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1  | INTRODUC TION

There is an increasing recognition of the contribution to pollination 
made by wild bees and other insect groups (e.g. flies, beetles, butterflies)  

as pollinators within natural and agro-ecosystems (Garibaldi et al.,  
2013; Ollerton et al., 2011; Rader et al., 2016). However, effective-
ness of pollinators in pollination differs and the ability to compare 
this effectiveness can be complicated through the inconsistency of 
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Abstract
1. Many insect species provide essential pollination services. However, the amount of 

pollen deposited onto a stigma when visiting a flower (‘single visit pollen deposition’, 
SVD) can vary greatly among taxa depending on morphological traits of pollinators. 
Further, SVD is commonly measured using one of two methods (‘static’: waiting for 
an insect to visit a flower present on plant, and ‘active’: removing the flower and 
presenting it to a flower visitor) that may also differ in their effectiveness.

2. To gain a more comprehensive understanding of how SVD compares among pol-
linators, we conducted a hierarchical meta-analysis using data from 28 studies 
identified by a systematic review. These contained SVD data for 94 bee and 33 fly 
taxa (hereafter ‘wild pollinators’), across 30 plant species from which we included 
127 observations. In the analysis of each study, we used the western honey bee 
Apis mellifera as a comparator species.

3. Wild pollinators deposited more pollen onto stigmas per single visit than honey-
bees, and those with larger body deposited significantly more pollen than smaller 
ones. Of the two methodological approaches to assess SVD, ‘static’ versus ‘active’, 
we found no significant difference regarding the amount of deposited pollen.

4. Synthesis and applications. Our meta-analysis highlights the breadth of wild pol-
linators that contribute to pollination effectiveness via their delivery of pollen to 
many crop and non-crop plant species. However, just 25% of the observations 
assessed the amount of pollen deposited by fly species. Our findings point to the 
need to further quantify the pollination effectiveness of non-bee pollinators as 
studies have largely focused on managed and wild bee species.
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methodology used between studies (Ne'eman et al., 2010). Regarding 
methodology, studies have used one or a combination of parameters 
to assess the effectiveness of various insect species as pollinators 
of various plant species. These may include information on visit fre-
quency, duration or amount of pollen grains attached to the body 
of pollinators as a proxy of pollination effectiveness of insect spe-
cies (Garibaldi et al., 2013; Howlett et al., 2018). Single visit pollen 
deposition (King et al., 2013), the number of developed pollen tubes 
within styles (Zhang et al., 2015) and/or fruit or seed set (Garratt 
et al., 2014), are other parameters often used in order to gain further 
information on pollinator effectiveness. Single visit pollen deposi-
tion (SVD) measures the amount of conspecific pollen deposited on 
a stigma per one (single) visit by a pollinator (King et al., 2013). This 
variable has often been used as a practical and reliable measure of a 
pollinators’ contribution to pollination (Ballantyne et al., 2015); how-
ever, it also has limitations (quantity and quality of pollen, and stigma 
receptivity) which have to be taken account. For instance, it may not 
be possible to accurately identify pollen to species level. Moreover, 
deposited pollen has to be conspecific, compatible and viable on the 
receptive target stigma (Ne'eman et al., 2010).

In practice, the measurement of the single visit pollen deposi-
tion resulting from an insect visit necessitates the monitoring of 
virgin flowers until an insect completes a visit (King et al., 2013; 
Rader et al., 2009). Two approaches are commonly used to moni-
tor the flower visitation, these being known as ‘static’ and ‘active’ 
approaches (Howlett et al., 2017). In the static approach, a virgin 
flower (often initially bagged to prevent unobserved insect visita-
tions) is left attached to the plant and the observer waits until an 
insect visits the flower. In the active approach, a flower is removed 
from the plant and presented near to the target pollinator species in 
a process referred to as ‘interviewing’ (Natalis & Wesselingh, 2012; 
Thomson, 1981). In both methods, the stigma is removed from a 
flower following the single visit, placed into a drop of melted glyc-
erin jelly with basic fuchsin on a micro slide, pressed with cover slip, 
then number of conspecific pollen is assessed or counted under a 
compound microscope (Dafni et al., 2005; Kearns & Inouye, 1994). 
The static approach is more frequently used (Howlett et al., 2017), 
however, it is time-consuming and only practical for very common 
flower visitors that have high probability of contacting the observed 
flower. In contrast, the active approach may need less time until a 
pollinator visits a flower, but the presentation of flower may poten-
tially alter the behaviour of insect resulting in an unrealistic measure 
(Howlett et al., 2017). Moreover, the approach is less suitable for 
insects that are easily disturbed through the process of presenting a 
flower (Howlett et al., 2017). Although several studies have already 
measured the SVD for a wide variety of plant-pollinator interactions 
(King et al., 2013; Phillips et al., 2018; Rader et al., 2009), the effect 
of static and active approaches on SVD were compared just in one 
study—this being for onion Allium cepa L. (Howlett et al., 2017).

Flowers of many plant species are visited by a diverse range of 
insect visitors that can vary widely in their ability to deposit pollen 
(Ballantyne et al., 2015) depending on behavioural and morphological 
traits of the visitors (Ivey et al., 2003; King et al., 2013). For example, 

some flower visitors may be partly or entirely nectar thieves accord-
ing to their behaviour without making contact with the floral repro-
ductive structures, and therefore avoid depositing pollen grains on 
stigmas (Maloof & Inouye, 2000; Junker et al., 2010). Otherwise, 
pollinators' body size such as body length, or intertegular distance 
(hereafter ITD), and/or hairiness may also influence the amount of 
deposited pollen (Goulson et al., 2002; Stavert et al., 2016). However, 
the number of studies that have been examined the effect of these 
parameters on SVD simultaneously on a wide range of plant species 
remains limited. Floral traits may also influence the amount of de-
posited pollen by a pollinator, however these are rarely measured in 
studies (Solís-Montero & Vallejo-Marin, 2017).

In this study, we conducted a meta-analysis to examine: (a) how 
SVD varies with body length and intertegular distance of pollina-
tors; (b) how SVD differs across bee (Apoidea), and fly species from 
a broad range of insect (n = 77) and plant species (n = 30) in order to 
gain a broader perspective of the comparative SVD; and (c) whether 
the two commonly used methodological approaches (static and ac-
tive) provides consistent data on SDV. In our meta-analysis we used 
the western honey bee Apis mellifera L. as a comparator (‘control’) 
species, to compare to the other flower visiting taxa because it is the 
most intensively studied managed pollinator species globally (Hung 
et al., 2018; Morse, 1991). Moreover, it was the only consistent spe-
cies across the analysed datasets.

2  | MATERIAL S AND METHODS

2.1 | Search strategy and inclusion criteria

We searched the Web of Science Core Collection database using the 
following terms: TOPIC: bee OR bees OR Hymenoptera OR fly OR 
flies OR Diptera AND TOPIC: ‘pollen deposition’ AND ‘single-visit 
deposition’ OR ‘single visit deposition’ AND ‘single-visit’ OR ‘single 
visit’ OR ‘pollin* effectiveness’ OR ‘pollin* efficiency’. Refined By: 
DOCUMENT TYPES: ARTICLE OR PROCEEDINGS ARTICLE AND 
Year Published = 1945–2019. The latest search was conducted in 
November 2019 and resulted in 637 potential articles.

Each study was vetted by title and abstract according to inclu-
sion/exclusion criteria as described below, then we reviewed the 
full text of articles for potential inclusion. We included studies con-
taining the following data: (a) the mean number of deposited pollen 
grains per stigma following a single visit by honeybees along with 
similar data for other bee (Apoidea) or non-bee pollinators (fly spe-
cies); (b) the standard deviation (SD) or standard error of the mean 
(SEM); and (c) sample size (N). To sum up, we used only flower-vis-
iting observations to species (n = 97) or genus level (n = 30; e.g. 
‘Lasioglossum spp.’, ‘Bombus spp.’) in the analysis because ITD would 
not have been assessed reliably at higher taxonomical categories 
due to size variability of species between genera. An observation 
is a bee or fly taxon (species or genus) where the mean number of 
deposited pollen grains per stigma following the single visit was re-
corded. Moreover, the standard deviation or standard error of the 
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mean, and sample size (number of stigma, where conspecific pollen 
was assessed) were also given.

Studies were excluded if (a) the number of deposited pollen 
grains was divided or multiplied with other metrics (e.g. seed set, 
number of pollen grains of flowers), so that the original value could 
not be calculated; (b) multiple genera were grouped into broader cat-
egories (e.g. ‘small syrphids’, ‘small Muscidae’), or (c) did not contain 
the data above. We included only observations, where sample size 
(N) of control (honey bee) or experimental group (given wild pollina-
tor species or genus) was equal to or more than three. We did not 
include studies with other taxa, for example, butterfly species, be-
cause these studies mostly did not contain honey bee, moreover ITD 
data for butterfly species were not available within datasets used.

We checked the references of a qualitative review of Howlett 
et al. (2017) in our topic in order to complete the main search with 
further potential studies. The study included a list of relevant articles 
focusing on SVD by insects and also contained new data on pollen 
deposition. Twelve articles were relevant from the list and eight of 
them were also available in the Web of Science Core Collection data-
base. Additionally, we completed the meta-analysis with unpublished 
data from two studies (see the PRISMA flow diagram Figure S1).

Altogether, we found 28 studies with 16 focusing on crop and 14 on 
non-crop plant species (Table S1). Eighteen studies examined the ‘honey 
bee + other bees’ group, and 10 studies the ‘honey bee + flies’ or ‘honey 
bee + other bees + flies’ group. We found 94 observations on bee and 
33 observations on fly taxa in the studies. Twenty-one studies applied 
the static approach (with 95 observations) and eight studies the active 
approach (with 32 observations; one study used both approaches). 
Plant species investigated in studies were either self-incompatible or 
anthers were carefully removed to avoid self-pollination. Each flower 
was covered by a net to avoid being pollinated before observation.

Single visit pollen deposition values were extracted from text, 
bar/box plots or tables within the studies. In two studies (Park 
et al., 2016; Phillips et al., 2018) with eight observations median val-
ues were reported instead of mean values, therefore, we applied for-
mulas according to Hozo et al. (2005) to calculate mean values. Mean 
values were included in the case of 26 studies with 119 observations.

Body size has often been measured as the body length (distance 
from the front of the eyes to the tip of the abdomen) and/or the in-
tertegular distance (the width of pollinator's thorax, hereafter ‘ITD’; 
Cane, 1987) of an insect. To compare body size, we applied body length 
and intertegular distance in cm for bee and fly species from a dataset of 
pollimetry r package (Kendall et al., 2019). This dataset contains body 
length (as dried material) and ITD data of almost 400 bee and more 
than 100 fly species. If the given dataset contained multiple measure-
ments of body length or ITD (e.g. for some common species such as 
Bombus terrestris), we calculated the arithmetic mean of the respective 
values. If the exact name of species was not addressed in the study 
(e.g. ‘Melissodes spp.’), we used the arithmetic mean of body length and 
ITD of species in the genus given in the dataset. Body length and ITD 
data of bee and fly species were averaged among sexes. One study 
reported the mean values of body length of the examined species, and 
here we used these data (Sun et al., 2013).

The difference between body length and ITD values of dif-
ferent species within a genus and also the intraspecific body size 
difference—particularly in the case of bumblebee species—can 
vary widely. Therefore, we conducted a sensitivity analysis ex-
cluding genus-level observations (n = 30) from the analysis. For 
particular bee, bumblebee and fly species from South America 
and New Zealand no reliable ITD measurements were available, 
therefore, we omitted them from ITD subset analysis. For species 
in the given dataset without body length values, body length data 
were obtained from the literature (Scheuchl & Willner, 2016; van 
Veen, 2004) and online databases (Ratnasingham & Hebert, 2007; 
Roskov et al., 2018).

In summary, we obtained body length data to all of the species 
and genus observations (n = 127) while ITD data were available for 
106 taxa (of 127), therefore, we conducted a subset analysis with 
these 106 ITD data to species or genus observations.

We used the honey bee as control species from each study com-
paring the SVD value of honey bee to SVD values of other bee and 
fly species. Finally, the body length ratio and ITD ratio between 
given pollinator and honey bee was calculated and used in the me-
ta-analysis models (see Section 2.2).

2.2 | Statistical analysis

We calculated effect sizes and their variances per observation (each 
species or genus) by using the log response ratio (lnR) based on the 
mean and standard deviation of stigmatic pollen deposition, and 
sample size (number of stigma; Borenstein et al., 2009). Then we 
corrected this with a small-sample bias estimator using the Delta 
method (Lajeunesse, 2015) to minimize the inaccuracies caused by 
small sample size (N) present within studies (see Appendix S1 for 
equations).

In the meta-analysis models described below, we weighted the 
effect sizes by their inverse variances. To examine the heterogene-
ity of effect sizes, we performed hierarchical meta-analyses using 
mixed-effects models with moderators as predictor variables. These 
were body length and ITD ratio (between a pollinator and honey 
bee), taxonomic order of pollinators (Hymenoptera vs. Diptera), and 
approach (active vs. static). Since effect sizes were often taken for 
different pollinator species, but the same plant species from the 
same study, we used study ID as a nested factor in the models. 
Additionally, data within a study were also non-independent since 
we used the same comparator (honey bee), thus using study ID as 
a nested factor is necessary. Furthermore, often the same plant 
and pollinator species were studied in different studies, therefore, 
we used plant and pollinator species also as nested factors in a 
crossed-nested way. Finally, we assumed that phylogenetic related-
ness might also have an effect on the heterogeneity of effect sizes 
as species of pollinators and plants with high taxonomic variability, 
but often with related species, were included in the meta-analyses 
(Chamberlain et al., 2012). To assess whether different ecological 
traits of pollinator species result in taxonomic differences in effect 
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sizes, we added taxonomic rank (such as taxonomic order and fam-
ily of pollinators except when taxonomic order was involved as a 
moderator in the model) to the meta-analysis as nested random 
factors (Chamberlain et al., 2012; Marczak et al., 2007). For model 
structure, see Appendix S2. Additionally, we tested the interac-
tion between the taxonomic order of pollinators (Hymenoptera vs. 
Diptera) and ITD ratio, as well as between the taxonomic order and 
approach (active vs. static) to assess whether pollen deposition of 
different pollinators at this broader taxonomic grouping depended 
on approach. Finally, all effect sizes and CI (confidence interval) 
values were back-transformed [from lnR to R(=response ratio)] for 
data visualisation.

2.3 | Analysis of publication bias

Publication bias may result from an overrepresentation of published 
studies with significant and novel findings whereas studies with non-
significant findings could potentially remain in the grey literature, 
and therefore difficult to identify and access (Lortie et al., 2007). 
To test for this potential bias we checked funnel plots (a graphical 
test) and performed a regression test (a statistical test) in which a 
significant p value may indicate publication bias. We calculated 
Rosenthal's fail-safe number to estimate the number of unpublished 
studies, which would erase the significant effect measured by the 
meta-analysis (Rosenberg, 2005).

All statistical analyses and graphical presentations were carried 
out in r (R Development Core Team, 2020) by using r-packages meta-
for (Viechtbauer, 2010), ggplot2 (Wickham, 2016) and pollimetry 
(Kendall et al., 2019).

3  | RESULTS

3.1 | SVD, body length and ITD

Altogether, we included 127 observations from 28 studies in our hi-
erarchical meta-analyses. Based on the summary meta-analysis of all 
observations we found that the SVD made by wild pollinators (bee 
and fly species together) was significantly higher compared to the 
SVD of honey bees (Table 1; Figure 1).

We found that body length and also ITD ratio had a significantly 
positive effect on the amount of pollen deposited, that is, a larger 
pollinator had a larger SVD on stigmas (Table 1; Figure 2; Figure S2). 
Furthermore, body length had basically a similar, but a slightly stron-
ger effect on SVD than ITD (Table 1; Figure 1). Performing sensitivity 
analysis by excluding genus-level observations and using only SVD 
of species level the results remained the same (Table 1). According to 
the interaction model there was no significant interaction between 
taxonomic order and body length or the ITD ratio of pollinators, 
indicating that an increasing body size corresponded with increas-
ing SVD independently of whether bees or flies were tested in the 
meta-analysis.

3.2 | Taxonomical order

When taxonomic order of pollinators was used as a moderator, 
we found that non-honey bee Hymenoptera species (94 bee taxa 
of Apoidea) deposited significantly more pollen onto stigmas than 
honey bees whereas Diptera species (33 fly taxa) deposited fewer 
pollen grains onto stigmas than honeybees (Figure 1). When compar-
ing Hymenoptera with Diptera (test of between-group heterogene-
ity), we found that bees transfer significantly more pollen to a stigma 
than flies (Figure 1).

3.3 | Methodological approaches

The between-group heterogeneity in the case of survey methods 
(i.e. comparing the active approach with static) was not significant 
(Table 1). The interaction model between pollinator taxonomic order 

TA B L E  1   Summary table of meta-analyses showing total 
heterogeneity (‘All’ is single visit pollen deposition of all of 
pollinators compared to the honey bee without moderators), 
and heterogeneities explained by moderators [body length and 
ITD ratio in cm, taxonomic order (Diptera vs. Hymenoptera), 
and approaches (active vs. static)] with corresponding residual 
heterogeneities for all models with intercept. Results of three 
interaction models are also shown (body length ratio × taxonomic 
order of pollinators, ITD ratio × taxonomic order of pollinators, and 
taxonomic order of pollinators × approach)

df Q p

All 126 376.93 <0.000

Body length ratio 1 8.73 0.003

Residual 125 359.01 <0.000

Body length ratio  
without genera obs.

1 6.86 0.008

Residual 95 266.19 <0.000

ITD ratio 1 4.04 0.044

Residual 105 319.28 <0.000

ITD ratio without  
genera obs.

1 4.95 0.026

Residual 78 227.21 <0.000

Pollinator order 1 27.02 <0.000

Residual 125 310.06 <0.000

Approach 1 0.002 0.965

Residual 125 376.5 <0.000

Body length ratio ×  
Pollinator order

3 35.38 <0.000

Residual 123 304.11 <0.000

ITD ratio × Pollinator 
order

3 28.66 <0.000

Residual 103 254.4 <0.000

Pollinator order ×  
Approach

3 26.8 <0.000

Residual 123 303.38 <0.000
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and the methodological approach did not reveal evidence for a sig-
nificant difference in SVD showing that both survey methods can be 
used effectively for both groups.

3.4 | Publication bias

The funnel plot of effect size versus standard error of mean was not 
strongly skewed (Figure S4), indicating no evidence of publication bias 
in our dataset. The fail-safe number of 999 using the Rosenthal's ap-
proach was also robust. This number shows the number of studies 

which would need to erase the significant effect measured by the meta-
analysis (for the N = 127 observations that were included, the bench-
mark value of Rosenthal is 5N + 10 = 645, and this was smaller than the 
fail-safe number of 999). However, the regression test showed a signifi-
cant difference from a symmetric funnel (z = −2.68, p = 0.0072), which 
among others can be caused by a potential publication bias (Sterne 
et al., 2011). Therefore, we applied the trim and fill method as a form of 
sensitivity analysis (Peters et al., 2007). This is an iterative nonparamet-
ric method to correct the asymmetry by removing the most extreme 
small studies from the positive side, and recalculating the estimated 
mean effect size at each iteration until symmetry is reached (trimming). 
Although this trimming yields an adjusted mean effect size, it reduces 
variances of effect sizes, therefore an algorithm adds the original stud-
ies back and imputes a mirror image for each one (filling). The trim and 
fill method did not change the outcome of the summary meta-analysis 
(Table 1; Figure 1), and showed that no studies were missing on the left 
side of the plot (Figure S3). Thus based on all these diagnostic methods, 
we think that publication bias did not affect our results.

4  | DISCUSSION

4.1 | Effect of body length and ITD on SVD

This study demonstrates that larger pollinators tended to deposit 
more pollen on stigmas than smaller as both pollinator body length 
and also intertegular distance of the different pollinator species 
had a positive effect on SVD across a broad range of plant species 
(n = 30). This result is in accordance with previous studies which 
have also shown that larger pollinator species can deposit more pol-
len onto stigmas than smaller pollinators hence they were found 
to be more likely to contact the sexual organs of flowers (Ramalho 
et al., 1998; Willmer & Finlayson, 2014).

The interpretation of the relationship between pollen deposition 
and body size can depend on the influence of other morphological 
traits of pollinators such as hairiness (Phillips et al., 2018; Stavert 
et al., 2016) and proboscis length (Sun et al., 2013), particularly in 
circumstances where a specific floral morphology is better suited 
for pollination by a specific flower-visiting taxon (Stout, 2000). 
Moreover, this relationship may not be apparent due to a limited 
breadth of available data (e.g. low numbers of flower-visiting spe-
cies assessed and low sample size). For instance, there are just a few 
studies that use consistent methodology to compare SVD in relation 
to other morphological parameters such as hairiness or proboscis 
length. Therefore, we used the more straightforward measures of 
body size and ITD and their relationship with SVD.

4.2 | SVD of wild pollinators

In this meta-analysis, we included observations on wild pollina-
tors from almost all continents across a wide range of plant species 
from different ecosystems such as agricultural fields or urban areas. 

F I G U R E  1   The effect size related to single visit pollen 
deposition (SVD) depending on body length ratio and intertegular 
distance (ITD) ratio to honey bee, taxonomic order of pollinators 
(Diptera vs. Hymenoptera), and approach (active vs. static). 
Horizontal dashed line means that SVD of wild pollinator species 
is the same as for honey bee. Symbols are above dashed line mean 
higher SVD than honey bee. 95% CIs (confidence intervals) are 
shown. If they do not contain the dashed line, the significance 
level at p = 0.05. Numbers in parentheses next to symbols show 
sample sizes. The horizontal arrow indicates a significant difference 
between groups. **p < 0.01
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Despite heterogeneity of the data origin, findings showed that wild 
pollinators, especially wild bee species, deposited significantly more 
pollen grains on a stigma per single visit to a flower than did honey 
bee. The number of observations on bumblebee species was high 
(n = 45), as they were a focus of many studies (e.g. King et al., 2013; 
Potts et al., 2001). Bumblebees often collect significantly more pol-
len from anthers, and deposit more pollen on stigmas than honey 
bees (Thomson & Goodell, 2001; Willmer & Finlayson, 2014). This 
is not only because of body size, but also the hairiness of body 
and their adaptation to morphological traits of flowers they visit 
(Goulson et al., 2002). From studies involved in the analysis just a 
few non-Apidae bee families (e.g. Halictidae and Megachilidae) 
could be incorporated in our dataset. This reflects a general taxo-
nomic bias in pollination studies towards particular bees (De Palma 
et al., 2016). Alike we strongly advocate the need for studies towards 
understanding these relationships across broader taxonomic groups 
for both bee and non-bee pollinators.

We found that flies produced a smaller SVD than honey bees 
(within-group analysis) and wild bees (between-group analy-
sis), a finding that agrees with Willmer et al. (2017) who found 
bee species deposited more pollen than fly species. However, 
we found fewer assessments of fly species than of bee species, 
and further data are required to be confident that this pattern is 
broadly consistent across many plant species. On the other hand, 
some studies have demonstrated that flies can be more effec-
tive pollinators of certain crop species than honey bees (Orford 
et al., 2015; Rader et al., 2016, 2020; Smith & Saunders, 2016). 
Currently hoverflies (Syrphidae) have received the greatest at-
tention (Jauker et al., 2012; Rader et al., 2020), however the 
effectiveness of other fly groups as pollinators can be also im-
portant, for example, Calliphoridae species in carrot pollination 
(Howlett, 2012), or Anthomyiidae in pollination of Brassica rapa 
L. (Stavert et al., 2018). Yet, knowledge on the efficiency of most 
fly species has been largely ignored (Orford et al., 2015; Ssymank 
et al., 2008). It is possible that a bias against the study of par-
ticular fly species as pollinators may reflect negative knowledge 
or perceptions by researchers or the community. For example, 
the fly families Sarcophagidae and Calliphoridae contain many 
species with larvae that consume decaying organic matter, in-
cluding excrement, fluids from animal bodies, and are associated 
with human diseases or myiasis (Pape, 1996), livestock fly strike 
(Heath & Bishop, 1995) and contamination of drying stockfish (Aak 
et al., 2011). Despite such species are often flower visitors (Grass 
et al., 2016) and verified pollinators (Rader et al., 2012, 2016), 
their importance in the pollination of a broad range of crops has 
largely been overlooked (Inouye et al., 2015; Larson et al., 2001; 
Woodcock et al., 2014).

4.3 | Effect of approaches on SVD

From a methodological point of view, we found no significant dif-
ference between obtained values of SVD using either the active 

approach of interviewing pollinators using detached flowers or 
the static approach of waiting for pollinators to visit flowers still 
attached to the plant. Both approaches were found to be equally 
suitable to measure SVD even though the number of observations 
using the static approach was three times that of the number of 
observations carried out by the active approach. Analysing the in-
teraction between the orders and approaches, we found no inter-
action, that is, both survey methods were effective for both bees 
and flies. Howlett et al. (2017) also reported no differences in SVD 
of different flower visitors using both static and active approaches, 
however, only one plant species was studied (Allium cepa L.).

Additionally, we do not assume that we can generalise that both 
approaches are equally applicable irrespective of plant and/or insect 
species, but in our analysis no differences were detected between 
them. However, we propose that both approaches should be ideally 
applied within studies, if possible, and additional plant and/or insect 
species should be studied for future comparisons.

5  | CONCLUSIONS

In summary, our results show that body length and ITD had posi-
tive effects on SVD, indicating that larger pollinators deposit more 
pollen per single visit. Notwithstanding, other morphological and 
behavioural traits of pollinators may also play a role in pollen dep-
osition which should be taken account. We also found that bees 
deposited more pollen than fly species moreover, that SVD of wild 
pollinators is often higher than SVD of honeybee. Wild pollinator 
species are therefore likely to play a key role in providing com-
plimentary pollination services to managed honeybees (Stavert 
et al., 2018; Woodcock et al., 2019). This corresponds to Rader 
et al. (2016) who demonstrated that many fly and wild bee species 
not only contribute to the pollination of a wide range of crops but 
also non-crop plant species.

Interestingly, we found no significant difference in the effective-
ness of the active approach (presenting a detached virgin flower to 
a flower visiting insect) and the static approach (waiting for a flower 
visiting insect to visit a virgin flower on a plant) as related to subse-
quent SVD, despite the methodological differences between these 
approaches.

Our meta-analysis shows that despite the increasing awareness 
of the importance of pollinator diversity for increasing crop yields 
(Garibaldi et al., 2016), the stigmatic pollen deposition of non-bee 
species remains understudied, calling for further research to bridge 
this knowledge gap.
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