss ; where

1� r
� ¼ Pm

k¼1qs;khkð1� rkÞ
— the first term corresponds to the case where no forager in the
searching stage encounters individual ði; jÞ during its vulnerable
stage. For the second term, a searching forager (the intruder)
encounters individual ði; jÞ in the vulnerable stage but the intru-
der is not willing to interact. Then individual ði; jÞ moves to the
digestive stage if either it is willing to interact or, if not, with
probability 1

2 it retains the food item. Intake: Gi ¼ B.
� z i;jð Þ : d#s with rate 1

sd
— digestion is over.

� z i;jð Þ : gðu;wÞ#s with rate 1
tu;w

— a game played with strategies u and w is over. Intake:
Gi ¼ au;w

It is easy to see that this Markov chain is irreducible as every
state communicates with the state ðs; � � � ; sÞ, hence it has a unique
stationary distribution. Similarly to as in Garay et al. (2017), one
can show that the random proportions qs;i, qv ;i, qg;i, qd;i converge
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to constants as the size y of the population and the amount x of
food increase to infinity in such a way that the ratios hi converge.

This result allows us to define a game among the m phenotypes
where the payoff is taken as the intake rate at the stationary equi-
librium and to do this we need to consider cycles.

In what follows, we will focus on a sufficiently large equilibrium
population with a single (resident) phenotype, where a mutant
phenotype appears. In this general monomorphic model, we then
takem ¼ 2 in the above mathematical model. Consider an arbitrary
focal forager, resident or mutant. We will distinguish its strategy
parameters, r	 and p	, by asterisks. The population parameters
then have no asterisks. Let us call a sequence of consecutive stages
a cycle if it lasts from the beginning of a searching stage to the next
searching. What’s going on during a cycle?

� 1) The focal individual is searching until it finds food, and the
average searching time is ss. At the end of searching

� 2a) The focal individual finds free food with probability 1� qvh.
Then it moves to the vulnerable stage. Its average time length is
1
1
sv þ

qsh
ss

¼ sssv
ss þ qshsv

; ð2Þ

because the length of the vulnerable stage is the minimum of
two independent exponential time spans, one of them is the
length of the uninterrupted vulnerable period, and the other
one is the time needed by the fastest searcher to find the focal
individual. As is well-known, the minimum of two indepen-
dent, exponentially distributed random variables is also
exponential, with expectation being half of the harmonic
mean of the two expectations (equivalently, with hazard rate
being the sum of the two hazard rates). According to this, at
the end of vulnerable stage there are two possibilities.

o Either the focal individual starts digesting, with probability
1
sv

1
svþ

qsh
ss
¼ ss

ssþqshsv
; average time sd, and intake B,

o or it meets an intruder with probability
1� ss

ssþqshsv
¼ qshsv

ssþqshsv
:

Note that the occurrence of these possibilities is (stochasti-
cally) independent of the length of the vulnerable period,
i.e. knowing the length of any occurrence of the period (as
opposed to its expectation sv ) provides no information on
which event will occur.

Then, from the point of view of the focal individual, the fol-
lowing outcomes are possible.

& The focal individual is not willing to interact but the intruder is.
This has probability r 1� r	ð Þ and leads to no additional time,
and zero intake.

& The focal individual is willing to interact but the intruder is not,
which happens with probability r	ð1� rÞ. Then the focal indi-
vidual receives intake B and moves to the digestive stage with
average time sd.

& Neither the focal nor the intruder are willing to interact. Such a
case occurs with probability ð1� r	Þð1� rÞ. Here the whole
food item is taken by one of them, with equal probability for
each. The luckier one moves to the digestive stage, the other
to the searching stage. Thus the average time left for the focal
individual in the cycle is sd=2, and its average intake is B=2.

& Both the focal individual and the intruder are willing to interact,
occurring with probability r	r. The average time for the game
is p	Tp, and the average intake is p	Ap.
� 2b) Alternatively, the focal individual finds previously dis-
covered food with probability qvh. Then the following sce-
narios are possible.

o The focal individual is not willing to interact but the intruder
is. This has probability ð1� r	Þr. There is no additional time
and zero intake.

o The focal individual is willing to interact but the intruder is
not, with probability r	ð1� rÞ. The focal individual starts
digesting with average time sd and intake B.

o Neither the focal individual nor the intruder are willing to
interact, with probability ð1� r	Þð1� rÞ. The focal individ-
ual spends average time sd=2 digesting, with average intake
B=2.

o Both the focal individual and the intruder are willing to
interact. The probability of this possibility is r	r, and the
average time and average intake are p	Tp, and p	Ap,
respectively.

After all of the above, the cycle starts over again. Let s	 denote
the average time of the focal individual’s cycle. It has the following
components.

� searching stage with average length ss,
� vulnerable stage with average length svpd, where pd is the
probability that free food is found and no intruders arrive,
namely,
pd ¼ ss

ssþqshsv
ð1� qvhÞ;

� subgame stage with average length pcr	rp	Tp, where

pc ¼ qshsv
ssþqshsv

1� qvh
� �þ qvh ¼ hðqssvþqvssÞ

ssþqshsv
can be interpreted as

the probability of getting into a contest situation (i.e., where
two individuals, one with food and another without it, meet):
the first term stands for the case where an intruder appears,
and the second one for the case where the searching focal indi-
vidual finds previously discovered food. A contest situation
leads to a subgame if and only if rr	–0.

� digesting stage of average length sd pd þ pc
ð1�rÞð1þr	Þ

2

� �
. The first

term corresponds to the case where free food is found and no
intruders come, and the second term stands for the case where
in an encounter food is taken without a contest. The multiplier
of pc in the above is ð1�rÞð1þr	Þ

2 ¼ 1� rð Þr	 þ ð1�rÞð1�r	Þ
2 , where the

first term comes from the case where the focal would fight but
the intruder would not, and the second term comes from the
case where both retire and the food is awarded randomly. Nei-
ther of these cases correspond to a subgame.

Thus

s	 ¼ ss þ svpd þ pcr	rp	Tpþ sd pd þ pc
ð1� rÞð1þ r	Þ

2

� �
:

The average amount of food taken by the focal individual during
one cycle is

G	 ¼ pd þ pc
ð1� rÞð1þ r	Þ

2

� �
Bþ pcr	rp	Ap:

In order to characterize the equilibrium, let the focal individual
belong to the resident population, i.e., there is no need for aster-
isks, as all quantities tagged with asterisks are equal to their
unmarked counterparts. Then the proportions of individuals in
searching, vulnerable, subgame, or digestive stages, respectively,
are equal to the proportions of time spent in those stages during
one cycle. Thus, in equilibrium we have
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ss ¼ qss; svpd ¼ qvs;pcr2pTp ¼ qgs:

The fourth equation is omitted, because it follows from the pre-
ceding three. In detail, we obtain the following system of quadratic
equations in the two variables qs and qv ;

s2s þ qshsssv ¼ qsss ss þ sv þ sdð Þ

þ q2
s hsv ss þ r2pTpþ 1� r2

2
sd

� �

þ qsqvhss �ðsv þ sdÞ þ r2pTpþ 1� r2

2
sd

� �
; ð3aÞ

sssv � qvhsssv ¼ qvss ss þ sv þ sdð Þ

þ q2
vhss �ðsv þ sdÞ þ r2pTpþ 1� r2

2
sd

� �

þ qsqvhsv ss þ r2pTpþ 1� r2

2
sd

� �
: ð3bÞ

After this system is solved, the third equation provides us an
explicit formula for qg in terms of qs and qv . Since an irreducible,
continuous time, finite state space Markov chain always has a sta-
tionary distribution, this system does have a feasible solution.
Though the stationary distribution is unique, it does not necessar-
ily imply the uniqueness of the solution of our system of equations.

To illustrate our model, we use the game tree method intro-
duced earlier by Cressman et al. (2014). Game trees provide a
way to describe the forager’s behavior in detail, based on the
sequence of its choices at different decision points. The game tree
describes all possible foraging situations, which start from the
beginning of the search for food (the root of the tree), and end at
different random events (the leaves of the tree). In the illustration,
we will consider two types of focal foragers, i.e. we consider poly-
morphmodel for visualization.1 The first type, called an avoider (see
Fig. 1), is a forager who is never willing to interact (i.e. r ¼ 0). The
second type, called a contestant (see Fig. 2), is a forager who is
always willing to interact (i.e. r ¼ 1). Accordingly, we will use the
notations qs;a, qv ;a, qg;a, qd;a, ha (respectively qs;b, qv;b,qg;b, qd;b, hb)
instead of qs;1, qs;2, qv;1, qv;2, h1, h2 etc. for the avoider (respectively,
contestant). We call the reader’s attention to the fact that it is not
assumed here that at least one of these phenotypes is arbitrary rare.

In Fig. 1 we consider a focal individual that adopts the avoider
strategy in all foraging turns. This individual encounters a food
item discovered by another avoider with rate qv ;aha, see (1). Simi-
larly, the focal avoider encounters a food item discovered by a con-
testant and free food with rates qv ;bhb and 1� qv ;aha � qv ;bhb,
respectively. The time spent in the vulnerable stage is the mini-
mum of two independent, exponentially distributed random vari-
ables, as in (2), so it has mean

sm ¼ 1
1
sv þ

qs;bhbþqs;aha
ss

:

There is no interaction when no intruder arrives during the vul-
nerable stage of the focal avoider, that is, when the focal individual
can pass to the digestive stage before meeting a searcher. This hap-
pens with probability sm=sv . In this case the focal avoider starts
digesting its free prey, so in this particular foraging turn, the focal
avoider spends time ss þ sm þ sd and gets benefit B.

Next, consider the possibilities of interactions. Firstly, let us
start with the case where the focal avoider is in the vulnerable
stage and another individual arrives in the meantime. This happens
with probability 1� sm

sv . The intruders must be in searching stage.
1 Our model is monomorphic, since each individual can use a mixed strategy, i.e.
each one can use all pure strategies with a genetically fixed probability.
The probabilities that the intruder plays the subgame or uses the
avoider strategy are proportional to the frequencies of the corre-
sponding phenotypes, that is, a contestant individual arrives with

probability qs;bhb
qs;bhbþqs;aha

. If a contestant arrives, it takes the focal avoi-

der’s prey, thus the focal individual is left without prey and in this
particular foraging turn the focal individual spends ss þ sm time on
average. On the other hand, an avoider individual arrives with

probability qs;aha
qs;bhbþqs;aha

, and after the encounter, without a subgame

occurring, one of them gets the prey and starts digestion, each with
probability 1=2, so the average time duration and benefit are
ss þ sm þ sd

2 and B=2. When a focal avoider finds prey with a contes-
tant, the focal individual retires and immediately starts a new
search, thus the time duration of this kind of foraging turn is just
ss. Finally, when a focal avoider finds prey with another avoider,
no contest follows, and both parties have the same chance to take
the whole prey. Thus the focal individual spends time ss þ sd

2 and
gets B=2 on average.

In Fig. 2 we consider a focal individual that follows the contes-
tant strategy (r ¼ 1) in all foraging turns. Differences only appear
on the leaves of the tree. The leftmost leaf (no intruder arrives) is
the same as in the case of a focal avoider. When the focal contes-
tant is in the vulnerable stage and another contestant arrives, they
start to play the matrix game with time constraints, so in this par-
ticular foraging turn the focal contestant spends time ss þ sm þ pTp
on average and its average intake is pAp. If the intruder is an avoi-
der, then no contest (subgame) begins: the focal contestant gets
the prey and starts digesting, so the average time duration and
benefit are ss þ sm þ sd and B, respectively. Similarly, when a focal
contestant finds a prey with another contestant, they start to play
the game immediately, so this particular foraging turn takes an
average ss þ pTp of the focal contestant’s time, and the focal indi-
vidual gets pAp. Finally, when the discovered prey is with an avoi-
der, the focal contestant takes the prey and starts to digest it, so it
only spends time ss þ sd and gets benefit B.
2.3. Strict ESS

We say that the resident phenotype is strictly evolutionarily
stable if for an arbitrary focal different from the resident we have

G	

s	
<

G
s
;

that is, the resident phenotype maximizes the average intake per
time unit among all possible phenotypes, and this maximum is
unique. This is equivalent to maximizing the long-term payoff of
the individual, the standard measure of evolutionary success. We
note that an alternative way of approaching this problem was
developed in Křivan and Cressman (2017). The fact that these two
methods are actually equivalent was shown in Broom et al. (2019).

Claim. If the resident phenotype is strictly evolutionarily stable,
then r ¼ 1.

Proof. Let p	 ¼ p. Then the focal individual’s average intake per
time unit can be written in the following form:

G	

s	
¼ Q1 þ Q2r	

Q3 þ Q4r	 ¼: f r	ð Þ;

where the coefficients are positive, namely

Q1 ¼ pd þ pc
1�r
2

� �
B; Q2 ¼ pc

1�r
2 Bþ rp	Ap

� �
;

Q3 ¼ ss þ ðsv þ sdÞpd þ sdpc
1�r
2 ; Q4 ¼ pc

1�r
2 sd þ rp	Tp

� �
:

ð4Þ

This is a linear rational function of r	, hence monotone. Thus, if
0 < r < 1, there exists a mutant with r	 2 f0;1g which is at least
as good as the resident. This is excluded by supposition. If r ¼ 0,



Fig. 1. Game tree of a focal individual following the avoider strategy. On the leaves the average time durations of the corresponding foraging turns (upper row), and the
average intakes (lower row), are exhibited. For the notations see the main text.

Fig. 2. Game tree of a focal individual following the contestant strategy. On the leaves the average time durations of the corresponding foraging turns (upper row), and the
average intakes (lower row), are exhibited. For the notations see the main text.
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then Q2Q3 � Q1Q4 ¼ 1
2Bpc ss þ svpdð Þ > 0, so the function f r	ð Þ is

strictly increasing, therefore the resident can be outperformed by
choosing r	 ¼ 1.j

Next we show an example of a strictly evolutionarily stable
phenotype.

Example 1. Suppose the matrices T and A have unique smallest
and largest elements, resp., at the same diagonal position, say

t11 ¼ t < min tij : i; jð Þ– 1;1ð Þ	 

; a11 ¼ a > max aij : i; jð Þ– 1;1ð Þ	 


:

Then p ¼ ð1;0; � � � ;0Þ is optimal: p	Tp > t ¼ pTp and
p	Ap < a ¼ pAp for every p	–p. Let the resident phenotype be
defined by p ¼ ð1;0; � � � ; 0Þ and r ¼ 1. Then

Gs	 � G	s ¼ pdBþ pcpAp½ � ss þ sv þ sdð Þpdð Þ þ pcr	p	Tp½ �
� pdBþ pcr	p	Ap½ � ss þ sv þ sdð Þpdð Þ þ pcpTp½ �:

This is a linear function of r	, thus it suffices to check its posi-
tivity at r	 ¼ 0 and r	 ¼ 1.

If r	 ¼ 1, then



Fig. 3. (see Example 3) By setting t ¼ 1;B ¼ 4 and h ¼ 0:1, the graph shows
uðrÞ ¼ 0 at approximately r ¼ 0:81.
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Gs	 � G	s ¼ pc ss þ sv þ sdð Þpdð Þ pAp� p	Apð Þ½
þpc pApp	Tp� p	AppTpð Þ þ pdB p	Tp� pTpð Þ

and equality holds if and only if p	 ¼ p. If r	 ¼ 0, then

Gs	 � G	s ¼ pc ss þ sv þ sdð Þpdð ÞpAp� pdBpTp½ �:
This is obviously positive if sv þ sdð ÞpAp > BpTp, which can be

achieved by suitably choosing a and t. Then the resident phenotype
is evolutionarily stable.

2.4. Mixed ESS

Of course, a strictly evolutionarily stable phenotype does not
necessarily exist. For example, if the matrices T and A are given
in such a way that aij ¼ a and tij ¼ t for every i; j 2 1;2; � � � ;nf g, then
game strategy p is indifferent. Therefore, two phenotypes are
equivalent if they have the same contesting probability r. Thus
no phenotype can be strictly evolutionarily stable. Apart from this
trivial case, if the duration of the game is very long, and the reward
is small, it is not worth contesting. Our second example presents a
case where a strictly evolutionarily stable phenotype cannot exist.

Example 2. Consider a model where h < 1, that is, there is more
food than individuals. It is easy to see that

pd ¼ ss
ss þ qshsv

1� qvh
� � � ss 1� hð Þ

ss þ hsv
:

Though pd depends on r through qs and qv , this estimate does
not. Let T and A be defined as in Example 1. Clearly, if p– 1;0; � � �0ð Þ,
then the phenotype given by r ¼ 1 and p cannot be evolutionarily
stable, as the mutant with r	 ¼ 1 and p	 ¼ 1;0; � � �0ð Þ is better. If
p ¼ 1;0; � � �0ð Þ and r ¼ 1, then for p	 ¼ p and r	 ¼ 0 we have
already shown that

Gs	 � G	s ¼ pc ss þ sv þ sdð Þpdð ÞpAp� pdBpTp½ �:
Recalling the lower estimate for pd we can see that

Gs	 � G	s < 0, if

ss ss þ hsvð Þ þ sv þ sdð Þss 1� hð Þ½ �pAp� ss 1� hð ÞBpTp < 0;

that is,

ss þ svð ÞpAp < 1� hð Þ BpTp� sdpApð Þ: ð5Þ
Suppose

ss þ sv þ sdð Þa < Bt; h <
Bt � ss þ sv þ sdð Þa

Bt � sda
: ð6Þ

Then ss þ svð Þa < 1� hð Þ Bt � sdað Þ, that is, (5) holds, therefore a
mutant with p	 ¼ p and r	 ¼ 0 is strictly better than the resident.
Thus, in this model there does not exist a strictly evolutionarily
stable phenotype.

2.5. Weak ESS

We can also define the weak evolutionary stability property of
phenotype ðp;rÞ. It means that for an arbitrary focal with ðp	;r	Þ
we have G	

s	 � G
s : In Example 2, though there exist no strictly evolu-

tionarily stable phenotypes, still there may be one in the weaker
sense. Again, p	 ¼ p ¼ 1;0; � � �0ð Þ can be assumed, thus
p	Ap ¼ pAp ¼ a and p	Tp ¼ pTp ¼ t. For a weakly evolutionarily
stable r one has to solve the equation Q1Q4 � Q2Q3 ¼ 0. It looks
quadratic, but in fact it is not, because pd and pc also depend on
r through qs and qv , which are only implicitly given. Fixing
a; t;B; ss; sv ; sd so that the conditions of Example 2 are satisfied
one solves the equation numerically, by computing Q1Q4 � Q2Q3

for r running from 0 to 1. We shall see that for suitably choosing
a; t;B; ss; sv ; sd the existence of a weakly evolutionarily stable r
can be realized.
Example 3. For the sake of simplicity, we suppose
ss ¼ sv ¼ sd ¼ 1, that is, all time durations are identically dis-
tributed, namely, exponential with mean 1, and let a ¼ 1. Set the
positive parameters t;B; h, such that they satisfy (6) (i.e. Bt > 3
and h < Bt�3

Bt�1). With C ¼ r2t þ 1�r2

2 , equations (3a) and (3b) take
the form:

3� hð Þxþ h C þ 1ð Þx2 þ h C � 2ð Þxy ¼ 1;

3þ hð Þyþ h C � 2ð Þy2 þ h C þ 1ð Þxy ¼ 1;

where x and y stand for qs and qv respectively. For r fixed between
0 and 1, we find numerically the unique positive solution of this
system of two quadratic equations in x and y that satisfy
xþ y < 1. We then plot the function

u rð Þ ¼ 1� hyþ h
1� r
2

xþ yð Þ
� �

B
1� r
2

þ rt
� �

� 3þ hx� 2hyþ h
1� r
2

xþ yð Þ
� �

1� r
2

Bþ r
� �

;

which is equal to a positive multiple ð1þxhÞ2
hðxþyÞ of Q1Q4 � Q2Q3. When

t ¼ 1;B ¼ 4 and h ¼ 0:1; Fig. 3 shows that there is a mixed solution
r ffi 0:81 that satisfies the weak evolutionary stability property.

By Example 3, the zero-one rule is not valid in general since the
ESS phenotype is ready to contest with probability 0:81 (i.e. the
expected outcome is a mixed ESS).
3. Conclusion

Through considering the functional response, we can see that
kleptoparasitism is a special interference between foragers, which
does not only take time but also has an effect on the net energy
intake of both forager individuals. Thus, kleptoparasitism is an
excellent example for a foraging game (e.g. Filippi and
Nomakuchi, 2016, Sirot, 2000, Spencer and Broom, 2018). Further-
more, it is also a good example for the game with time constraints,
for instance the victim not only lost its acquired food item but also
the time it has spent to get this food item before it was stolen. That
is, although we only formally introduce time constraints in the
subgame, it is clear that time constraints also play an important
part in other stages of the sequential game.
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The novelty of the present work is that we make a bridge
between two theoretical research lines: optimal foraging theory
and a sequential evolutionary game theory with time constraints.
One of the basic ideas of optimal foraging theory is that the densi-
ties of different prey types determine the optimal foraging tactics.
In our game theoretical model a similar effect takes place. For
instance, in Example 2 we found that if there is more food than
individuals (i.e. the free food is abundant enough) then there is
no strict ESS. Furthermore, in our model, although there is only
one prey species, there are different prey types (as a free food item,
but also as a food item at the vulnerable stage of foragers, more-
over according to which phenotype acquired the prey). During
our investigation the relative frequency of these different food
items implicitly determines the evolutionary stability (see the role
of hi in the main text and Examples). In this sense, the above basic
ideas of optimal foraging theory are transferred to the game the-
ory. Moreover, the Nash solution concept in our game (where the
payoff is the ratio of average intake to the average time duration
of one of the foraging cycle) is equivalent with the rule of time
averages (Garay et al., 2015), claiming that ‘‘the optimal predator
behavior involves those activities that ensure larger time average
intake than the time average of all activities”. Thus the time dura-
tions of different activities also have effect on the optimal behavior
in the game with time constraints.

In our game, where the interactions between predators have an
effect on their net energy intake and need extra time, we found
that the classical zero-one rule is not valid. Firstly, the avoider phe-
notype (r ¼ 0) is never an ESS, since if there are only avoiders in
the resident population (that is, e.g. the resident never contests),
the mutant always get an advantage by stealing the resident’s food.
Secondly, we point out that the contestant (r ¼ 1) can be a strict
ESS, but is not necessarily one. Thirdly, the contestant (r ¼ 1) is
sometimes not an ESS, since if the average time duration of the
game is very long, and the reward is small, it is not worth contest-
ing. Fourthly, we give an example where a mixed ESS does exist.
The kleptoparasitism models of Broom and colleagues did not gen-
erally produce mixed solutions, as have been produced here. A key
reason for this was the sequential nature of decisions in that
model. The challenger decides their choice first and then the defen-
der responds, and if the challenger decided not to challenge then
the defender automatically keeps their food. We note that simple
sequential games generally have only pure solutions (see Broom
and Rychtář, 2013). These food stealing games (see e.g., Broom
and Ruxton, 1998; Broom et al., 2004) are not simple but affected
by population density. However, the effect of density is destabiliz-
ing for mixtures. If all individuals fight then the effective foraging
rate is low, meaning the value of any given food item is effectively
higher, making it more attractive to fight for. Thus more than one
ESS was common. The exceptions that produced mixed strategies
were Broom et al. (2008, 2009), where individuals which did not
attempt to search for conspecifics had a higher rate of finding free
food than others, whereas in the other models the efficiency of
food finding was assumed the same for all individuals. In the pre-
sent paper individuals make simultaneous decisions, and they do it
without making a distinction in whether they are the challenger or
the defender (since our model is symmetric without ownership), in
a similar way to Sirot (2000), and so can similarly obtain a mixed
solution. We note that there are a number of differences in the cur-
rent model and the Sirot (2000) model. In the latter Dove versus
Dove contests took no time (as in Broom et al., 2004, although
there it arose naturally as there was no contest), whereas in the
current paper it does, in the spirit of the ‘‘war of attrition” game
(see Maynard Smith, 1982). Sirot (2000) also effectively had a sim-
plifying assumption for the payoffs, where the value of a reward
compared to the cost of a fight was independent of the population
strategy, which is not made here (or in the Broom et al. (2004)
models).

Although we concentrate on a theoretical symmetrical selection
situation, we think the game-tree method (Cressman et al., 2014)
can handle other biological situations, as well. For instance, two
different types of asymmetry occur in kleptoparasitism. The first
one takes place within the same species, namely ownership, which
may have effect on the behavior of owner, like the bourgeois strat-
egy (Maynard Smith, 1982). The effects of ownership on the evolu-
tionary outcome when, unlike kleptoparasitism, it is only
interaction times that are strategy dependent, were investigated
by Cressman and Křivan (2019). The second one is when kleptopar-
asitism occurs between different species (e.g. Balme et al., 2017,
Garthe and Hüppop, 1998). These types of asymmetry (ownership
and/or multispecies interactions) can be modelled by the game-
tree method, but the analysis of these asymmetric games will need
more investigation and is left to future research.
CRediT authorship contribution statement

József Garay: . : Conceptualization, Methodology,
Writing - original draft, Writing - review & editing. Ross Cress-
man: Conceptualization, Methodology, Writing - review & editing.
Fei Xu: Software, Visualization. Mark Broom: Conceptualization,
Methodology, Formal analysis, Writing - review & editing. Vill}o
Csiszár: Formal analysis, Visualization, Writing - review & editing.
Tamás F. Móri: Conceptualization, Methodology, Formal analysis,
Writing - original draft, Writing - review & editing.

Acknowledgements

This work was partially supported by the Hungarian National
Research, Development and Innovation Office NKFIH [grant num-
bers K 125569 (to T.F.M.), and GINOP 2.3.2-15-2016-00057 (to J.
G.)]. The project has received funding from Horizon 2020: The EU
Framework Programme for Research and Innovation, Marie Skło-
dowska–Curie Actions (grant number 690817).

References

Balme, G.A., Miller, J.R.B., Pitman, R.T., Hunter, L.T.B., 2017. Caching reduces klepto–
parasitism in a solitary, large field. J. Anim. Ecol. 86, 634–644.

Barnard, C.J., 1990. Parasitic relationships. In: Barnard, C.J., Behnke, J.M. (Eds.),
Parasitism and Host Behavior. Taylor & Francis, London, pp. 1–33.

Beddington, J.R., 1975. Mutual interference between parasites or predators and its
effect on searching efficiency. J. Anim. Ecol. 44, 331–340.

Brockmann, H.J., Barnard, C.J., 1979. Kleptoparasitism in birds. Anim. Behav. 27,
487–514.
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