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Abstract 

A simple procedure is suggested by which cyclic voltammograms, CVs, characterizing adsorption 

processes can be analyzed. Using this procedure, from a set of CVs taken at varied scan-rates, two 

scan-rate independent, hysteresis-free functions of potential can be calculated. One of them 

characterizes the adsorption kinetics as if surface coverage were zero, the other is an adsorption 

isotherm. Because of the formal analogy, the procedure is applicable also for CVs of redox systems 

of finite quantity of reactants, e.g. surface confined redox systems.  

 

Keywords: adsorption, kinetics, charge transfer, redox system 

 

1. Introduction 

Cyclic voltammograms, CVs, are usually complicated functions of the scan-rate; they often exhibit 

large hysteresis. Comparison of two CVs measured with different scan-rates is far from being trivial. 

The comparison is even more complicated if the scan-rate varies in time or when two voltammograms 

are measured with different, arbitrary waveforms of potential. 

In rare, simple cases, however, there exist mathematical transformations by which CVs taken with 

different scan-rates can be transformed to the one-and-the-same potential-program invariant (PPI) 

function – which function is independent of the actual form of the potential-time function. For 

example, the CVs of reversible redox couples can be transformed to hysteresis-free sigmoid-shaped 

curves using semiintegration [1]. In contrast, the CVs of redox systems of slower kinetics – of the so-

called quasi-reversible systems – cannot be transformed to a single PPI function. However, as it has 

recently been demonstrated in Refs. [2,3], by measuring a set of quasi-reversible CVs with varied 

scan-rates, two PPI functions can be obtained by a simple numerical procedure. One of them 

characterizes charge transfer kinetics, the other diffusion.  

The subject of the present communication is the analysis of another important electrochemical 

situation: when the rate of the electrode process is limited by the finite quantity of reactants. The 

relevant equations are derived for the case of adsorption-desorption of charged species on an electrode 

surface with a finite density of adsorption sites. However, we keep in mind that there are analogous 

cases: the CVs of redox reactions of surface confined species and the CVs of redox reactions in a thin 

layer cell. The kinetics of all these types of processes manifest themselves as humps or peaks on the 

CVs and pseudocapacitances in the context of impedance analysis. As it is shown here using the 

example of the first case, the CVs can also be transformed to yield PPI functions. 

2. Theory 

Consider a CV measurement in a metal-electrolyte system where some electrolyte component A of 

concentration c is reversibly bound onto the surface. In what follows, we will use the term adsorption-

desorption for this process. Denoting the unoccupied locations of the substrate as S, and considering 

also the electric charge change of A, the A𝑧+ + S ⇌ As
(𝑧+𝑛)+ + 𝑛e− reaction proceeds; where the e- 

are the excess electrons appearing on the metal. The density of adsorbed species on the substrate is 



Electrochem. Comm. 118 (2020) 106810, doi: 10.1016/j.elecom.2020.106810 

 2 

expressed as surface concentration, 𝛤 in mol/cm2 units, or normalized by the total surface 

concentration of locations 𝛤0, as a dimensionless coverage 𝜃 = 𝛤 𝛤0⁄  .  

The E(t) potential program – of arbitrary waveform – starts in time t=0 from a sufficiently negative 

or positive value where adsorbate coverage is zero. The potential program crosses the 𝐸 = 𝜀 level 

more than once during the experiment (its possible ways are illustrated in Fig.1 of [3]). 

In what follows, we analyze the rate equations at this particular 𝜀 potential. We adhere to the usual 

theorisation of electrochemical kinetics [4] but ignore all complication factors like IR drop, double-

layer charging, transport hindering (i.e. adsorbate concentration in the vicinity of the surface is always 

the same as in the bulk, c). n is regarded to be a constant, integer number, though we should use the 

(negative of) the potential-dependent formal partial charge number [5] instead. Some of these 

complicating issues will be discussed in the Discussion section. 

The current density j is always the time derivative of the electronic charge of the metal, q, which is – 

as double layer charging is out of our present scope – related to the change of the surface 

concentration, Γ. At any time instance t, 

𝑗(𝑡) = d𝑞(𝑡) d𝑡⁄ = ∂𝑞 ∂𝛤⁄ ∙ d𝛤(𝑡) d𝑡⁄ = 𝑛F ∙ d𝛤(𝑡) d𝑡⁄ = 𝑛F ∙ 𝛤0 ∙ d𝜃(𝑡) d𝑡⁄    (1) 

where F is the Faraday constant. As the initial condition is 𝛤(𝑡 ≤ 0) = 0, and hence 𝑞(𝑡 ≤ 0) = 0; 

by integrating Eq.1 with respect to time, t,  we get  

𝑞(𝑡) = ∫ 𝑗(𝜏)d𝜏
𝑡

0
=  nF∙Γ(𝑡) = nF∙𝛤0∙𝜃(𝑡)  (2) 

The net rate of adsorption, in the simplest way as usual in case of Langmuirian adsorption, is written 

as 

d𝜃(𝑡) d𝑡⁄ = 𝑘ad(𝐸) ∙ 𝑐 ∙ [1 − 𝜃(𝑡)] − 𝑘d(𝐸) ∙ 𝜃(𝑡)  (3) 

where kad and kd are the rate coefficients of adsorption and desorption, respectively. Note that only 

the rate coefficients depend on E, in a yet unspecified way; the time dependence of j stems from that 

of θ (and an eventual dependence of the number of adsorption sites on potential is disregarded).  

For time 𝜏, when 𝐸 = 𝜀, by combining Eqs. 1 to 3, and introducing the symbol 

𝐻(𝜀) = 𝑘ad(𝜀)𝑐 + 𝑘d(𝜀) we get 

𝑗(𝜏) = 𝑛F∙𝛤0∙𝑘ad(𝜀) ∙ 𝑐 − 𝐻(𝜀) ∙ 𝑞(𝜏)  (4) 

That is, if we measure a voltammogram which crosses some potential ε at least two times, then all the 

𝑗 vs 𝑞 points (of the same ε potential) appear on one and the same 𝑗 = const1 − const2 ∙ 𝑞 line. With 

increasing scan-rate, the points move towards the ordinate; the physical meaning of the ordinate 

intersect, const1 is the adsorption rate – expressed as current density – as if the complete surface were 

completely uncovered, 𝛤 = 0. As a limit value, it will be named as jlim. The abscissa intersect of the 

line is const1 const2⁄ = 𝑛F∙𝛤0∙1 [1 + 𝑘d(𝜀) (𝑘ad(𝜀)𝑐⁄ )]⁄ , which has the physical meaning of  the 

surface charge associated with the adsorption, in equilibrium; hence we denote it as 𝑞eq.. 

With these denotions  Eq.4 reads as  

𝑗(𝜏) = 𝑗inf(𝜀) − 𝐻(𝜀) ∙ 𝑞(𝜏)   (5) 

with 𝐻(𝜀) = 𝑗lim(𝜀) 𝑞eq(𝜀)⁄ .  

These are the key equations using which we can get 𝑗inf and 𝑞eq as a function of potential. Since they 

depend on potential only, they do not depend on the scan-rate, moreover the actual shape of the 

potential program, by which the js have been measured. In the same vein, since they are single-valued 

functions, they do not exhibit any hystereses.  
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3. Results of numerical tests 

The properties of the transformation of Eq.5 is illustrated on simulated CVs in this Section. For the 

rate coefficients exponential dependences on potential were assumed, just as it has been usual in the 

previous theories since the sixties (representative studies are [6,7,8,9]). That is, the rate coefficients 

are 𝑘ad(𝐸) = 𝑘ad
0 ∙ exp(𝛼1F(E-𝐸0) R𝑇⁄ ) and 𝑘d(𝐸) = 𝑘d

0 ∙ exp(− 𝛼2F(E-𝐸0) R𝑇⁄ ) where 𝐸0 is the 

peak potential of the reversible peak (𝐸0 = R𝑇 [(𝛼1 + 𝛼2)F]⁄ ∙ ln(𝑘d
0 c 𝑘ad

0⁄ ), the other symbols have 

their usual meaning. The other simulation parameters are as follows: 𝛼1 = 𝛼2 = 0.5, 𝑛 = 1, c 𝑘ad
0 =

1 s−1, 𝛤0 = 2 × 10−9 mol/cm2. These CVs, normalized by the scan-rate, are displayed in Fig.1a; 

they are very similar to the ones in the literature (cf. Fig.8 of [6], Fig.4 of [7], Fig.2 of [8], and Fig.4 

of [9]).  

 

Figure 1.  

Simulated adsorption-desorption CVs, and the procedure of calculation of the PPI representation. 

(a) The calculated scan-rate normalized CVs at scan-rates as indicated; (b) The integrated CVs; (c) 

The linear connection of j and q at potentials as indicated; (d) 𝑗inf and 𝑞eq as a function of potential. 

For demonstrating the absence of hysteresis, the anodic and the cathodic scans of the 𝑗inf – E curve 

are drawn by thin and thick lines, respectively.  

 

The steps of the procedure of getting the PPI forms are as follows: First, the integrated forms are 

calculated (see Fig.1b). As it is shown in Fig.1c for a couple of potentials, the 𝑗 − 𝑞 dependence is 

linear. Finally, according to Eq. 5 straight lines were fitted to these points by a linear least squares 

program. Finally, from the fitted slopes and intercepts 𝑞eq and 𝑗inf values were calculated for each 

potential; these are shown in Fig.1d. Both curves are hysteresis-free; the characteristic values of the 

curves: 𝑗inf , 𝑞eq and the d log ( 𝑗inf) d𝐸⁄  slope at 𝐸 = 0 are exactly the same as can be calculated from 

the input data.  
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4. Discussion 

1. Apparently Eq. 4 is a simple combination of three basic equations known and used for decades. 

The novelty within this communication is that instead of calculating the j(E) function of a single CV 

by employing exponential potential dependences for the rate coefficients as it was done in the 

previous studies [6,7,8], we set aside the potential dependence of the rate coefficients and evaluate a 

set of CVs with different scan-rates at the same potential together. This is how we can extrapolate to 

a rate with zero-coverage, and to adsorption equilibrium conditions at a certain potential. Hence this 

derivation is analogous to that of the quasireversible diffusion-controlled redox reaction case of Refs. 

[2,3] which also lead to the 𝑗(𝑡) = 𝑗inf(𝐸) − 𝐻(𝐸) ∙ 𝑇(𝑡) equation where H is some parameter 

combination related to the kinetics and T is some integral transform of the measured current 

coefficient.  

2. In general, Eq 5 holds without any constraint to the specific form of potential dependence of the 

rate coefficients. In the numeric example of the previous Section, exponential 𝑘ad(𝐸) and 𝑘d(𝐸) were 

assumed. However, other 𝑘ad(𝐸) and 𝑘d(𝐸) functions also lead to the two PPI functions, as it will be 

demonstrated in a next communication. This way, the analysis is applicable not only for the simplest 

Langmuirian adsorption; however, it is an open question whether or not Eq. 5 holds for the Temkin 

and Frumkin adsorption isotherms.  

3. The theory with little changes applies also for redox reactions of surface confined species. For this, 

we denote the oxidised and reduced forms of some species as Ox and Red, taking part in the Red𝑧+ ⇌

Ox(𝑧+𝑛)+ + 𝑛e− reaction of rate coefficients 𝑘ox(𝐸) and 𝑘red(𝐸). The meaning of the symbols has 

somewhat to be changed, like 𝛤 and 𝛤0 are the surface concentration of Ox and the total concentration 

of Ox and Red, respectively; 𝐻(𝐸) = 𝑘ox(𝐸) + 𝑘red(𝐸). Eq 5. applies with these changes. 

4. There might be complications mainly due to (i) the non-zero solution resistance (IR drop) and to 

(ii) double layer charging. The IR drop effect is easy to be corrected by determining the solution 

resistance Rs through measuring an impedance spectrum at sufficiently high frequencies. Since all ε 

potentials of this text are of interfacial nature, the IR drop must be subtracted from the applied 

potential; i.e. we have to plot j(q) points corresponding to the same ε–jRs potential, and analyse these 

plots to extract 𝑗inf and 𝑞eq. Note that one cannot perform the IR drop correction on the raw j-E plots 

by simply subtracting jRs from the potentials [10]; one can do this correction only on the PPI 𝑗inf . 
The charging current error can be corrected if the double layer capacitance, Cdl,  is also known from 

the high frequency impedance measurements. As the charging current appears in the rhs of Eq.1 as a 

𝐶dl d𝐸 d𝑡⁄  term, one has to plot 𝑗 − 𝐶dl d𝐸 d𝑡⁄  vs 𝑞 instead of  Eq 5. 

5. Since 𝑗inf and 𝑞eq are PPI functions, their 𝜕 𝜕𝐸⁄  derivatives are also PPI – these derivatives are the 

reciprocal of the adsorption resistance and the adsorption capacitance (cf. Eqs A-123 and A-144 of 

[11]). This is how the large-signal and small-signal response functions (CV and impedance, 

respectively of the given systems) are related to each other through their PPI forms. This last 

correspondence is analogous to that of the quasireversible diffusion-controlled redox reaction [12]. 

 

5. Conclusions 

The theory presented here, along with the illustrating simulations, shows how to transform 

adsorption-related voltammograms to yield two PPI functions. One of them is characteristic to 

adsorption kinetics, the other to adsorption equilibrium. From an algebra point of view, Eq. 5 is a 

simple combination of three well-known equations pertinent to the voltammetry of adsorption; 

however, by making use of the implicit scan-rate dependence of the current and of its integral at a 

constant potential we can extrapolate to the purely kinetics-controlled and purely equilibrium-based 

situations. These two PPI functions are determined from a set of voltammograms of different scan-

rates or from voltammograms comprising a number of cycles with varied scan-rates.  
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The theory leading to Eq.5 opens a new route for the determination of adsorption rates and adsorption 

isotherms in electrochemical systems, just as for those of the analogous case of surface confined redox 

reactions. 
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