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Abstract
We consider the following control problem on fair allocation of indivisible goods.
Given a set I of items and a set of agents, each having strict linear preferences over
the items, we ask for a minimum subset of the items whose deletion guarantees the
existence of a proportional allocation in the remaining instance; we call this problem
Proportionality by Item Deletion (PID). Our main result is a polynomial-
time algorithm that solves PID for three agents. By contrast, we prove that PID is
computationally intractable when the number of agents is unbounded, even if the
number k of item deletions allowed is small—we show that the problem isW[3]-hard
with respect to the parameter k. Additionally, we provide some tight lower and upper
bounds on the complexity of PIDwhen regarded as a function of |I | and k. Considering
the possibilities for approximation, we prove a strong inapproximability result for PID.
Finally, we also study a variant of the problem where we are given an allocation π in
advance as part of the input, and our aim is to delete a minimum number of items such
that π is proportional in the remainder; this variant turns out to be NP-hard for six
agents, but polynomial-time solvable for two agents, and we show that it isW[2]-hard
when parameterized by the number k of deletions.
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1 Introduction

We consider a situation where a set I of indivisible items needs to be allocated to a
set N of agents in a way that is perceived as fair. Unfortunately, it may happen that
a fair allocation does not exist in a setting. In such situations, we might be interested
in the question how our instance can be modified in order to achieve a fair outcome.
Naturally, we seek for a modification that is as small as possible. This can be thought
of as a control action carried out by a central agency whose task is to find a fair
allocation. The computational study of such control problems was first proposed by
Bartholdi, III et al. [5] for voting systems; our paper follows the work of Aziz et al.
[4] who have recently initiated the systematic study of control problems in the area of
fair division.

The idea of fairness can be formalized in various different ways such as proportion-
ality, envy-freeness, or max-min fair share (see the book chapter by Bouveret et al. [6]
for an introduction). Here we focus on proportionality, a notion originally defined in a
model where agents use utility functions to represent their preferences over items. In
that context, an allocation is called proportional if each agent obtains a set of items for
which their utility is at least 1/|N | of their total utility of all items. One way to adapt
this notion to a model with linear preferences (not using explicit utilities) is to look
for an allocation that is proportional with respect to any choice of utility functions for
the agents that is compatible with the given linear preferences. Aziz et al. [3] referred
to this property as “necessary proportionality”; for simplicity, we use the shorter term
“proportionality.” For a survey of other possible notions of proportionality and fairness
under linear preferences, we also refer to Aziz et al. [3].

We have several reasons for considering linear preferences. First, the most impor-
tant advantage of this setting is the easier elicitation of agents’ preferences. In many
practical applications, especially with a large number of items, it is unrealistic to
assume that agents are able to assign a meaningful cardinal value to each of the items.
This may be due to lack of information, e.g., when agents need to declare preferences
over items about which they have incomplete knowledge, or an unwillingness to asso-
ciate a determined value for each item: in scenarios where the usefulness or virtue
of an item cannot be simply measured by its monetary value (e.g., students ranking
assignments, shared owners of a holiday home ranking time slots, heirs ranking fam-
ily assets), people may find it much more convenient to express their preferences in
an ordinal way, thus reducing their cognitive burden. Besides easier elicitation, it is
important to note that it is also easier to visualize ordinal preferences than cardinal
ones, which may have significance when we wish to elicit preferences from children
or people with impaired cognitive abilities. Hence, ordinal preferences may be more
useful in practical applications. From a technical point of view, this simpler model
is more tractable in a computational sense: under linear preferences, the existence of
a proportional allocation can be decided in polynomial time [3], whereas the same
question for cardinal utilities is NP-hard [20]. Since Lipton et al. [20] show the NP-
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hardness of the problem already for two agents, we do not even have hope for an
FPT-algorithm with the number of agents as the parameter. Clearly, if already the
existence of a proportional allocation is computationally hard to decide, then we have
no hope to solve the corresponding control problem efficiently.

Control actions can take various forms. Aziz et al. [4] mention several possibili-
ties: control by adding/deleting/replacing agents or items in the given instance, or by
partitioning the set of agents or items. In this paper we concentrate only on control
by item deletion, where the task is to find a subset of the items, as small as possible,
whose removal from the instance guarantees the existence of a proportional allocation.
In other words, we ask for the maximum number of items that can be allocated to the
agents in a proportional way.

1.1 RelatedWork

Wefollow the researchdirectionproposedbyAziz et al. [4]who initiated the systematic
study of control problems in the area of fair division. As an example, Aziz et al.
[4] consider the complexity of obtaining envy-freeness by adding or deleting items
or agents, assuming linear preferences. They show that adding/deleting a minimum
number of items to ensure envy-freeness can be done in polynomial time for two
agents, while for three agents it is NP-hard even to decide if an envy-free allocation
exists. As a consequence, they obtain NP-hardness also for the control problems where
we want to ensure envy-freeness by adding/deleting items in case there are more than
two agents, or by adding/deleting agents.

The problem of deleting a minimum number of items to obtain envy-freeness was
first studied by Brams et al. [7] who gave a polynomial-time algorithm for the case of
two agents.1

In a setting with cardinal utilities, Caragiannis et al. [8] propose a model where
items can be donated (i.e., deleted) before allocating the rest to agents; they propose
an algorithm that, after deleting a set of items, yields an allocation for the remaining
items that is envy-free up to any goods, and whose Nash welfare value is at least half
of the optimum. In the context of cake cutting, Segal-Halevi et al. [24] proposed the
idea of distributing only a portion of the entire cake in order to obtain an envy-free
allocation efficiently.

Looking at the topic in a broader sense, several papers have investigated possible
ways to achieve fairness by certain types of control actions. A prominent example is
hiding information from agents in order to facilitate a fair allocation. Chen and Shah
[10] have found that if agents do not receive any information about the items allo-
cated to others, then the expected amount of envy experienced by the agents typically
reduces. Aziz et al. [2] investigated a model where the information that agents obtain
on the allocation is based on a graph representing social contacts. Hosseini et al. [18]
have proposed an algorithm that eliminates envy through withholding information
about a set of few items. Halpern and Shah [16] have also examined the possibilities
for overcoming envy by subsidies where agents receive monetary compensation.

1 For a complete proof of the correctness of their algorithm, see also the work by Aziz et al. [4].
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For the Hospitals/Residents with Couples problem, Nguyen and Vohra [22] consid-
ered yet another type of control action: they obtained stability by slightly perturbing
the capacities of hospitals.

1.2 Our Contribution

We first consider the case where the number of agents is unbounded (see Sect. 3). We
show that the problem of deciding whether there exist at most k items whose deletion
allows for a proportional allocation isNP-complete, and that this problem isW[3]-hard
with parameter k (see Theorem2). This latter result shows that even if we allow only
a few items to be deleted, we cannot expect an efficient algorithm, since the problem
is not fixed-parameter tractable with respect to the parameter k (unless FPT = W[3],
which is widely believed not to be the case).

Additionally, we provide tight upper and lower bounds on the complexity of the
problem. In Theorem3 we prove that the trivial |I |O(k) time algorithm—that, in a
brute force manner, checks for each subset of I of size at most k whether it is a
solution—is essentially optimal (under the widely accepted assumption that FPT �=
W[1]). We provide another simple algorithm in Theorem4 that has optimal running
time, assuming the Exponential Time Hypothesis.

Next, we look at the possibilities of approximation in Sect. 3.1. First we focus on
the approximation problem where the objective is to minimize the number k of item
deletions, and we provide a strong inapproximability result in Theorem5 by proving
that not even an FPT-algorithm with parameter k can yield a ratio of |I |1−ε for some
constant ε > 0. Next, we examine the possibilities for maximizing the number of
items that agents obtain under a proportional allocation. In Corollary1, we observe
that it is NP-hard to decide if there exists a set of 2|N | items which can be allocated
to our set N of agents in a proportional way. Contrasting this result, we propose a
simple polynomial-time algorithm in Theorem6 that allocates one item to each agent
proportionally, whenever this is possible.

In Section4, we turn our attention to the case with only three agents. In Theorem7
we propose a polynomial-time algorithm for this case, which can be viewed as our
main result. The presented algorithm is based on dynamic programming, but relies
heavily on a non-trivial insight into the structure of solutions.

Finally, in Sect. 5 we briefly look at the variant of our problem where we are given
a fixed allocation in advance, and the task is to decide whether we can make the
given allocation proportional by deleting certain items. We prove that this problem
is easy for two agents (Theorem8), but becomes NP-hard for six agents (Theorem9).
The computational intractability persists even if the number of deletions is small, as
evidenced by Theorem10 that provesW[2]-hardness with parameter k for this variant.

2 Preliminaries and Definitions

In this section, we revisit some technical concepts and notions that we use in the
remainder of the paper. We also give a formal definition of the problem of Propor-
tionality by Item Deletion (PID).
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(Parameterized) complexity theory We assume the reader to be familiar with
basic notions from the theory of computational complexity—in particular, with the
complexity classes P and NP, with the notion of polynomial-time algorithms and
polynomial-time (many-to-one) reductions, and with the notion of NP-hardness and
-completeness. For more details, we refer to textbooks on the topic (see, e.g., the book
by Arora and Barak [1]).

We review some basic notions from parameterized complexity theory—for more
details, see, e.g., the book by Downey and Fellows [13]. In parameterized complex-
ity theory, in addition to the size |x | of the input x of a problem, one considers a
problem parameter k. This parameter is intended to measure some type of struc-
ture that is present in the input. The aim then is to obtain fixed-parameter tractable
algorithms (or FPT-algorithms), that have running time f (k) · |x |O(1), for some com-
putable function f . This is in contrast with the central notion of tractable algorithms
in classical complexity theory: polynomial-time algorithms, i.e., algorithms running
in time |x |O(1). The class of all parameterized problems that admit an FPT-algorithm
is denoted by FPT.

In addition to the class FPT, parameterized complexity theory features parameter-
ized intractability classes. These are classes containing problems that are considered
to be unlikely to have fixed-parameter tractable algorithms. The most prominent
examples of such classes are the classes W[t] for t ∈ {1, 2, 3, . . . }. For a formal
definition of these classes, we refer to textbooks (e.g., [13] or [15]). It holds that
W[1] ⊆ W[2] ⊆ W[3], and it is widely believed that FPT �= W[1].

To give evidence that a problem is not fixed-parameter tractable, one typically uses
FPT-reductions to show that the problem is W[t]-hard for some t . If the problem
admitted an FPT-algorithm, then this would imply that FPT = W[t]—in other words,
under the assumption that FPT �= W[t], the problem is not fixed-parameter tractable.
An FPT-reduction from a parameterized problem Q1 to a parameterized problem Q2
is a function R that takes an input (x, k) of Q1, and produces an input (x ′, k′) of Q2,
such that: (i) (x, k) ∈ Q1 if and only if (x ′, k′) ∈ Q2; (ii) runs in time f (k) · |x |O(1),
for some computable function f ; and (iii) k′ ≤ g(k), for some fixed computable
function g. A problem Q is W[t]-hard for some t , if every problem in W[t] can be
FPT-reduced to Q.

Preferences Let N be a set of agents and I a set of indivisible items that we wish
to allocate to the agents in some way. We assume that each agent a ∈ N has strict
preferences over the items, expressed by a preference list La that is a linear ordering
of I , and we set L = {La | a ∈ N }. We call the triple (N , I , L) a (preference) profile.
We denote by La[i : j] the subsequence of La containing the items ranked by agent
a between the positions i and j , inclusively, for any 1 ≤ i ≤ j ≤ |I |. Also, for a
subset X ⊆ I of items we denote by La

X the restriction of La to the items in X .

Proportionality Interestingly, Pruhs andWoeginger [23, Lemma1] gave an equivalent
definition for the concept of proportionality (as described in Sect. 1) that is more direct
and practical: we say that an allocation π : I → N mapping items to agents is
proportional if for any integer i ∈ {1, . . . , |I |} and any agent a ∈ N , the number of
items from La[1 : i] allocated to a by π is at least i/|N |. Note that, in particular, this
means that in a proportional allocation, each agent needs to get his or her first choice.
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Another important observation is that a proportional allocation can only exist if the
number of items is a multiple of |N |, since each agent needs to obtain at least |I |/|N |
items.

Control by deleting items Given a profile P = (N , I , L) and a subset U of items,
we can define the preference profile P − U obtained by removing all items in U
from I and from all preference lists in L . Let us define the Proportionality by

Item Deletion (PID) problem as follows. The input of PID is a pair (P, k) where
P = (N , I , L) is a preference profile and k is an integer. We call a setU ⊆ I of items
a solution for P if its removal from I allows for proportionality, that is, if there exists
a proportional allocation π : I \ U → N for P − U . The task in PID is to decide if
there exists a solution forP of size at most k. Note that the number of items remaining
after the removal of the solution must be a multiple of |N |.

3 Unbounded Number of Agents

The existence of a proportional allocation can be decided in polynomial time by
checking whether a certain bipartite graph corresponding to our instance admits a
perfect matching [23, Lemma 4]. Therefore the Proportional Item Deletion

problem is solvable in |I |O(k) time by the brute force algorithm that checks for each
subset of I of size at most k whether it is a solution. In terms of parameterized
complexity, this means that PID parameterized by the solution size k is in XP, i.e.,
the class of parameterized problems that can be solved in polynomial time for any
constant value of the parameter.

Clearly, such a brute force approachmayonly be feasible if the number k of itemswe
are allowed to delete is very small. Searching for a more efficient algorithm, one might
ask whether the problem becomes fixed-parameter tractable with k as the parameter,
i.e., whether there exists an algorithm for PID that, for an instance (P, k) runs in time
f (k)|P|O(1) for some computable function f . Such an algorithm could be much faster
in practice compared to the brute force approach described above.

Unfortunately, the next theorem shows that finding such a fixed-parameter tractable
algorithm seems unlikely, as PID is W[2]-hard with parameter k. Hence, decid-
ing whether the deletion of k items can result in a profile admitting a proportional
allocation is computationally intractable even for small values of k. (After showing
W[2]-hardness, we will show that this result can in fact be strengthened to W[3]-
hardness. We present the W[2]-hardness result for two reasons: (1) it is conceptually
simpler than the W[3]-hardness proof; and (2) its proof will be useful for showing
other lower bounds—namely, Theorems3 and 5.)

Theorem 1 Proportionality by Item Deletion is NP-complete and W[2]-hard
when parameterized by the size k of the desired solution.

Proof We are going to present an FPT-reduction from the W[2]-hard problem k-
Dominating Set, where we are given a graph G = (V , E) and an integer k, and the
task is to decide if G contains a dominating set of size at most k; a vertex set D ⊆ V is
dominating in G if each vertex in V is either in D or has a neighbor in D. We denote
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by N (v) the set of neighbors of some vertex v ∈ V , and we let N [v] = N (v) ∪ {v}.
Thus, a vertex set D is dominating if N [v] ∩ D �= ∅ holds for each v ∈ V .

Let us construct an instance IPID = (P, k) of PID with P = (N , I , L) as follows.
We let N contain 3n + 2m + 1 agents where n = |V | and m = |E |: we create n + 1
so-called selection agents s1, . . . , sn+1, and for each v ∈ V we create a set Av = {a j

v |
1 ≤ j ≤ |N [v]|+1} of vertex agents. Next we let I contain 2|N |+ k items: we create
distinct first-choice items f (a) for each agent a ∈ N , a vertex item iv for each v ∈ V ,
a dummy item d j

v for each vertex agent a j
v ∈ N , and k + 1 additional dummy items

c1, . . . , ck+1.
Let F denote the set of all first-choice items, i.e., F = { f (a) | a ∈ N }. For any set

U ⊆ V of vertices in G, let IU = {iv | v ∈ U }; in particular, IV denotes the set of all
vertex items.

Before defining the preferences of agents, we need some additional notation.We fix
an arbitrary ordering≺ over the items, and for any set X of items we let [X ] denote the
ordering of X according to≺. Also, for any a ∈ N , we define the set Fa

i to contain the
first i elements of [F \ { f (a)}], for any i ∈ {1, . . . , |N | − 1}. We end preference lists
below with the symbol ‘···’ meaning all remaining items not listed explicitly, ordered
according to ≺.

Now we are ready to define the preference list La for each agent a.

– If a is a selection agent a = si with 1 ≤ i ≤ n − k, then let

La : f (a), [Fa
|N |−n], [IV ]

︸ ︷︷ ︸

|N | items

, [Fa
|N |−n+k \ Fa

|N |−n]
︸ ︷︷ ︸

k items

, ···

– If a is a selection agent a = si with n − k < i ≤ n + 1, then let

La : f (a), [Fa
|N |−n], [IV ]

︸ ︷︷ ︸

|N | items

, [Fa
|N |−n+k−1 \ Fa

|N |−n]
︸ ︷︷ ︸

k−1 items

, ci−(n−k), ···

– If a is a vertex agent a = a j
v for some v ∈ V with 1 ≤ j ≤ |N [v]| + 1, then let

La : f (a), [Fa
|N |−|N [v]|], [IN [v]]

︸ ︷︷ ︸

|N | items

, d j
v , ···

This finishes the definition of our PID instance IPID.
Suppose that there exists a solution S of size at most k to IPID and a proportional

allocation π mapping the items of I \ S to the agents in N . Observe that by |I | =
2|N | + k, we know that S must contain exactly k items.

First, we show that S cannot contain any item from F . For contradiction, assume
that f (a) ∈ S for some agent a. Since the preference list of a starts with more than k
items from F (by N − n > n > k), the first item in La

I\S must be an item f (b) for

some b ∈ N , b �= a. The first item in Lb
I\S is exactly f (b), and thus any proportional

allocation should allocate f (b) to both a and b, a contradiction.
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Next, we prove that S ⊆ IV . For contradiction, assume that S contains less than k
items from IV . Then, after the removal of S, the top |N | + 1 items in the preference
list Lsi

I\S of any selection agent si are all contained in IV ∪ F . Hence, π must allocate
at least two items from IV ∪ F to si , by the definition of proportionality. Recall that
for any agent a, π allocates f (a) to a, meaning that π would need to distribute the n
items in IV among the n+1 selection agents, a contradiction. Hence, we have S ⊆ IV .

We claim that the k vertices D = {v | iv ∈ S} form a dominating set in G. Let
us fix a vertex v ∈ V . For sake of contradiction, assume that N [v] ∩ D = ∅, and
consider any vertex agent a in Av . Then the top |N | + 1 items in La

I\S are the same
as the top |N | + 1 items in La = La

I (using that S ∩ F = ∅), and these items form a
subset of IN [v] ∪ F for every a ∈ Av . But then arguing as above, we get that π would
need to allocate an item of IN [v] to each of the |N [v]| + 1 vertex agents in Av; again
a contradiction. Hence, we get that N [v] ∩ D �= ∅ for each v ∈ V , showing that D is
indeed a dominating set of size k.

For the other direction, let D be a dominating set of size k in G, and let S denote
the set of k vertex items {iv | v ∈ D}. To prove that S is a solution for IPID, we
define a proportional allocation π in the instance obtained by removing S. First, for
each selection agent si with 1 ≤ i ≤ n − k, we let π allocate f (si ) and the i th item
from IV \D to si . Second, for each selection agent sn−k+i with 1 ≤ i ≤ k + 1, we let
π allocate f (sn−k+i ) and the dummy item ci to sn−k+i . Third, π allocates the items
f (a j

v ) and d j
v to each vertex agent a j

v ∈ N .
It is straightforward to check that π is indeed proportional.
For proving NP-completeness, observe that the presented FPT-reduction is a

polynomial-time reduction as well, so the NP-hardness of Dominating Set implies
that PID is NP-hard as well; since for any subset of the items we can verify in poly-
nomial time whether it yields a solution, containment in NP follows. �


As mentioned above, we can in fact strengthen the W[2]-hardness result of Theo-
rem1 and show that PID is even W[3]-hard with respect to parameter k.

Theorem 2 Proportionality by Item Deletion is W[3]-hard when parameter-
ized by the size k of the desired solution.

Proof We are going to present an FPT-reduction from the W[3]-hard wcs
−[3] prob-

lem, which is the weighted satisfiability problem for formulas of the form ϕ =
∧m1

i=1

∨m2,i
j=1

∧m3,i, j
�=1 li, j,�, where each li, j,� is a negative literal [14, Theorem 4.13]

(see also [11,15]). Let (ϕ, k) be an instance of the weighted satisfiability problem,
where ϕ is a formula of the form described above; the task in wcs

−[3] is to decide
whether there is a truth assignment of weight k that satisfies ϕ. Let X = {x1, . . . , xn}
be the set of variables occurring in ϕ— that is, n denotes the number of variables in ϕ.
We will construct an instance IPID = (P, k) of PID with P = (N , I , L) as follows.
We let N contain n+1+∑m1

i=1 m2,i agents: we create n+1 so-called selection agents

s1, . . . , sn+1, and for each 1 ≤ i ≤ m1 we create a set Ai = {a j
i | 1 ≤ j ≤ m2,i }

of verification agents. Next we let I contain 2|N | + k items: we create distinct first-
choice items f (a) for each agent a ∈ N , a variable item wu for each 1 ≤ u ≤ n,
m2,i verification items yi,1, . . . , yi,m2,i for each 1 ≤ i ≤ m1, and k + 1 dummy items
c1, . . . , ck+1.
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Let F denote the set of all first-choice items, i.e., F = { f (a) | a ∈ N }. For any
subset X ′ ⊆ X of variables, let WX ′ = {wu | xu ∈ X ′}; in particular, WX denotes the
set of all variable items.

Before defining the preferences of agents, we need the additional notation used
also in the proof of Theorem1. We fix an arbitrary ordering ≺ over the items, and
for any set Z of items we let [Z ] denote the ordering of Z according to ≺. Also, for
any a ∈ N , we define the set Fa

i to contain the first i elements of [F \ { f (a)}], for
any i ∈ {1, . . . , |N | − 1}. Moreover, for any 1 ≤ i ≤ m1 we define the sets Yi =
{yi,1, . . . , yi,m2,i } and Y ′

i = {yi,1, . . . , yi,m2,i−1}. We end preference lists below with
the symbol ‘···’ meaning all remaining items not listed explicitly, ordered according
to ≺.

Now we are ready to define the preference list La for each agent a.

– If a is a selection agent a = si with 1 ≤ i ≤ n − k, then let

La : f (a), [Fa
|N |−n], [WX ]

︸ ︷︷ ︸

|N | items

, [Fa
|N |−n+k \ Fa

|N |−n]
︸ ︷︷ ︸

k items

, ···

– If a is a selection agent a = si with n − k < i ≤ n + 1, then let

La : f (a), [Fa
|N |−n], [WX ]

︸ ︷︷ ︸

|N | items

, [Fa
|N |−n+k−1 \ Fa

|N |−n]
︸ ︷︷ ︸

k−1 items

, ci−(n−k), ···

– If a is a verification agent a = a j
i for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2,i , then let

La : f (a), [Fa
|N |−|Ci, j |−|Y ′

i |+k−1], [Y ′
i ], [WCi, j ]

︸ ︷︷ ︸

|N |+k−1 items

, yi,m2,i , ···

where Ci, j = X \ {x ∈ X | li, j,� = ¬x for some 1 ≤ � ≤ m3,i, j } is the set of
variables that do not occur in any literal li, j,�, for 1 ≤ � ≤ m3,i, j .

This finishes the definition of our PID instance IPID.
Suppose that there exists a solution S of size at most k to IPID and a proportional

allocation π mapping the items of I \ S to the agents in N . Observe that by |I | =
2|N | + k, we know that S must contain exactly k items.

First, we show that S cannot contain any item from F . To derive a contradiction,
assume that f (a) ∈ S for some agent a. We can safely assume that |N | − n > k
and that |N | − n > m2,i for each 1 ≤ i ≤ m1. As a result, the preference list of a
starts with more than k items from F . Therefore, the first item in La

I\S must be an

item f (b) for some b ∈ N , b �= a. Clearly, the first item in Lb
I\S is exactly f (b),

which means that any proportional allocation should allocate f (b) to both a and b,
which is a contradiction.

Next, we prove that S ⊆ WX . To derive a contradiction, assume that S contains
less than k items from WX . Then, after the removal of S, the top |N | + 1 items in
the preference list Lsi

I\S of any selection agent si are all contained in WX ∪ F . Hence,
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π must allocate at least two items from WX ∪ F to each si , by the definition of
proportionality. Recall that for any agent a, π allocates f (a) to a, meaning that π

would need to distribute the n items inWX among the n+1 selection agents, which is
a contradiction. Hence, we have S ⊆ WX . We also get that π must allocate all items
in WX \ S ∪ {c1, . . . , ck+1} to the selection agents.

Consider the truth assignment α : X → {0, 1} defined by letting α(xu) = 1 if and
only if wu ∈ S, for each xu ∈ X . Since |S| = k, the truth assignment α has weight
k. We show that α satisfies ϕ. To do so, we need to show that for each 1 ≤ i ≤ m1
it holds that α satisfies ϕi = ∨m2,i

j=1

∧m3,i, j
�=1 li, j,�. Take an arbitrary 1 ≤ i ≤ m1. To

derive a contradiction, assume that for each 1 ≤ j ≤ m2,i it holds that there is some
1 ≤ � ≤ m3,i, j such that li, j,� is made false by α. Then for each such 1 ≤ j ≤ m2,i

it holds that |WCi, j ∩ S| < k. Then for each verification agent a j
i , for 1 ≤ j ≤ m2,i it

holds that the top |N | + 1 items in La
I\S (for a = a j

i ) form a subset of Y ′
i ∪ WX ∪ F .

Then arguing as above, we get that π would need to allocate an item of Y ′
i to each of

the |Yi | = |Y ′
i | + 1 agents a j

i , which is a contradiction. Since i was arbitrary, we can
conclude that α satisfies ϕ.

For the other direction, let α : X → {0, 1} be a truth assignment of weight k that
satisfies ϕ, and let S denote the set of k variable items {wu | xu ∈ X , α(xu) = 1}. To
prove that S is a solution for IPID, we define a proportional allocation π in the instance
obtained by removing S. First, for each selection agent si with 1 ≤ i ≤ n − k, we let
π allocate f (si ) and the i th item from WX \ S to si . Second, for each selection agent
sn−k+i with 1 ≤ i ≤ k + 1, we let π allocate f (sn−k+i ) and the dummy item ci to
sn−k+i . Then, for each 1 ≤ i ≤ m1, let 1 ≤ ji ≤ m2,i be some number such that α

makes
∧m3,i, ji

�=1 li, ji ,� true—we know that such a ji exists for each i because α satisfies

ϕ. For each verification agent a j
i we let π allocate f (a j

i ) and one item from Yi to a j
i

as follows. If j = ji , we let π allocate yi,m2,i to a j
i ; if j < ji , we let π allocate yi, j

to a j
i ; and if j > ji , we let π allocate yi, j−1 to a j

i . It is straightforward to check that
π is indeed proportional. �


Theorem2 implies that we cannot expect an FPT-algorithm for PID with respect to
the parameter k, the number of item deletions allowed, unless FPT �= W[3]. Next we
show that the brute force algorithm that runs in |I |O(k) time is optimal, assuming the
slightly stronger assumption FPT �= W[1].

Theorem 3 There is no algorithm for PID that on an instance (P, k) with item set I
runs in f (k)|I |o(k)|P|O(1) time for some function f , unless FPT �= W[1].2
Proof Chen et al. [9] introduced the class ofWl [2]-hard problems based on the notion
of linear FPT-reductions. They proved that Dominating Set isWl [2]-hard, and that
this implies a strong lower bound on its complexity: unless FPT �= W[1],Dominating
Set cannot be solved in f (k)|V |o(k)(|V | + |E |)O(1) time for any function f , where
(V , E) is the input graph and k is the size of the desired dominating set.

Observe that in the FPT-reduction presented in the proof of Theorem1, the new
parameter has linear dependence on the original parameter (in fact they coincide).

2 Here, we use an effective variant of “little o” (see, e.g. Flum and Grohe [15, Definition 3.22]).

123



Algorithmica (2021) 83:1559–1603 1569

Therefore, this reduction is a linear FPT-reduction, and consequentially, PID isWl [2]-
hard. Hence, as proved by Chen et al. [9], PID on an instance (P, k) with item set I
cannot be solved in time f (k)|I |o(k)|P|O(1) time for any function f , unless FPT �=
W[1]. �


If we want to optimize the running time not with respect to the number k of allowed
deletions but rather in terms of the total number of items, then we can also give the
following tight complexity result, under the Exponential Time Hypothesis (ETH).
This hypothesis, formulated in the seminal paper by Impagliazzo, Paturi, and Zane
[19] says that 3- Sat cannot be solved in 2o(n) time, where n is the number of variables
in the 3-CNF formula given as input.

Theorem 4 PID can be solved in O(2|I |) · |I |O(1) time, but unless the ETH fails, it
cannot be solved in 2o(|I |) time, where I is the set of items in the input.

Proof To show that PID can be solved in O(2|I |) · |I |O(1) time, it suffices to consider
the brute force algorithm that iterates over all possible subsets of items to delete, and
for each such subset computes whether deleting it enables a proportional allocation
(using polynomial-time matching techniques as described by Pruhs and Woeginger
[23]). This algorithm runs in time O(2|I |) · |I |O(1).

Next, we show that PID cannot be solved in 2o(|I |) time, unless the ETH fails.
The so-called Sparsification Lemma proved by Impagliazzo et al. [19] implies that
assuming the ETH, 3- Sat cannot be solved in 2o(m) time, where m is the number of
clauses in the 3-CNF formula given as input. Since the standard reduction from 3- Sat

toDominating Set transforms a 3-CNF formula with n variables andm clauses into
an instance (G, n) of Dominating Set such that the graph G has O(m) vertices
and maximum degree 3 (see, e.g., [25]), it follows that Dominating Set on a graph
(V , E) cannot be solved in 2o(|V |) time even on graphs having maximum degree 3,
unless the ETH fails.

Recall that the reduction presented in the proof of Theorem1 computes from each
instance (G, k) of Dominating Set with G = (V , E) an instance (P, k) of PID
where the number of items is 3|V |+2|E |+1.Hence, assumming that our input graphG
has maximum degree 3, we obtain |I | = O(|V |) for the set I of items inP . Therefore,
an algorithm for PID running in 2o(|I |) time would yield an algorithm forDominating
Set running in 2o(|V |) time on graphs of maximum degree 3, contradicting the ETH.

�


3.1 Approximating PID

In view of the intractability results we have encountered sofar, it is natural to ask
whether an efficient approximation might exist for PID. For some value c ≥ 1, we say
that an algorithmA is an approximation for PID with ratio c if, for any instance (P, k)
of PID, A either returns a solution for P containing at most c · k items, or correctly
concludes that there is no solution for P of size k.

Unfortunately, the proof of Theorem1 implies that we cannot hope for an efficient
approximation algorithm. Even if we do not aim for a constant-factor approximation,
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that is, for a ratio c for some constant c, but allow for a ratio |I |1−ε for some fixed
ε > 0, we cannot expect an efficient algorithm.

Theorem 5 Let ε > 0 be a constant. If FPT �= W [2], then there is no algorithm that,
given an instance (P, k) of PID with item set I , yields an approximation for PID with
ratio |I |1−ε and runs in FPT time with parameter k.

Proof Let us suppose thatA is an algorithm as described in the statement of the theo-
rem. We are going to useA to give an FPT-algorithm for the W[2]-hard Dominating
Set problem, implying FPT = W [2].

Let (G, k) be our instance of Dominating Set, and let n andm denote the number
of vertices and edges inG, respectively. We first apply the reduction given in the proof
of Theorem1; let (P, k) be the constructed instance of PID with P = (N , I , L).
Recall that |N | = 3n+2m+1 and |I | = 2|N |+k. We distinguish between two cases,
depending on the relationship between |N | and k; recall that ε is a positive constant.

First, if |N | < 3
1−ε
ε · k 1

ε , then we apply the brute force algorithm for Dominating
Set that selects k vertices in every possible way and checks whether they form a
dominating set. By n < |N |, this approach takes

(

n

k

)

O(n + m) ≤
(

3
1−ε
ε · k 1

ε

)k
O(n + m)

time, which is fixed-parameter tractable with parameter k.

Second, assume 3
1−ε
ε · k 1

ε ≤ |N |. In this case, we apply algorithm A, which either
correctly concludes that there does not exist a solution of size k for P , or returns a
solution S of size at most |I |1−εk. Observe that by |I | = 2|N | + k we have

|S| ≤ |I |1−εk ≤ (3|N |)1−εk = |N |1−ε · 31−εk ≤ |N |1−ε · |N |ε = |N |

where the last inequality follows from our assumption on |N |.
Recall that P − S must contain a number of items that is a multiple of |N |, as

otherwise no proportional allocation may exist for P − S. Hence, |S| ≡ k mod |N |,
and thus |S| ≤ |N | implies that S must be a solution of size k. Hence,A either finds a
solution of size k for P , or reports that no such solution exists. By the correctness of
our reduction, a solution of size k for P implies the existence of a dominating set of
size k for G (in the proof of Theorem1 we actually determined such a set). Since A
is an FPT-algorithm with parameter k, the presented algorithm for Dominating Set

is also FPT with parameter k. �

Inspecting the proof of Theorem5, one can observe that the necessity of finding a

solution such that the number of remaining items is a multiple of |N | seems to be a
major impediment when considering approximation for PID. This led us to ask a dif-
ferent question: instead of approximating the size of the solution, is it perhaps possible
to approximate the number of items that each agent ends up with in a proportional
allocation? More formally, our task is the following: given a profile P and some inte-
ger c, determine a set U of items with |U | = c|N | such that U can be proportionally
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allocated to the set N of agents (i.e., such that P − (I \ U ) admits a proportional
allocation).

Looking into the proofs of Theorems1 and 2, we can immediately observe that the
case c = 2, that is, finding 2|N | items (yielding two items for each agent) for which
a proportional allocation exists, is already computationally intractable.

Corollary 1 Given a profile P with a set N of agents and a set I of items, it is NP-
hard to decide whether there exists a set of 2|N | items which can be proportionally
allocated to the agents of N .

We remark that Corollary1 directly implies that it is NP-hard to approximate the
number of items each agent obtains in a proportional allocation with a ratio better than
1
2 .

By contrast, there is a simple algorithm to decide whether we can find one item for
each agent in a proportional way.

Theorem 6 There exists an algorithm that given a profile P = (N , I , L) determines
in polynomial time a set U of |N | items that can be proportionally allocated to the
agents of N , whenever such a set U exists.

Proof Suppose that S is a set of |I | − |N | items such that P − S is solvable. Then,
clearly, there cannot be two agents whose first-choice items in P − S coincide. This
simple observation leads us to the following algorithm. Starting fromP , we repeatedly
search for a pair of agents whose first-choice items coincide. If there exist such agents,
then we remove their common first-choice item fromP (as this itemmust be contained
in S), and proceedwith the remaining profile.Whenever we reach a profile such that no
two agents’ first-choice items coincide, then we allocate to each agent its first-choice
item (and we delete all remaining items).

Since we only delete items from S (except for the deletion of superfluous items
performed after an appropriate allocation is found), this algorithm returns a set |N |
of items as promised, unless P admits no solution S of size at most |I | − |N |. The
running time is clearly polynomial in |P|. �


4 Three Agents

It is known that PID for two agents is solvable in polynomial-time: if there are only two
agents, then an allocation is proportional if and only it is envy-free [3]. Since the prob-
lem of obtaining an envy-free allocation by item deletion is polynomial-time solvable
(in case of two agents) [4,7], this implies tractability of PID for |N | = 2 immedi-
ately. In this section, we generalize this result by proving that PID is polynomial-time
solvable for three agents.

In what follows, we will assume that our profileP contains three agents, so let N =
{a, b, c}. In Sect. 4.1, we will define the necessary basic concepts that we will need.
Then, in Sect. 4.2 we present a high-level overview of our algorithm. In Section4.3,
we will look at partial solutions and define the notion of branching sets. Finally, in
Sect. 4.4, when all necessary notions are in place, we present our algorithm.
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4.1 Basic Concepts: Prefixes andMinimal Obstructions

We begin by defining a graph representation of our profile P which can be used to
determine whether P admits a proportional allocation. The following construction
is identical to the one proposed by Pruhs and Woeginger [23, Section 4] and later
generalized by Aziz et al. [3, Theorem 6].

Graph underlying a profile Let us define the underlying graph G of our profile P of
PID as the following bipartite graph. The vertex set of G consists of the set I of items
on the one side, and a set S on the other side, containing all pairs of the form (x, i)
where x ∈ N is an agent and i ∈ {1, . . . , �|I |/|N |�}. Such pairs are called slots.
We can think of the slot (x, i) as the place for the i th item that agent x receives in
some allocation. We say that an item is eligible for a slot (x, i), if it is contained in
Lx [1 : |N |(i − 1) + 1]. In the graph G, we connect each slot with the items that are
eligible for it; see Fig. 1 for an illustration. Observe that any proportional allocation
corresponds to a perfect matching in G; for the sake of completeness, we will prove
this in Lemma1.

Since our approach to solvePIDwith three agents is to apply dynamic programming,
we need to handle partial instances of PID. Let us define now the basic necessary
concepts.

Prefixes For any triple (ia, ib, ic) with 1 ≤ ia, ib, ic ≤ |I | we define a prefix Q =
P[ia, ib, ic] of P as the triple (La[1 : ia], Lb[1 : ib], Lc[1 : ic]), listing only the first
ia , ib, and ic items in the preference list of agents a, b, and c, respectively. We call
(ia, ib, ic) the size of Q and denote it by size(Q).

We say that a prefix Pi = P[ia, ib, ic] is contained in another prefix P j =
P[ ja, jb, jc] if jx ≤ ix for each x ∈ N ; the containment is strict if jx < ix for
some x ∈ N . We say that Pi and P j are intersecting if none of them contains the
other; we call the unique largest prefix contained both in Pi and in P j , i.e., the prefix
P[min(ia, ja),min(ib, jb),min(ic, jc)], their intersection, and denote it by Pi ∩ P j .
We may also compare prefixes of different profiles, deciding their relationship (i.e.,
whether one contains the other, or they intersect) solely based on their sizes.

For some prefix Q = P[ia, ib, ic], let I (Q) denote the set of all items appearing
in Q. We define the set of slots appearing in Q as S(Q) = {(x, i) | 1 ≤ i ≤
�(ix + 2)/3�, x ∈ N }. We also define the graph G(Q) underlying Q as the subgraph
of G where a slot (x, i) ∈ S(Q) is adjacent to an item u ∈ I (Q) if u appears in
Lx [1 : ix ] and is eligible for (x, i) in G; see Fig. 1 for an illustration. Note that any
slot (x, i)where 1 ≤ i ≤ �(ix +2)/3� is connected to the same items inG(Q) as inG;
we say that such slots are complete in Q. By contrast, if ix �≡ 1 mod 3, then the slot
(x, �(ix +2)/3�) is connected to fewer items in G(Q) than in G. Hence, the only slots
which may be incomplete are the last slots in Q, that is, the slots (x, �(ix + 2)/3�),
x ∈ N . See Fig. 1 for an illustration.

Solvability We say that a prefix Q is solvable, if the underlying graph G(Q) has a
matching that covers all its complete slots. Hence, a prefix is solvable exactly if there
exists an allocation π from I (Q) to N that satisfies the condition of proportionality
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Fig. 1 Illustration for the graph underlying a profile P and its prefixQ. Note that slots (a, 2) and (c, 2) are
incomplete in G(Q)

restricted to each index in Q: for any agent x ∈ N and any index i ∈ {1, . . . , ix }, the
number of items from Lx [1 : i] allocated by π to x is at least i/3.

Minimal obstructions We say that a prefix Q is a minimal obstruction, if it is not
solvable, but all prefixes strictly contained inQ are solvable. Observe that all slots in
a minimal obstruction must be complete. Furthermore, Hall’s Theorem tells us that
a minimal obstruction must have exactly one item less than the number of slots, so
|I (Q)| = |S(Q)| − 1. We will call any prefix Q that is not solvable an obstruction;
note that any obstruction that does not strictly contain another obstruction is, indeed, a
minimal obstruction in the above sense. See Fig. 2 for an illustration. Lemma1 shows
that a minimal obstruction, if existing, can be found efficiently; Lemma2 states some
useful observations about minimal obstructions.

Lemma 1 Profile P admits a proportional allocation if and only if the underlying
graph G contains a perfect matching. Also, in O(|I |3) time we can find either a
proportional allocation for P , or a minimal obstruction Q in P .

Proof We prove this lemma for arbitrary |N |.
First, it is easy to see that any proportional allocation π immediately yields a

perfect matching M for G: for each x ∈ N and each i ∈ {1, . . . , |I |/|N |} (note that
|I |/|N | ∈ N since π is proportional), we simply put into M the edge connecting slot
(x, i) with the i th item p(x,i) received by x ; naturally, we rank items received by x
according to x’s preferences. The proportionality of π implies that p(x,i) is contained
in the top (i − 1)|N | + 1 items in Lx , and thus is indeed eligible for the slot (x, i).

For the other direction, consider a perfect matchingM inG. Then giving each agent
x all the items assigned to the slots {(x, i) | i ∈ {1, . . . , |I |/|N |} by M we obtain a
proportional allocation π : for each agent x and index j ∈ {1, . . . , |N |}, our allocation
π assigns at least j/|N | items to x from Lx [1 : j], namely the items matched by M
to the slots {(x, i) | 1 ≤ i ≤ � j/|N |�}. Since (� j/|N |� − 1)|N | + 1 ≤ j , even the
last item eligible for (x, � j/|N |�) is contained in Lx [1 : j], ensuring that π is indeed
proportional.

Therefore, we can check whether there exists a proportional allocation for P by
finding a maximum matching in the bipartite graph G. Using the Hopcroft–Karp
algorithm [17], this takes O(|I |5/2) time, since G has 2|I | vertices. If no perfect

123



1574 Algorithmica (2021) 83:1559–1603

matching exists in G, then we can find a minimal obstruction using a variant of the
classical augmenting path method that starts from an empty matching, and increases
its size by finding augmenting paths one by one. Namely, at each iteration we pick an
unmatched starting slot (x, i) for which all slots in {(x ′, j) | x ′ ∈ N , 1 ≤ j < i} are
already matched, and search for an augmenting path that starts at (x, i).

Suppose that this algorithm stops at an iteration where the starting slot is (x, i), and
no augmenting path starts at (x, i) for the current matching M . Let SH be the set of all
slots reachable by an alternating path inG from (x, i), and let IH be the set of all items
eligible for any slot in SH . It is well known that SH and IH violate Hall’s condition:
|IH | < |SH |. Moreover, the slots in SH “induce” a prefix in the sense that there exists
a prefix Q with S(Q) = SH . To prove this, it suffices to show that if (y, j) ∈ SH and
j ′ ∈ {1, . . . , j − 1}, then (y, j ′) ∈ SH . By our strategy for picking starting slots, we
know j ′ < j ≤ i , implying that (y, j ′) is matched by M . Let q be the item assigned
to it by M ; note that q is eligible for (y, j) as well. To obtain an alternating path from
(x, i) to (y, j ′), we can take any alternating path from (x, i) to (y, j), and append the
two-edge path from (y, j) to (y, j ′) through q. Hence, there indeed exists a prefix Q
with S(Q) = SH ; we pick such a Q containing only complete slots. Using standard
arguments from matching theory, it is straightforward to check that Q is a minimal
obstruction.

Each iteration can be performed in O(|I |2) time (e.g., with a BFS), and there are
at most |I | steps, so the algorithm runs in O(|I |3) time. �

Lemma 2 Let Q = P[ia, ib, ic] be a prefix of P that is a minimal obstruction. Then
ia ≡ ib ≡ ic ≡ 1 mod 3, |I (Q)| = (ia + ib + ic)/3 + 1, and either

(i) ia = ib = ic, or
(ii) ix = iy = iz + 3 for some choice of agents x, y, and z with {x, y, z} = {a, b, c}.
Moreover, if (ii) holds, then Lx [1 : ix ] and Ly[1 : iy] contain exactly the same item
set, namely I (Q).

Proof First, observe that if ia �≡ 1 mod 3, then the set of complete slots is the same
in Q as in P[ia − 1, ib, ic], contradicting the minimality of Q. Thus, we have ia ≡ 1
mod 3, and we get ib ≡ ic ≡ 1 mod 3 analogously.

Second, let us consider the graphG(Q)underlying our prefix. SinceHall’s condition
fails for the set S(Q) of (complete) slots but, by minimality, it holds for any proper
subset of these slots, we know that

|I (Q)| = |S(Q)|−1 =
⌈

ia + 2

3

⌉

+
⌈

ib + 2

3

⌉

+
⌈

ic + 2

3

⌉

−1 = ia + ib + ic
3

+1 (1)

where the last equality follows from the first claim of the lemma. Let us assume
ia ≥ max{ib, ic}. Note that if neither (i) nor (ii) holds, then by the maximality of ia
and the first claim of the lemma we obtain ia + ib + ic ≤ 3ia − 6, from which (1)
implies |I (Q)| ≤ ia − 1. However, La[1 : ia] contains only items from I (Q), which
would imply that some item appears twice in La[1 : ia], a contradiction.

To see the last claim of the lemma, suppose ia = ib = ic + 3. Then (1) implies
|I (Q)| = ia = ib, and hence La[1 : ia] (and also Lb[1 : ib]) must contain each item
in I (Q) exactly once. �
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Fig. 2 Illustration depicting a profile P with the graph G(P) (edges incident to the last slots are grey only
to help visibility). The matching in G(P) shown in bold is the one found by the algorithm of Lemma1;
observe that there is no augmenting path from (c, 2). The slots reachable in G(P) by alternating paths
from slot (c, 2) together with all items eligible for them (as depicted in G(P) by the dashed trapezoid)
yield the minimal obstruction Q of straight shape. The boundary of Q is δ(Q) = {2, 4, 5} (emphasized in
bold). There are six partial solutions forQ of size at most 2, namely {1}, {4}, {5}, {1, 4}, {1, 5}, and {4, 5}.
Each partial solution U is witnessed by an allocation πU showing thatQ−U is solvable; in each (partial)
preference list for Q −U , we indicated the items allocated by πU to the given agent by underlining them

BasedonLemma2,wedefine the shapeof aminimal obstructionQ as either straight
or slant, depending on whether Q fulfills the conditions (i) or (ii), respectively. More
generally, we also say that a prefix has straight or slant shape if it fulfills the respective
condition. Furthermore, we define the boundary items of Q, denoted by δ(Q), as the
set of all items that appear once or twice (but not three times) in Q. Fig. 2 depicts
a minimal obstruction of straight shape, while Fig. 3 shows one of slant shape; both
examples indicate the boundary of the minimal obstruction as well.

Lemma 3 Let Q be a prefix of P that is a minimal obstruction. Then the boundary of
Q contains at most three items: |δ(Q)| ≤ 3.

Proof We make use of Lemma2. First, ifQ has a straight shape, soQ = P[i, i, i] for
some index i , then |S(Q)| = i + 2. Since Q is a minimal obstruction, by Lemma2
we get |I (Q)| = i + 1. However, each agent’s list within Q contains exactly i items,
yielding that there is exactly one position outsideQ in each agent’s list where an item
of I (Q) occurs. Hence, |δ(Q)| ≤ 3 follows in this case.

Second, assume that Q has a slant shape, say Q = P[i, i, i − 3] for some index i
(the two remaining cases are analogous). Then Lemma2 implies |I (Q)| = i and that
both La[1 : i] and Lb[1 : i] contain all the i items in I (Q), but Lc[1 : i − 3] misses
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exactly three items from I (Q). Hence, there are exactly three occurrences of items
listed outside Q, each in the list of agent c, meaning |δ(Q)| = 3. �


4.2 High-level Overview of Our Algorithm

Having in place the most basic definitions, we are now able to give an intuition about
how our algorithm works. The main idea is to repeatedly find a minimal obstruction,
delete certain items from it to render it solvable (i.e., to ensure that the remainder
admits a proportional allocation), and then proceed with the modified instance.

However, we are not able to immediately tell which items should be deleted from
the current minimal obstruction Q, as such a decision may have consequences later,
when we are dealing with subsequent minimal obstructions. Therefore, instead of
picking just one solution, we apply a bounded search tree approach: at each minimal
obstruction, we perform a branching, and pursue several possible ways to delete a set
of items to makeQ solvable. To obtain a polynomial-time algorithm, we must bound
the size of our search tree; for this we need several ideas.

Bounding the number of branches In order to bound the number of branches that
we have to investigate in a branching, we use the important fact stated by Lemma4
that any minimal solution removes at most two items from a minimal obstruction. This
insight is of crucial importance in our algorithm, as it yields a polynomial bound on
the number of branches, namely O(|I |2).

Bounding the size of the search tree Although our search tree algorithm has a recur-
sive structure, we apply a dynamic programming technique to limit the number of
recursive calls, i.e., the number of nodes in the search tree.

To this end, we define an equivalence relation between partial solutions, corre-
sponding to nodes in the search tree. Intuitively, two partial solutions are equivalent if
they can be extended in the sameway into a solution. It turns out that we can determine
sufficient conditions that guarantee equivalence. These conditions are somewhat tech-
nical, but they essentially ensure that two deletions have the same effect with respect to
any possible minimal obstruction that may arise later during the run of the algorithm.

These conditions allow us to classify partial solutions into equivalence classes
whose number is bounded by a polynomial; this results in a polynomial running time
for our algorithm.

4.3 Partial Solutions and Branching Sets

Partial solutions For a prefixQ and a setU of items, we defineQ−U in the natural
way: by deleting all items of U from the (partial) preference lists of the prefix (note
that the total length of the preference lists constituting the prefix may decrease). We
say that an item set Y ⊆ I (Q) is a partial solution for Q if Q − Y is solvable. See
again Fig. 2 or3 for an example. Observe that for any item set Y we can check whether
it is a partial solution forQ by checking whether all complete slots can be covered by
a matching in the graph corresponding to Q − Y .
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Fig. 3 Illustration depicting a profile P containing a minimal obstruction Q of slant shape. Proportional
allocations, where existent, are indicated by underlining. We investigate four partial solutions, {3}, {4}, {5}
and {7}, for Q. The boundary of Q is δ(Q) = {2, 7, x} (emphasized in bold). Deleting either 3, 4, or 7
yields a solution for P , but deleting item 5 does not; we have depicted a minimal obstruction in P − {5}

Branching set. To solve PID we will repeatedly apply a branching step: whenever
we encounter a minimal obstruction Q, we shall consider several possible partial
solutions forQ, and for each partial solution Y we try to find a solution U for P such
that U ∩ I (Q) = Y . To formalize this idea, we say that a family Y containing partial
solutions for aminimal obstructionQ is a branching set forQ, if there exists a solution
U of minimum size for the profile P such that U ∩ I (Q) ∈ Y . Such a set is exactly
what we need to build a search tree algorithm for PID.

Lemma4 shows that we never need to delete more than two items from anyminimal
obstruction. This will be essential for constructing a branching set.

Lemma 4 LetQ be aminimal obstruction in a profileP , and letU denote an inclusion-
wise minimal solution for P . Then |U ∩ I (Q)| ≤ 2.

Proof Let UQ := U ∩ I (Q), and let us assume |UQ| ≥ 3 for contradiction. We are
going to select a set Y of three items from UQ for which we can prove that U \ Y is a
solution for P , contradicting the minimality of U .

We rank the items of UQ according to the index of the first slot in which they
appear in P: we say that an item u appears at i , if i is the smallest index such that u
is eligible for a slot (x, i) for some x ∈ N . If there exist three items y1, y2, and y3 in
UQ appearing strictly earlier (i.e., at a smaller index) than all other items in UQ, then
we let Y = {y1, y2, y3}.
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Otherwise, we apply the following procedure to choose Y . Let Y1 be the set of items
inUQ that appear at the earliest index, say i1. We select y1 from Y1 by favoring items
eligible for more than one slot from {(a, i1), (b, i1), (c, i1)}; if there are still several
possibilities to choose y1, then we select it arbitrarily. Similarly, let Y2 be the set of
earliest appearing items inUQ \ {y1}, appearing at some index i2. We pick an item y2
from Y2 by favoring items eligible for more than one slot from {(a, i2), (b, i2), (c, i2)};
again, if there are still several possibilities to choose y2, then we select it arbitrarily.
Note that we use the notion of eligibility based on the original preference lists in P .

To choose an item y3 from the set Y3 of the earliest appearing items inUQ\{y1, y2},
we create the profile P3 = P − (U \ {y1, y2}). If there exists a minimal obstruction
in P3 strictly contained in Q, then we fix such a minimal obstruction Q3, and we
choose an item y3 ∈ Y3 eligible for a slot of S(Q3). Otherwise we choose y3 from
Y3 arbitrarily. Intuitively, we choose y3 so as to overcome the possible obstructions
obtained when putting y1 and y2 back into our instance, and our strategy for this is
simply to choose an item lyingwithin any such obstruction.Observe that if theminimal
obstruction Q3 exists, then (1) since there is no obstruction strictly contained in Q
in the profile P − UQ, there must exist some item in UQ \ {y1, y2} that is eligible
for some slot in S(Q3); and (2) if u appears earliest in P among all such items, then
u ∈ Y3. To see this, let (x, i) be the first slot in S(Q3) for which u is eligible in P3. By
the claim of Lemma2 on the shape of a minimal obstruction, all slots preceding (x, i)
belong to Q3 as well, that is, the prefix P<i

3 = P3[3i − 5, 3i − 5, 3i − 5] “induced”
by these slots in P3 is contained inQ3. Thus, by our choice of u, we get that P<i

3 is a
prefix of P as well, implying that no item of UQ \ {y1, y2} appears earlier in P than
u. Hence, u ∈ Y3, showing that y3 is well-defined.

Setting Y = {y1, y2, y3}, we finish our proof by proving thatU \Y is a solution for
P . For contradiction, suppose that R is a minimal obstruction in P ′ = P − (U \ Y ).

First, suppose thatR contains all items in Y . AsU is a solution, the profileR−Y is
solvable, and hence contains at least as many items as complete slots. Note that adding
the items of Y into the profile R − Y means adding exactly three new items and at
most three new complete slots (since each agent’s list contains at most three more
items, resulting in at most one extra complete slot per agent). Hence,R has at least as
many items as slots, contradicting the assumption that R is a minimal obstruction.

Hence we know that R does not contain all items in Y . By Lemma2, R is then
strictly contained3 in Q, and by the minimality of Q we get that R must contain an
item from {y1, y2, y3}. We claim that if R contains yh for some h ∈ {2, 3}, then it
contains all items y j with 1 ≤ j < h. Since y j appears not later than yh , the only
possible way forR to contain yh but not y j would be the following: y j and yh appear
at the same slot number i , but R has a slant shape and thus only contains two slots
from Si := {(x, i) | x ∈ N }, missing exactly the (unique) slot where y j appears.
However, since R is a minimal obstruction, yh must appear at both remaining slots
from Si by the last statement of Lemma2, which contradicts our choice of y j .

This leaves us with the case when y3 is not contained in R (for y3 ∈ I (R) would
imply Y ⊆ I (R), which we already proved not to be the case). Then R is not only a

3 Seemingly it may be incorrect to say that R is contained in Q because R is a prefix of P ′ while Q is a
prefix of P ; however, recall that the definition of containment only depends on the notion of size.
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prefix ofP ′ but also ofP3. Assume w.l.o.g. that y3 appears at index j in the slot (c, j).
SinceR is aminimal obstruction inP3 strictly contained inQ, we know that aminimal
obstruction Q3 was found when choosing y3, but R �= Q3. Thus, both R and Q3 are
minimal obstructions of slant shape, withR containing the slots (a, j) and (b, j) but
not (c, j), and Q3 containing the slot (c, j) and one of (a, j) and (b, j), say (b, j).
This means thatR = P3[3 j−2, 3 j−2, 3 j−5] andQ3 = P3[3 j−5, 3 j−2, 3 j−2].
Note also that by the last statement of Lemma2, we know

La
I\(U\{y1,y2})[1 : 3 j − 2] = Lb

I\(U\{y1,y2})[1 : 3 j − 2] = Lc
I\(U\{y1,y2})[1 : 3 j − 2].

This means that P3[3 j − 2, 3 j − 2, 3 j − 2] contains exactly 3 j − 2 items.
Observe that deleting {y1, y2} from profile P3[3 j − 2, 3 j − 2, 3 j − 2] results in

a prefix T of P3 − {y1, y2} = P − U of size [3 j − 4, 3 j − 4, 3 j − 4] that contains
exactly 3 j−4 items. However, S(T ) contains 3 j−3 complete slots (and 3 incomplete
ones). Therefore,P−U contains a prefix that is not solvable, a contradiction finishing
the proof. �


Lemma4 implies that simply taking all partial solutions of I (Q) of size 1 or 2 yields
a branching set forQ. As an example, the minimal obstruction shown in Fig. 2 admits
the branching set {{1}, {4}, {5}, {1, 4}, {1, 5}, {4, 5}}.
Corollary 2 For any minimal obstruction Q in a profile, a branching set Y for Q of
cardinality at most |I (Q)| + (|I (Q)|

2

) = O(|I |2) and with maxY∈Y |Y | ≤ 2 can be
constructed in O(|I |4) time.
Proof By Lemma4, in order to construct the branching set Y as required, it suffices
to check for each Y ⊆ I (Q) of size at most 2 whetherQ−Y is solvable. To do so, we
first construct the graphG underlying the prefixQ and compute a maximummatching
M in G. This can be done in O(|I |5/2) time using the Hopcroft–Karp algorithm, as
explained in Lemma1. Note that since Q is a minimal obstruction, it matches all but
one slots in G, so |M | = |S(Q)| − 1.

Now, for each Y ⊆ I (Q) with 1 ≤ |Y | ≤ 2 we compute the graph GY underlying
the prefix Q − Y . Observe that we can obtain GY from G by deleting the items of Y ,
and adding the necessary edges so that every slot is connected with all items eligible
for it. Observe that M yields a matching MY of size at least |M | − 2 in GY , which
covers at least |M | − 5 = |S(Q)| − 6 complete slots (because at most three slots may
have become incomplete in Q − Y ). Hence, starting from MY we only need to find a
constant number of augmenting paths in order to check whether all complete slots of
GY can be covered by a matching. This takes O(|I |2) time, because GY has at most
2|I | vertices, yielding a running time of O(|I |4) in total. �


4.4 Polynomial-Time Algorithm for PID for Three Agents

Let us now present our algorithm for solving PID on our profile P = (N , I , L).
We are going to build the desired solution step-by-step, iteratively extending an

already found partial solution. For a prefix T of P and a partial solution U for T ,
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Fig. 4 An example showing how different partial solutions for minimal obstructionQ can be extended into
a solution for profile P . Among all partial solutions, only {1} is a solution for P , deleting any other partial
solution leads to a new minimal obstruction. Note that both 4 and 5 are contained in the boundary, while 1
is not; hence, the size ofQ−{1} is different from that ofQ−{4} orQ−{5} (as can be seen on Fig. 2). This
implies that the prefixes (P − {4})[4, 1, 4] and (P − {5})[4, 4, 1] have less items than the corresponding
prefixes in P − {1} of the same size, ultimately leading to the fact that {1} is a solution for P , while neither
{4} nor {5} can be extended into a solution for P (because there exists no partial solution for the minimal
obstructions depicted in P − {4} and P − {5} that is disjoint from I (Q)). The list of possible extensions
shows that {4} is equivalent with {5}, and all partial solutions of size 2 are equivalent with each other. (We
remark that, however, all partial solutions for Q have distinct deficiency patterns, so no two of them are
strongly equivalent)

we call a set E ⊆ I an extension for (T ,U ) if E is disjoint from I (T ) and E ∪ U
is a solution for P; we will refer to the set of items in I (T ) \ U as forbidden w.r.t.
(T ,U ). We propose an algorithm Extend(T ,U ) that, given a prefix T of P and a
partial solution U for T , returns an extension for (T ,U ) of minimum size if one
exists, otherwise returns ‘No’.

Branching set with forbidden items. To address the problem of finding an extension
for (T ,U ), we modify the notion of a branching set accordingly. Given a minimal
obstruction Q in some profile P ′ and a set F ⊆ I (Q) of items, we say that a family
Y of partial solutions for Q is a branching set for Q forbidding F , if the following
holds: either there exists a solutionU for the profile P ′ that is disjoint from F and has
minimum size among all such solutions, and moreover, fulfills U ∩ I (Q) ∈ Y , or P
does not admit any solution disjoint from F (in which case Y can be arbitrary).

Lemma 5 There is an algorithm that, given a minimal obstruction Q in a profile and
a set F ⊆ I (Q) of forbidden items, produces a branching set Y forbidding F with
maxY∈Y |Y | ≤ 2 and |Y| = O(|I |2), and runs in time O(|I |4).
Proof The algorithm given in Corollary2 can be adapted in a straightforward fashion
to take forbidden items into account: it suffices to simply discard in the first place any
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subset Y ⊆ I (Q) that is not disjoint from F . It is easy to verify that this modification
indeed yields an algorithm as desired. �

Equivalent partial solutions.Wewill describe Extend as a recursive algorithm, but in
order to ensure that it runs in polynomial time,weneed to apply dynamic programming.
For this, we need a notion of equivalence: we say that two partial solutionsU1 andU2
for T are equivalent if

1. |U1| = |U2|, and
2. (T ,U1) and (T ,U2) admit the same extensions.

See Fig. 4 for an illustration.
Ideally, whenever we perform a call to Extend with a given input (T ,U ), we would

like to first check whether an equivalent call has already been performed, i.e., whether
Extend has been called with an input (T ,U ′) for which U and U ′ are equivalent.
However, the above definition of equivalence is computationally hard to handle: there
is no easyway to checkwhether two partial solutions admit the same extensions or not.
To overcome this difficulty, we will use a stronger condition that implies equivalence.

Deficiency patterns Consider a solvable prefix Q of P . We let the deficiency of Q,
denoted by def(Q), be the value |S(Q)|−|I (Q)|. Note that due to possibly incomplete
slots in Q, the deficiency of Q may be positive even if Q is solvable. However, if Q
contains only complete slots, then its solvability implies def(Q) ≤ 0. We define the
deficiency pattern of Q, denoted by defpat(Q), as the set of all triples

(size(R), def(Q ∩ R), I (Q ∩ R) ∩ δ(Q))

where R can be any prefix with a straight or a slant shape that intersects Q. Roughly
speaking, the deficiency pattern captures all the information about Q that is relevant
for determining whether a given prefix intersecting Q is a minimal obstruction or
not. Note that any given value of size(R) can be present in only one triple from the
deficiency pattern of Q, because def(Q ∩ R) and I (Q ∩ R) ∩ δ(Q) only depend on
size(R) and Q. See Fig. 5 for an example.

For an intuitive understanding of the role of deficiency patterns, consider a prefix T
and a partial solutionU for T . In our algorithm, after we have decided on deletingU ,
wewill not delete any further items from I (T ); hence, it should notmatter which items
we have included in U , as long as its deletion leaves us with the same kind of prefix.
So suppose that T ′ is a prefix that may or may not become a minimal obstruction after
deleting U ; clearly we may suppose that R = T ′ − U has a straight or a slant shape
(otherwise it is certainly not a minimal obstruction).

In case T ′ − U contains T − U , the only important properties of U are its size
and its intersection with the boundary of T : deleting any partial solution U ′ with
|U | = |U ′| that contains the same items from δ(T ) as U will leave us with the same
number of slots and the same number of items as the deletion of U . (See also Fig. 4
for an example showing why the boundary matters.)

In case T ′−U = R does not contain T −U but intersects it, all further information
necessary to “classify” U is contained in defpat(T − U ). Indeed, to calculate the
number of items in R, it suffices to know the number of items in the intersection
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Fig. 5 Illustration of deficiency patterns. For the minimal obstructionQ contained in profileP from Fig. 3,
we show four partial solutions and the corresponding deficiency patterns. SinceQ− {3} andQ− {4} have
the same deficiency pattern D1, and neither 3, nor 4 is contained in the boundary δ(Q), we get that {3}
and {4} are strongly equivalent partial solutions forQ; by Lemma6 they are also equivalent. ByD1 �= D2
sets {3} and {5} are not strongly equivalent for Q. Since 7 ∈ δ(Q), set {7} is not strongly equivalent with
any other partial solution; nevertheless, {3} and {7} are in fact equivalent with respect to Q: they are both
solutions for P and thus admit the extension ∅ (recall Fig. 3)

R ∩ (T − U ) and the number of items that are contained in I (R) \ I (T − U ). The
former can be calculated from the deficiency of R ∩ (T − U ). For the latter we also
need to know which items, among those occurring at positions of R outside T − U ,
occur also inR∩ (T −U ); since such items are necessarily contained in the boundary
of T , it suffices to know the set I (R ∩ (T −U )) ∩ δ(T ).

Strong equivalence To formalize the above ideas, we call partial solutionsU1 andU2
for T strongly equivalent, if

1. |U1| = |U2|,
2. U1 ∩ δ(T ) = U2 ∩ δ(T ), and
3. defpat(T −U1) = defpat(T −U2).

As the name suggests, strong equivalence is a sufficient condition for equivalence.

Lemma 6 If U1 and U2 are strongly equivalent partial solutions for T , then they are
equivalent as well.
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Proof Suppose that W is an extension for (T ,U1). We need to prove that it is an
extension for (T ,U2) as well. Clearly, we have W ⊆ I \ I (T ), so it suffices to show
that P − (U2 ∪ W ) is solvable.

Suppose for contradiction that Q2 is a minimal obstruction in P − (U2 ∪ W ). Let
us consider the prefixQ1 of P − (U1 ∪W ) that has the same size asQ2; such a prefix
exists because |U1| = |U2|. In the remainder of the proof, we argue that Q1 is not
solvable in P − (U1 ∪ W ), contradicting the assumption that W is an extension for
(T ,U1) and thus U1 ∪ W is a solution for P . Note that Q1 and Q2 clearly have the
same slots, all of them complete.

Recall thatU2 is a partial solution for T , so T −U2 is solvable. SinceW is disjoint
from I (T ), we know that Q2 cannot be contained in T −U2.

First, let us assume that Q2 contains T − U2. In this case, |U1| = |U2| and U1 ∩
δ(T ) = U2 ∩ δ(T ) together immediately imply that Q1 and Q2 contain the same
number of items: |I (Q1)| = |I (Q2)|. Hence, we get |I (Q1)| = |I (Q2)| < |S(Q2)| =
|S(Q1)|, proving our claim.

Second, let us assume now that Q2 and T − U2 are intersecting, and let their
intersection be T ∩

2 . Similarly, let T ∩
1 be the intersection of Q1 and T − U1. Since

Q2 is a minimal obstruction and thus has a straight or a slant shape, we know that
(size(Q2), def(T ∩

2 ), I (T ∩
2 ) ∩ δ(T − U2)) is contained in the deficiency pattern of

T −U2. By the third condition of equivalence, the same triple must also be present in
the deficiency pattern of T − U1. Hence, T ∩

1 must have the same deficiency as T ∩
2 .

By |U1| = |U2| andU1 ∩ δ(T ) = U2 ∩ δ(T ), we know that T −U1 and T −U2 have
the same size, and thus T ∩

1 has the same size as T ∩
2 . This implies |I (T ∩

1 )| = |I (T ∩
2 )|.

Moreover, we also get I (T ∩
2 ) ∩ δ(T − U2) = I (T ∩

1 ) ∩ δ(T − U1). Recall that
U1 ∩ δ(T ) = U2 ∩ δ(T ) is guaranteed by the second condition of strong equivalence.
Hence, adding the items contained in Q2 but not in T increases the size of I (T ∩

2 )

exactly as adding the items contained inQ1 but not in T increases the size of I (T ∩
1 ).

Therefore, we can conclude that |I (Q1)| = |I (Q2)|, which again implies that Q1 is
not solvable. �


Before giving the details of algorithmExtend, we need onemore lemma on the rela-
tion of prefixes that we consider during the iterative approach of addressing minimal
obstructions one-by-one.

Lemma 7 Let Q0 be a minimal obstruction in P −U0 for a set U0 ⊆ I of items, and
let T be the largest4 prefix inP for which T −U0 = Q0. Let also Y ⊆ I (T )\U0 with
1 ≤ |Y | ≤ 2 be a partial solution for T −U0; then U = U0 ∪ Y is a partial solution
for T . Now, letQ be a minimal obstruction in P −U, and let T ′ be the largest prefix
of P such that T ′ − U = Q. Then either I (T ′) ⊇ I (T ), or there does not exist an
extension for (T ,U ).

Proof First observe that T − U cannot contain T ′ − U , because T − U is solvable,
but T ′ − U is a minimal obstruction. Assume now that I (T ′) � I (T ). Then clearly,

4 If T1 −U0 = T2 −U0 = Q, then (T1 ∪ T2) −U0 = Q also holds (where the union of T1 and T2 is the
unique smallest prefix containing both); hence, T is well defined.
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Fig. 6 Illustration for the proof of Lemma 7. The shapes of prefixes Q0, Q, and T − U = Q0 − Y are
depicted with solid, dashed, and dotted lines, respectively. Positions contained in T − U but not in Q are
marked by black diamonds, while positions contained inQ but not in T −U are marked by white diamonds

T ′ −U cannot contain T −U either. Hence, T −U must intersect with the minimal
obstruction Q = T ′ −U .

Consider agents’ preference lists in the profile P − U and the underlying graph
GP−U . We say that two (or three) positions in the preference lists belong to the same
slot in GP−U , if they are contained in Lx

I\U [i − 2 : i] for some agent x and index
i ≡ 1 mod 3. We claim that either

(i) all positions contained in T − U but not in Q belong to the same slot in GP−U ,
or conversely,

(ii) all positions contained in Q but not in T −U belong to the same slot in GP−U .

This claim can be seen by the heavy use of Lemma2, distinguishing between cases
depending on the shapes and positions of Q and Q0; see Fig. 6.

Let us first assume that Q0 has a straight shape, so Q0 = (P − U0)[i, i, i] for
some index i ≡ 1 mod 3. Then by |Y | ≤ 2 we know thatQ0 − Y = T −U contains
(P−U )[i−3, i−3, i−3] and is contained in (P−U )[i, i, i]. Hence, the only possible
way for T −U to intersectQ is forQ to have size [i, i, i−3], [i, i−3, i], or [i−3, i, i];
w.l.o.g. we suppose Q = (P − U )[i, i, i − 3]. But then (i) must hold, because any
position contained in T −U but not in Q must be a position in Lc

I\U [i − 2, i].
Let us now assume that Q0 has a slant shape; w.l.o.g. we may assume that Q0 =

(P − U0)[i, i, i − 3] for some index i ≡ 1 mod 3. Now, if Q is contained in (P −
U )[i − 3, i − 3, i − 3], then (ii) holds, because any position contained inQ but not in
Q0 − Y = T − U must be a position in Lc

I\U [i − 4, i − 3]. Otherwise, using again
|Y | ≤ 2, the only way for Q to intersect T − U is for Q to have size [i − 3, i, i] or
[i, i − 3, i], and in either case (i) holds. This proves our claim.

Suppose now (i). Let (x, j) be the slot to which all positions contained in T − U
but not in Q belong; let I � denote the set of items on these positions in T −U . Then

I (T −U ) \ I (Q) ⊆ I �. (2)

Since I � contains items of T − U = Q0 − Y , we know that they occur on positions
belonging to the slot (x, j) inQ0 as well (note that Q0 is a prefix in P − (U \ Y ) not
in P − U ). Thus (x, j) ∈ S(Q0), but observe that (x, j + 1) /∈ S(Q0). However, by
the minimality of Q0, any item present in a last slot of Q0 occurs at least once more
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in Q0 (since an item eligible only for (x, j) among all slots in S(Q0) would imply
that deleting the positions corresponding to (x, j) from Q0 would yield a prefix with
|S(Q0)| − 1 slots and at most |I (Q0)| − 1 items). Therefore, any item of I � occurs
at least once more in Q0. By I � ∩ Y = ∅, this implies that any item of I � occurs at
least once in a position ofQ0 − Y = T −U that does not belong to (x, j). However,
any such position is contained in Q as well, by our assumption (i). Thus I � ⊆ I (Q),
which by Equality (2) implies ∅ = I (T −U ) \ I (Q) = I (T −U ) \ I (T ′ −U ). This
proves I (T ) ⊆ I (T ′).

Supposing (ii), let (x, j) be the slot to which all positions contained in Q but not
in T − U belong; let I � denote the set of items on these positions in Q. Then it is
clear that (x, j) ∈ S(Q) but (x, j + 1) /∈ S(Q), hence arguing as above, we get that
I � ⊆ I (T − U ). But then I (Q) ⊆ I (T − U ) ∪ I � ⊆ I (T − U ), implying that the
minimal obstructionQ in P −U contains only items that are forbidden w.r.t. (T ,U ).
Thus, there cannot exist an extension for (T ,U ). �


Now, we are ready to describe algorithm Extend in detail. Let (T ,U ) be the input
for Extend. Throughout the run of the algorithm, we will store all inputs with which
Extend has been computed in a table SolTable, keeping track of the corresponding
extensions as well. Initially, we call Extend with input (T∅,∅), where T∅ denotes the
empty prefix of our input profileP , i.e.,P[0, 0, 0], andwe initialize SolTable as empty.
For an example of running algorithm Extend on an instance of PID, see Appendix A.

Algorithm Extend(T ,U ):

Step 0: Check for strongly equivalent inputs.
For each (T ,U ′) inSolTable, checkwhetherU ′ andU are strongly equivalent
with respect to T , and if so, return Extend(T ,U ′).

Step 1: Check for trivial solution.
Check if P − U is solvable. If so, then return the empty extension ∅, and
store the entry (T ,U ) together with the value ∅ in SolTable.

Step 2: Find a minimal obstruction.
Find a minimal obstructionQ in P −U ; recall that P −U is not solvable in
this step.

Step 3: Compute the new prefix.
Let T ′ be the largest prefix of P for which T ′ − U = Q. If I (T ′) � I (T ),
then return ‘No’, and store the entry (T ,U ) together with the value ‘No’ in
SolTable.

Step 4: Compute a branching set.
Using Lemma5, determine a branching set Y forQ forbidding I (T ) \U . If
Y = ∅, then return ‘No’, and store the entry (T ,U ) together with the value
‘No’ in SolTable.

Step 5: Branch.
For each Y ⊆ Y , compute EY := Extend(T ′,U ∪ Y ).

Step 6: Find a smallest extension.
Compute a set EY � for which |Y � ∪ EY � | = minY∈Y |Y ∪ EY |. Return the set
Y � ∪ EY � , and store the entry (T ,U ) together with the extension Y � ∪ EY �

in SolTable.
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Lemma 8 When initially called with input (T∅,∅), algorithm Extend is correct, i.e.,
for any prefix T of P and any partial solution U for T , Extend(T ,U ) returns a
minimum-size extension for (T ,U ) (if existent).

Proof Observe that it suffices to prove the claim for those caseswhen algorithmExtend
does not return a solution in Step 0: its correctness in the remaining cases (so when
a solution contained in SolTable for a strongly equivalent input is found and returned
in Step 0) follows from Lemma6.

We are going to prove the lemma by induction on |I \ U |. Clearly, if |I \ U | = 0,
then P − U is an empty instance, and hence is trivially solvable. Assume now that
I \ U �= ∅, and that Extend returns a correct output for any input (T0,U0) with
|I \U0| < |I \U |.

First, if the algorithm returns ∅ in Step 1, then this is clearly correct.
Second, if it returns ‘No’ in Step 3, then in this case T �= T∅, so Extend(T ,U ) is

a recursive call, and hence was called when branching on a branching set. Thus, there
exists some Y ⊆ U with 1 ≤ |Y | ≤ 2 for which T − (U \Y ) is a minimal obstruction
Q0. Hence, Lemma7 can be applied, which implies the correctness of this step.

Third, if the algorithm returns ‘No’ in Step 4 because it finds that the branching setY
forbidding I (T )\U for theminimal obstructionQ is empty, then this, by the definition
of a branching set (forbidding I (T ) \ U ) and by the soundness of the algorithm of
Lemma5, means that there is no solution S for P − U disjoint from I (T ) \ U . But
then we also know that there is no solution S for P for which S ∩ I (T ) = U holds,
so there is no extension for (T ,U ). Hence this step is correct as well.

Therefore, we can assume that the algorithm’s output is Y � ∪ EY � for some Y � ∈
Y , where EY � = Extend(T ′,U ∪ Y �) and T ′ is the largest profile in P for which
T ′ − U = Q. As |I \ (U ∪ Y )| < |I \ U | for any Y ∈ Y , the induction hypothesis
implies that Extend runs correctly on all inputs (T ′,U ∪Y ), Y ∈ Y . Hence, EY � is an
extension for (T ′,U ∪ Y �) and so U ∪ Y � ∪ EY � is a solution for P . Moreover, since
EY � ∩ I (T ′) = ∅ and I (T ′) ⊇ I (T ) by Step 3, we know that EY � is disjoint from
I (T ). Since Y � is contained in a branching set for Q in P −U forbidding I (T ) \U ,
we get that Y � ∪ EY � is disjoint from I (T ) as well. Thus, Y � ∪ EY � is an extension
for (T ,U ).

It remains to argue that if E is an extension for (T ,U ), then |Y � ∪ EY � | ≤ |E |.
Clearly, E is a solution for P − U disjoint from I (T ) \ U . By the definition of a
branching set forbidding I (T ) \ U and the correctness of Lemma5, we know that
there must exist a solution E ′ for P − U disjoint from I (T ) \ U and having size
|E ′| ≤ |E | for which E ′ ∩ I (Q) ∈ Y . Define Y ′ = E ′ ∩ I (Q). Observe that E ′ \ Y ′
an extension for (T ′,U ∪ Y ′).

Using again the induction hypothesis, we get that Extend(T ′,U ∪ Y ′) returns an
extension EY ′ for (T ′,U ∪ Y ′) of minimum size, so in particular, |EY ′ | ≤ |E ′ \ Y ′|,
implying |Y ′ ∪ EY ′ | ≤ |E ′| ≤ |E |. Thus, by our choice of Y �, we get that the output
of Extend(T ,U ) (that is, Y � ∪ EY �) has size at most |E |. This proves our claim.
Therefore, we get that if Extend returns an output in Step 6, then this output is correct.

�
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Lemma8 immediately gives us an algorithm to solve PID: Extend(T∅,∅) returns
a solution S for P of minimum size; we only have to compare |S| with the desired
solution size k.

The next lemma states that Extend gets called polynomially many times.

Lemma 9 Throughout the run of algorithm Extend initially called with input (T∅,∅),
the table SolTable contains O(|I |7) entries.
Proof Let us consider table SolTable at a givenmoment during the course of algorithm
Extend, initially called with the input (T∅,∅) (and having possibly performed several
recursive calls since then). Let us fix a prefix T . We are going to give an upper bound
on the maximum cardinality of the family UT of partial solutions U for T for which
SolTable contains the entry (T ,U ).

By Step 0 of algorithm Extend, no two sets in UT are strongly equivalent. Recall
that ifU1 andU2, both in UT , are not strongly equivalent with respect to T , then either
|U1| �= |U2|, or δ(T ) ∩ U1 �= δ(T ) ∩ U2, or defpat(T − U1) �= defpat(T − U2).
Let us partition the sets in UT into groups: we put U1 and U2 in the same group, if
|U1| = |U2| and δ(T ) ∩U1 = δ(T ) ∩U2.

Examining Steps 2–4 of algorithm Extend, we can observe that if U �= ∅, then for
some YU ⊆ U of size 1 or 2, the prefix T − (U \ YU ) is a minimal obstruction QU .
Since removing items from a prefix cannot increase the size of its boundary, Lemma3
implies that the boundary of T − U contains at most 3 items. We get |δ(T ) \ U | =
|δ(T − U )| ≤ 3, from which it follows that δ(T ) ∩ U is a subset of δ(T ) of size at
least |δ(T )| − 3. Therefore, the number of different values that δ(T ) ∩U can take is
O(|I |3). Since any U ∈ UT has size at most |I |, we get that there are O(|I |4) groups
in UT . Let us fix some group Ug of UT . We are going to show that the number of
different deficiency patterns for T −U where U ∈ Ug is constant.

Recall that the deficiency pattern of T −U consists of triples of the form

(size(R), def(R∩), I (R∩) ∩ δ(T −U ))

where R is some prefix of P − U with a slant or a straight shape, and R∩ is the
intersection of T −U and R.

First observe that by the definition of a group, size(T −U1) = size(T −U2) holds
for anyU1,U2 ∈ Ug . Let us fix an arbitraryU ∈ Ug . Since T −U can be obtained by
deleting 1 or 2 items from a minimal obstruction, Lemma2 implies that there can only
be a constant number of prefixesR of P −U which intersect T −U and have a slant
or a straight shape; in fact, it is not hard to check that the number of such prefixes R
is at most 5 for any given T − U . Therefore, the number of values taken by the first
coordinate size(R) of any triple in the deficiency pattern of T −U is constant. Since
T − U has the same size for any U ∈ Ug , we also get that these values coincide for
anyU ∈ Ug . Hence, we obtain that (A) the total number of values the first coordinate
of any triple in the deficiency pattern of T −U for any U ∈ Ug can take is constant.

Let R∩ be the intersection of T − U and some prefix of straight or slant shape.
By definition,R∩ is contained inQU . By |YU | ≤ 2, there are only a constant number
of positions which are contained in QU but not in R∩. From this both ||I (R∩)| −
|I (QU )|| = O(1) and ||S(R∩)| − |S(QU )|| = O(1) follow. As QU is a minimal

123



1588 Algorithmica (2021) 83:1559–1603

obstruction, we also have |I (QU )| = |S(QU )| − 1, implying that (B) the deficiency
def(R∩) = |S(R∩)| − |I (R∩)| can only take a constant number of values too; note
that we have an upper bound on |def(R∩)| that holds for any U ∈ Ug . Considering
that I (R∩)∩ δ(T −U ) is the subset of δ(T −U ), and we also know |δ(T −U )| ≤ 3,
we obtain that (C) the set I (R∩) ∩ δ(T − U ) can take at most 23 values (again, for
all U ∈ Ug).

Putting together observations (A), (B), and (C), it follows that the number of dif-
ferent deficiency patterns of T − U taken over all U ∈ Ug is constant. This implies
|UT | = O(|I |4). Since there are O(|I |3) prefixes T of P , we arrive at the conclusion
that the maximum number of entries in SolTable is O(|I |7). �


We are now able to formulate our main theorem, stating that PID is solvable in
polynomial time for three agents.

Theorem 7 Proportional Item Deletions for three agents can be solved in
time O(|I |11).
Proof By Lemma8, we know that algorithm Extend(T∅,∅) returns a solution for P of
minimum size, solving PID.

To bound the running time of Extend(T∅,∅), let us first give a bound on the time
necessary for the computations performed by Extend on some input (T ,U ) when not
counting the computations performed in recursive calls. Clearly, Step 0 takes O(|I |)
time (assuming we can effectively search within the table SolTable). Steps 1 and 2 can
be accomplished inO(|I |3) time, as described inLemma1. Step 3 can be accomplished
in time O(|I |). Using Lemma5, Step 4 can be performed in O(|I |4) time. Since the
cardinality of the branching set found in Step 4 is O(|I |2), Steps 5 and 6 can be
performed in O(|I |3) time. Hence, any call to Extend can be performed in (|I |4) time
(when not counting the computations performed in the recursive calls).

Let us distinguish now between two types of recursive calls to Extend: a call
Extend(T ,U ) is regular, if Step 0 does not produce an output during its execution;
otherwise we refer to this call as a shadow call. We first give an upper bound for the
time spent on regular calls. Note that in each such call, an entry is added to SolTable.
By Lemma9, SolTable contains O(|I |7) entries, and therefore the number of regular
calls to Extend is also O(|I |7). This gives us an upper bound of O(|I |11) on the total
time spent on regular calls to Extend.

To bound the time spent on shadow calls, observe that each regular call may give
rise to at most O(|I |2) shadow calls (and there are no recursive calls performed within
a shadow call). Hence, the number of shadow calls is O(|I |9). Since Step 0 takes
O(|I |) time, this yields a bound of O(|I |10) for the total time spent on shadow calls.
Hence the total running time of Extend(T∅,∅) is as claimed. �


5 PID with Fixed Allocation

In this section we investigate a version of PID where an allocation is given in advance,
and we want to make this allocation proportional by item deletion. The input of the
problem,whichwe refer to asPID with Fixed Allocation, consists of a preference
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profile P = (N , I , L), an allocation π : I → N , and an integer k ∈ N. We call a set
S ⊆ I of items a solution for (P, π), if the restriction of π to I \ S is proportional for
the profile P − S; the task is to find a solution of size at most k for (P, π).

Since we are given a fixed allocation, the concept of minimal obstruction can be
simplified accordingly: we say that agent x becomes envious at index i for some
i ∈ {1, . . . , |I |}, if the number of items in Lx [1 : i] assigned to x by π is less than
i/|N |, but for any smaller index j < i the number of items in Lx [1 : j] assigned to
x by π is at least j/|N |. Clearly, if no agent becomes envious at any index, then our
allocation π is proportional.

Our first observation is that PID with Fixed Allocation can be solved in
polynomial time if there are only two agents. To show this, we propose an algorithm
that we call GreedyDel. Suppose that N contains only two agents. For an agent x ∈ N ,
we denote by x̄ the other agent, i.e., x̄ ∈ N , x �= x̄ .

Algorithm GreedyDel(P, π, k):

Step 0: If k < 0, then return ‘No’.
Step 1: If π is proportional for P , then return ‘Yes’.
Step 2: Perform a greedy deletion:

Let x denote an agent and i an index such that x becomes envious at i .
Compute the item s that is the least preferred by agent x̄ among all items of
Lx [1 : i] assigned to x̄ by π , and call GreedyDel(P − {s}, π ∣

∣

I\{s}, k − 1).

Theorem 8 If the number of agents is two, then PID with Fixed Allocation can
be solved in polynomial time by algorithm GreedyDel.

Proof It is easy to see that algorithm GreedyDel can be implemented in quadratic
running time. To prove its correctness, let us consider the steps of GreedyDel on our
input instance (P, π, k).

Note that Steps 0 and 1 are clearly correct. We claim that the deletion performed
in Step 2 is safe in the following sense: if S is a solution for (P, π) and s is the
item deleted by the algorithm in Step 2, then there exists a solution S′ for (P, π) that
contains s. Clearly, if this holds, then GreedyDel is correct.

Let x be the agent and i the index for which x becomes envious at i , as found in
Step 2. Let S[1:i] denote those items of S that are contained in Lx [1 : i]. Suppose that
S does not contain the deleted item s. However, since S is a solution, we know that
S[1:i] must contain strictly more items assigned by π to x̄ than to x , i.e.,

|S[1:i] ∩ π−1(x̄)| ≥ |S[1:i] ∩ π−1(x)| + 1. (3)

Let s� be the item least preferred by x in S[1:i] ∩ π−1(x̄). We will show that S′ =
S \ {s�} ∪ {s} is a solution for (P, π), proving our claim that Step 2 is safe.

Note that by our choice of s, agent x̄ prefers s� to s, so x̄ cannot become envious at
any index in P − S′. If x prefers s to s�, then x cannot become envious at any index
in P − S′ either (because deleting an item assigned to x̄ that comes before s� in Lx

is always preferable for x than deleting s�), so in this case S′ is a solution for (P, π).
Thus, for the sake of contradiction, assume that x also prefers s� to s, and x becomes
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envious somewhere in P − S′. This means that there exists an index j ∈ {1, . . . , |I |}
such that

|Jx \ S′| < |Jx̄ \ S′|, (4)

where Jx and Jx̄ denote the set of items in Lx [1 : j] assigned to x and to x̄ by π ,
respectively (note that Lx is the preference list of x in the original instance P).

First, if Jx̄ contains either both s and s� or neither of them, then |Jx̄ ∩S| = |Jx̄ ∩S′|,
so

|Jx \ S′| = |Jx \ S| ≥ |Jx̄ \ S| = |Jx̄ \ S′|,

where the first equality is implied by {s, s�}∩ Jx = ∅, and the inequality follows from
the fact that S is a solution for (P, π). This contradicts (4).

Second, if |Jx̄ ∩ {s, s�}| = 1, then s� ∈ Jx̄ but s /∈ Jx̄ , because x prefers s�

to s. In this case we know j < i . Using that s� is the least preferred by x among all
items of S[1:i] ∩ π−1(x̄) but it still falls within Lx [1 : j], we know that all items of
S[1:i] ∩ π−1(x̄) fall within Lx [1 : j] and are thus contained in Jx̄ . From this, we get
that

|Jx̄ ∩ S′| = |Jx̄ ∩ S| − 1 = |S[1:i] ∩ π−1(x̄)| − 1 ≥ |S[1:i] ∩ π−1(x)| ≥ |Jx ∩ S|
= |Jx ∩ S′|,

where the first inequality follows from (3). Recall that x only becomes envious at i in
P , and therefore |Jx | ≥ |Jx̄ |, leading us to

|Jx \ S′| = |Jx | − |Jx ∩ S′| ≥ |Jx̄ | − |Jx̄ ∩ S′| = |Jx̄ \ S′|,

which again contradicts (4). �

Interestingly, PID with Fixed Allocation becomes NP-hard if the number of

agents is 6. Hence, providing an allocation in advance does not seem to make PID
much easier; the intuitive argument behind this is that we may be given an allocation
that is quite unreasonable and may actually become a hindrance to proportionality
instead of helping us. Our results leave open the computational complexity of the
problem when the number of agents is in {3, 4, 5}.
Theorem 9 If the number of agents is six, then PID with Fixed Allocation is
NP-complete.

Proof It is straightforward to see that the problem is in NP. To prove its NP-
completeness, we are going to present a reduction from the Cubic Monotone

1- in- 3- SAT problem, whose input is a propositional formula ϕ in conjunctive nor-
mal form where variables only occur as positive literals, and the underlying graph G
is a cubic graph (i.e., every vertex has degree 3). Formally, we define G = (V ∪C, E)

as a bipartite graph whose two partitions are the set V of variables and the set C of
clauses, and a variable v ∈ V is adjacent to a clauseC ∈ C inG if and only if v appears
in C . Since G is cubic, each variable occurs in exactly three clauses, and conversely,
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each clause contains exactly three distinct variables. The task in the Cubic Mono-

tone 1- in- 3- SAT problem is to decide whether there exists a truth assignment for
ϕ where exactly one out of three variables is true in each clause; we will call such a
truth assignment valid. Moore and Robson [21] proved that this problem is NP-hard.

Given the input formula ϕ, we construct an instance (P, π, k) of PID with

Fixed Allocation such that ϕ is satisfiable if and only if (P, π) admits a solu-
tion of size at most k. Let ϕ contain variables v1, . . . , vn and clauses C1, . . . ,Cn ;
note that n ≡ 0 mod 3 must hold, as G is cubic. We define the set of agents
as N = {v, v′, w,w′, f , f ′}. The set I of items contains Vi = {ai , bi , ci } and
V̂i = {âi , b̂i , ĉi } for each variable vi ∈ V , as well as a set Ix containing some newly
introduced items for each agent x ∈ N ; we set |I f | = 3n, |I f ′ | = 2n, and |Ix | = 4n
for any other agent x ∈ N \ { f , f ′}. We letU = V1 ∪· · ·∪Vn and Û = V̂1 ∪· · ·∪ V̂n .
Items in U and Û are assigned by π to f ′ and f , respectively, while for any agent
x ∈ N , items in Ix are assigned to x by π . We set k = 3n.

To finish the definition of profile P = (N , I , L), it remains to give the preferences
of each agent, for which we need additional notation. The three items in Vi will
correspond to the three occurrences of variable vi , each a positive literal, while the
items in V̂i will correspond to their negated forms. Hence, for each clause Ci ∈ C, we
define Pi as the set of items that, for any j ∈ {1, . . . , n}, contains item a j , b j , or c j if
and only if Ci contains the first, second, or third occurrence, respectively, of variable
v j in ϕ. We also define Ni as the set of items containing â j , b̂ j , or ĉ j for some j if
and only if Pi contains a j , b j , or c j , respectively.

To simplify our notation for the preference lists, we fix an arbitrary ordering≺ over
I so that we can omit listing all irrelevant items in the preference lists: the symbol ‘···’
at the end of a preference list stands for the sequence of all remaining items according
to their order in ≺. Also, we write [X ] for a set X of items to denote their sequence
according to ≺. In the preference list of some agent x ∈ N , it will be sufficient to
distinguish between items of D = Iv ∪ Iv′ ∪ Iw ∪ Iw′ only up to the point of indicating
whether they are assigned to x by π or not. Thus, we will use ‘•’ symbols in Lx to
denote items from Ix , and we will use ‘◦’ symbols to denote items from D \ Ix (these
will serve as dummy items). If the number of ‘•’ (or ‘◦’) symbols in Lx is �, then they
refer to the first � items from Ix (or from D \ Ix , respectively) according to ≺. Now,
the preference lists are as shown in Table1.

Notice that we need to make sure that we do not “run out of” the necessary items
when using ‘◦’ symbols: for any agent x , the number of available dummy items is
|D \ Ix | ≥ 12n, while Lx contains at most 12n dummies. Hence,P is indeed a profile.

The reduction presented can clearly be computed in polynomial time, so let us prove
its correctness. First assume that S is a solution for (P, π) of size at most k. Note that
π assigns exactly 4n items to each agent except for f and f ′, while it assigns 6n and
5n items to f and f ′, respectively (recall that f receives all 3n items in Û , while f ′
receives all 3n items in U ). By k = 3n, we get that S contains exactly 2n items of
Û ∪ I f and n items of U ∪ I f ′ . In particular, S does not contain any (dummy) item
from D.

Fix some agent x ∈ N \ { f , f ′}, and consider the first 7 j items in the preference
list of x for some j ∈ {1, . . . , 3n}. Observe that Lx [1 : 7 j] contains only j items
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Table 1 Preferences in the instance of PID with Fixed Allocation constructed in the proof of Theo-
rem9.

Lv : •,

6
︷ ︸︸ ︷

◦, ◦, ◦, ◦, a1, â1, •,

6
︷ ︸︸ ︷

◦, ◦, ◦, ◦, b1, b̂1, •,

6
︷ ︸︸ ︷

◦, ◦, ◦, ◦, c1, ĉ1,

•, ◦, ◦, ◦, ◦, a2, â2, •, ◦, ◦, ◦, ◦, b2, b̂2, •, ◦, ◦, ◦, ◦, c2, ĉ2,

.

.

.

•, ◦, ◦, ◦, ◦, an , ân , •, ◦, ◦, ◦, ◦, bn , b̂n , •, ◦, ◦, ◦, ◦, cn , ĉn ,

n
︷ ︸︸ ︷•, •, . . . , •, ···

Lv′ : •, ◦, ◦, ◦, ◦, cn , ĉn , •, ◦, ◦, ◦, ◦, bn , b̂n , •, ◦, ◦, ◦, ◦, an , ân ,

.

.

.

•, ◦, ◦, ◦, ◦, c2, ĉ2, •, ◦, ◦, ◦, ◦, b2, b̂2, •, ◦, ◦, ◦, ◦, a2, â2,

•, ◦, ◦, ◦, ◦, c1, ĉ1, •, ◦, ◦, ◦, ◦, b1, b̂1, •, ◦, ◦, ◦, ◦, a1, â1,

n
︷ ︸︸ ︷•, •, . . . , •, ···

Lw : •, ◦, ◦, ◦, ◦, â1, b1, •, ◦, ◦, ◦, ◦, b̂1, c1, •, ◦, ◦, ◦, ◦, ĉ1, a1,

•, ◦, ◦, ◦, ◦, â2, b2, •, ◦, ◦, ◦, ◦, b̂2, c2, •, ◦, ◦, ◦, ◦, ĉ2, a2,

.

.

.

•, ◦, ◦, ◦, ◦, ân , bn , •, ◦, ◦, ◦, ◦, b̂n , cn , •, ◦, ◦, ◦, ◦, ĉn , an ,

n
︷ ︸︸ ︷•, •, . . . , •, ···

Lw′ : •, ◦, ◦, ◦, ◦, ĉn , an , •, ◦, ◦, ◦, ◦, b̂n , cn , •, ◦, ◦, ◦, ◦, ân , bn ,

.

.

.

•, ◦, ◦, ◦, ◦, ĉ2, a2, •, ◦, ◦, ◦, ◦, b̂2, c2, •, ◦, ◦, ◦, ◦, â2, b2,

•, ◦, ◦, ◦, ◦, ĉ1, a1, •, ◦, ◦, ◦, ◦, b̂1, c1, •, ◦, ◦, ◦, ◦, â1, b1,

n
︷ ︸︸ ︷•, •, . . . , •, ···

L f : •,

6
︷ ︸︸ ︷

◦, ◦, ◦, [P1], •,

6
︷ ︸︸ ︷

◦, ◦, ◦, [P2], . . . , •,

6
︷ ︸︸ ︷

◦, ◦, ◦, [Pn ],
2n

︷ ︸︸ ︷•, •, . . . , •, [Û ], ···

L f ′ : •,

7
︷ ︸︸ ︷

◦, ◦, ◦, ◦, [N1], •,

7
︷ ︸︸ ︷

◦, ◦, ◦, ◦, [N2], . . . , •,

7
︷ ︸︸ ︷

◦, ◦, ◦, ◦, [Nn ],
n

︷ ︸︸ ︷•, •, . . . , •, [U ], ···
Recall that in a preference list Lx , all ‘•’ symbols stand for items in Ix (assigned by π to x), while ‘◦’
symbols stand for items in D \ Ix (assigned by π to some other agent in {v, v′, w,w′} \ {x}). The numbers
above braces indicate the length of the given series of items

assigned to x by π . However, π cannot be proportional as long as the set consisting
of the first 6 j + 1 items in x’s preference list contains at most j items assigned to x
by π . Hence we know that S must contain at least j items from Lx [1 : 7 j]. Let Qx

j
denote the set of items in Lx [7 j −6 : 7 j] that are not in D and hence may be included
in the solution S; e.g., Qv

1 = {a1, â1}, Qv
2 = {b1, b̂1}, and so on. Then our observation

for each x ∈ N \ { f , f ′} can be written as

|S ∩ (Qx
1 ∪ · · · ∪ Qx

j )| ≥ j . (5)
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However, notice that Qv
j = Qv′

3n+1− j and also Qw
j = Qw′

3n+1− j , which implies

|S ∩ (Qx
j+1 ∪ · · · ∪ Qx

3n)| = |S ∩ (Qx ′
3n− j ∪ · · · ∪ Qx ′

1 )| ≥ 3n − j (6)

for any x ∈ N \ { f , f ′} where we abuse notation by setting v′′ = v and w′′ = w; note
that we used Inequality (5) for agent x ′ and index 3n − j . Using that |S| = 3n and
that the sets Qx

j , j ∈ {1, . . . , 3n}, are mutually disjoint, it is straightforward to verify
that Inequalities (5) and (6) can only hold for each value of j ∈ {1, . . . , 3n} if

|S ∩ Qx
j | = 1 for every j ∈ {1, . . . , 3n}. (7)

For agents v and v′, (7) implies that u ∈ S if and only if û /∈ S for any item u ∈ U .
Taking into account the statement of (7) for agents w and w′, we obtain that either
Vi ⊆ S and V̂i ∩ S = ∅, or V̂i ⊆ S and Vi ∩ S = ∅ for each i ∈ {1, . . . , n}.

Let us define a truth assignment α by setting variable vi ∈ V in ϕ to true if and
only if Vi ⊆ S. We claim that α is valid for ϕ, i.e., each clause in C contains exactly
one variable vi for which Vi ⊆ S.

Considering the first 7 j items from the preference list of f for some j ∈ {1, . . . , n}
and arguing similarly as before, we obtain that

|S ∩ (P1 ∪ · · · ∪ Pj )| ≥ j . (8)

Analogously, from the first 8 j items from the preference list of f ′ (among which only
j are assigned to f ′ by π ), we get

|S ∩ (N1 ∪ · · · ∪ N j )| ≥ 2 j . (9)

However, notice that |S∩(Pj∪N j )| = 3 for any j ∈ {1, . . . , n}. Hence, Inequalities (8)
and (9) imply |S ∩ Pj | = 1 and |S ∩ N j | = 2 for every j ∈ {1, . . . , n}. This means
exactly that α is valid for ϕ.

For the other direction, assume that there exists a valid truth assignment α for ϕ, and
let Tα denote the set of true variables. First observe that |Tα| = n/3must hold, because
each variable appears in exactly three clauses, and there are n clauses. We define a
solution S for (P, π) by putting ai , bi , and ci into S for each vi ∈ Tα , and putting âi ,
b̂i , and ĉi into S for each vi ∈ V \Tα . Hence |S∩U | = n and |S∩ Û | = 2n. Note that
Inequality (5) holds for S for any agent x ∈ N \ { f , f ′} and index j ∈ {1, . . . , 3n}.
Inequalities (8) and (9) hold as well for any j ∈ {1, . . . , n}, due to the validity of α.
Based on these facts, it is easy to check that S is indeed a solution for (P, π). �


Our next theorem shows that PID with Fixed Allocation remains computa-
tionally intractable even if the number of deletions allowed is small.

Theorem 10 PID with Fixed Allocation is W[2]-hard when parameterized by
the size k of the desired solution.
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Proof We are going to present an FPT-reduction from the Red- Blue Dominating

Set problem. The input of this problem is a bipartite graph G = (V , E) and an
integer k, with V partitioned into a set Vred = {r1, . . . , rs} of ‘red’ and a set Vblue =
{b1, . . . , bt } of ‘blue’ vertices. We denote by N (v) the set of neighbors of some vertex
v ∈ V . The task is to decide if G contains a set D ⊆ Vred of at most k red vertices
that dominates all blue vertices, i.e., such that N (b j ) ∩ D �= ∅ for each b j ∈ Vblue.
Red- Blue Dominating Set is known to be NP-complete andW[2]-complete when
parameterized by k [12].

Let us construct an instance I = (P, π, k) of PID with Fixed Allocation.
We let P = (N , I , L), and we define the set of agents as N = {r̂} ∪ B̂ ∪ D̂ where
B̂ = {b̂1, . . . , b̂t }, and D̂ = {d̂1, . . . , d̂Δ} contains Δ dummy agents for the smallest
integer Δ such that Δ(s − k) ≥ |N | = Δ + t + 1. We define the set of items as
I = Vred ∪ B ∪ D where B = {bi1, . . . , bit | 1 ≤ i ≤ s − k} contains s − k copies of
each blue vertex, and D = {di1, . . . , diΔ | 1 ≤ i ≤ s − k} contains s − k dummy items
for each dummy agent. The allocation π assigns every item of Vred to agent r̂ , while
each agent b̂ j ∈ B̂ is assigned items b1j , . . . , b

s−k
j , and each agent d̂ j ∈ D̂ is assigned

items d1j , . . . , d
s−k
j .

To define the preferences of agents, we fix an arbitrary ordering ≺ over I so that
we can omit listing all irrelevant items in the preference lists: the symbol ‘···’ at the
end of a preference list stands for the sequence of all remaining items according to
their order in ≺. Also, we write [X ] for a set X of items to denote their sequence
according to ≺. Moreover, a series of ‘◦’ symbols of length � denotes the sequence
of the first � dummy items from D according to ≺. Now, the preference lists are as
follows (allocation π is indicated by underlining the items assigned to the given agent
x in Lx ).

Lr̂ : r1, r2, . . . , rs, ···
Lb̂ j : b1j , ◦, ◦, ◦, . . . , ◦

︸ ︷︷ ︸

|N |−|N (b j )| dummies

, [N (b j )], b2j , b3j , . . . , bs−k
j , ··· for each b̂ j ∈ B̂;

Ld̂ j : d1j , d2j , . . . , ds−k
j , ··· for each d̂ j ∈ D̂.

Note that the preference list of an agent b̂ j ∈ B̂ contains at most |N | dummy items,
whose existence is ensured by our choice of Δ.

The presented reduction is clearly a polynomial-time reduction as well as a parame-
terized one (with k being the parameter in both instances). To prove its correctness, let
us first assume that S is a solution of size at most k for (P, π). Note that π assigns s−k
items to each agent, except for agent r̂ who gets s items. Hence, S ⊆ π−1(r̂) = Vred
and |S| = k follows. We claim that S dominates all blue vertices in G: indeed, if
S ∩ N (b j ) = ∅ for some b j ∈ Vblue in G, then agent b̂ j becomes envious at index

|N | + 1 in P − S, since Lb̂ j [1 : |N | + 1] contains only one item assigned to b̂ j by π ,
a contradiction.

For the other direction, it is straightforward to verify that any set S of k red vertices
that dominates all blue vertices in G yields a solution to (P, π) as well, because if no
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agent of B̂ becomes envious at index |N | + 1 in P − S, then π is guaranteed to be
proportional in P − S. �


6 Conclusion and Open Questions

In Section4 we have shown that Proportionality by Item Deletion is
polynomial-time solvable if there are only three agents. In comparison, the problem of
obtaining an envy-free allocation by item deletion was shown to be polynomial-time
solvable for two agents, but becomes NP-hard already for three agents [4]. We have
also proved that if the number of agents is unbounded, then PID becomes NP-hard,
and practically intractable already when we want to delete only a small number of
items, as shown by the W[3]-hardness result of Theorem2.

The complexity of PID remains open for the case when the number of agents is a
constant greater than 3. Is it true that for any constant n, there exists a polynomial-
time algorithm that solves PID in polynomial time for n agents? The reason why
our algorithm is not directly applicable for more than three agents is that Lemma4
relies heavily on the properties of minimal obstructions observed in Lemma2; these
properties imply a very strict structure for two properly intersecting minimal obstruc-
tions. For the case of more than three agents, there are more possibilities howminimal
obstructions may properly intersect, and so we cannot obtain a variant of Lemma4
for n ≥ 4: it is an open question whether for n ≥ 4 it holds that any inclusion-wise
minimal solution S contains at most n − 1 items from a minimal obstruction Q. In
fact, it is not even known whether there is a bound f (n) on the number of items in
S∩ I (Q) for some function f ; we believe that establishing such a bound would imply
the existence of a polynomial-time algorithm for PID for any constant n.

Supposing that there does exist a polynomial-time algorithm for PID for any con-
stant n, can we find an FPT-algorithm with respect to the parameter n? If not—that
is, if PID turns out to be NP-hard for some constant number of agents—then can we
at least give an FPT-algorithm with parameter k for a constant number of agents (or
maybe with combined parameter (k, n))?

Since approximation seems hopeless w.r.t. the number of deletions, it may be inter-
esting to see whether there might exist an approximation w.r.t. the number of items
obtained by each agent in a proportional way. Our results from Corollary1 and The-
orem1 show that we cannot get a polynomial-time approximation with a ratio better
than 2. Is this lower bound sharp?

Regarding PID with Fixed Allocation, we gave a polynomial-time algorithm
for n = 2, but proved the problem to be NP-complete for n = 6. This leaves open
the case when the number of agents is in {3, 4, 5}; it would be interesting to close the
gap.

Finally, there is ample space for future research if we consider different control
actions (such as adding or replacing items), different notions of fairness, or different
models for agents’ preferences.

Acknowledgements Wewould like to thank the anonymous reviewers of this paper for their valuable advice
and great questions.
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Appendix A Example for Running Algorithm Extend

In this section we show how the algorithm runs on a profile P with agents a, b, and c
ranking the item set {1, 2, . . . , 9, x, y, z, v, u} as below:

Profile P : a : 1, 2, 3, 6, 4, 7, 8, 9, y, x, z, v, 5, u.

b : 2, 1, 5, 3, 4, 8, 6, x, 7, y, z, u, 9, v.

c : 3, 4, 6, 2, 5, 7, 1, x, 8, y, z, 9, v, u.

At each step, we will only indicate Step 0, Step 1, or Step 3 if it leads to an output.
If not, then we give the minimal obstruction Q and the branching set Y computed in
Steps 2 and 4. The numbering of the calls reflects how the algorithm performs the
recursive calls in Step 5; Fig. 7 depicts the search tree traversed by the algorithm.
Table2 shows the content of SolTable. Sometimes, in order to omit details and avoid
tedium, we will shorten the description of a call.

1. Extend(T = P[0, 0, 0],U = ∅):
Min. obstruction Q = P[7, 7, 7] : a: 1, 2, 3, 6, 4, 7, 8.

b: 2, 1, 5, 3, 4, 8, 6.
c: 3, 4, 6, 2, 5, 7, 1.

Branching set: Y = {{3, 4}, {3, 5}, {4, 5}, {7}, {8}, {7, 8}}.
// Forbidden items: ∅.

Return value (based on call 1.4): {7, y}.

1.1. Extend(T = P[7, 7, 7],U = {3, 4}):
Min. obstruction Q = (P −U )[4, 7, 7] : a: 1, 2, 6, 7.

b: 2, 1, 5, 8, 6, x, 7.
c: 6, 2, 5, 7, 1, x, 8.

Branching set: Y = {{x}}.
// Forbidden items: {1, 2, 5, 6, 7, 8}.

Return value (based on call 1.1.1): {x, y, z}.
1.1.1. Extend(T = P[6, 9, 9],U = {3, 4, x}):

Min. obstruction Q = (P −U )[4, 7, 7] : a: 1, 2, 6, 7.
b: 2, 1, 5, 8, 6, 7, y.
c: 6, 2, 5, 7, 1, 8, y.

Branching set: Y = {{y}}.
// Forbidden items: {1, 2, 5, 6, 7, 8}.

Return value (based on call 1.1.1.1): {y, z}.
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1.1.1.1. Extend(T = P[6, 10, 10],U = {3, 4, x, y}):
Min. obstruction Q = (P −U )[4, 7, 7] : a: 1, 2, 6, 7.

b: 2, 1, 5, 8, 6, 7, z.
c: 6, 2, 5, 7, 1, 8, z.

Branching set: Y = {{z}}.
// Forbidden items: {1, 2, 5, 6, 7, 8}.

Return value (based on 1.1.1.1.1): {z}.
1.1.1.1.1. Extend(T = P[6, 11, 11],U = {3, 4, x, y, z}):

P −U is solvable: a: 1, 2, 6, 7, 8, 9, v, 5, u.
b: 2, 1, 5, 8, 6, 7, u, 9, v.
c: 6, 2, 5, 7, 1, 8, 9, v, u.

Return value: ∅.
1.2. Extend(T = P[7, 7, 7],U = {3, 5}):

// |U | = 2 and δ(T ) ∩U = {5, 7, 8} ∩U = {5};
// T −U : a: 1, 2, 6, 4, 7, 8.

b: 2, 1, 4, 8, 6.
c: 4, 6, 2, 7, 1.

// defpat(T −U ) = D1 = {((4, 7, 7), 2, {7, 8}),
((7, 4, 7), 2, {7, 8}),
((7, 7, 4), 2, {7, 8})}.

Min. obstruction Q = (P −U )[4, 7, 7] : a: 1, 2, 6, 4.
b: 2, 1, 4, 8, 6, x, 7.
c: 4, 6, 2, 7, 1, x, 8.

Branching set: Y = {{x}}.

Fig. 7 Illustration for the search tree traversed by algorithm Extend on the example of Appendix A. Black
arrows indicate a recursive call, while blue dashed arrows indicate strong equivalence (pointing towards the
earlier call)
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Table 2 The contents of
SolTable as a result of running
Extend(T∅, ∅) on the example of
Appendix A. The entries appear
according to the order in which
the algorithm stores them

Prefix Partial solution Extension

P[6, 11, 11] {3, 4, x, y, z} ∅
P[6, 10, 10] {3, 4, x, y} {z}
P[6, 9, 9] {3, 4, x} {y, z}
P[7, 7, 7] {3, 4} {x, y, z}
P[14, 12, 6] {3, 5, x, y, z, 9, v, u} ∅
P[12, 6, 13] {3, 5, x, y, z, 9, v} {u}
P[8, 6, 12] {3, 5, x, y, z, 9} {v, u}
P[5, 11, 11] {3, 5, x, y, z} {9, v, u}
P[5, 10, 10] {3, 5, x, y} {z, 9, v, u}
P[5, 9, 9] {3, 5, x} {y, z, 9, v, u}
P[7, 7, 7] {3, 5} {x, y, z, 9, v, u}
P[11, 11, 11] {7, y} ∅
P[14, 12, 8] {7, 9, z, v, u} ∅
P[13, 7, 13] {7, 9, z, v} {u}
P[11, 11, 11] {7, 9, z} {v, u}
P[14, 13, 8] {7, y, z, v, u} ∅
P[13, 7, 13] {7, y, z, v} {u}
P[11, 11, 11] {7, y, z} {v, u}
P[7, 7, 7] {7} {y}
P[7, 7, 7] {8} {y}
P[4, 11, 11] {7, 8, x, y, z, } ∅
P[4, 10, 10] {7, 8, x, y} {z}
P[4, 9, 9] {7, 8, x} {y, z}
P[7, 7, 7] {7, 8} {x, y, z}
P[0, 0, 0] ∅ {7, y}

// Forbidden items: {1, 2, 4, 6, 7, 8}.
Return value (based on call 1.2.1): {x, y, z, 9, v, u}.

1.2.1. Extend(T = P[5, 9, 9],U = {3, 5, x})
1.2.1.1. Extend(T = P[5, 10, 10],U = {3, 5, x, y})
1.2.1.1.1. Extend(T = P[5, 11, 11],U = {3, 5, x, y, z})

Min. obstruction Q = (P −U )[7, 4, 7] : a: 1, 2, 6, 4, 7, 8, 9.
b: 2, 1, 4, 8.
c: 4, 6, 2, 7, 1, 8, 9.

Branching set: Y = {{9}}.
// Forbidden items: {1, 2, 4, 6, 7, 8}.

Return value (based on call 1.2.1.1.1.1): {9, v, u}.
1.2.1.1.1.1. Extend(T = P[8, 6, 12],U = {3, 5, x, y, z, 9})
1.2.1.1.1.1.1. Extend(T = P[12, 6, 13],U = {3, 5, x, y, z, 9, v})
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1.2.1.1.1.1.1.1. Extend(T = P[14, 12, 6],U = {3, 5, x, y, z, 9, v, u})
P −U is solvable: a: 1, 2, 6, 4, 7, 8.

b: 2, 1, 4, 8, 6, 7.
c: 4, 6, 2, 7, 1, 8.

Return value: ∅.
1.3. Extend(T = P[7, 7, 7],U = {4, 5}):

(T ,U ) is strongly equivalent with (T , {3, 5}), the input of call 1.2.
// |U | = 2 and δ(T ) ∩U = {5, 7, 8} ∩U = {5};
// T −U : a: 1, 2, 3, 6, 7, 8.

b: 2, 1, 3, 8, 6.
c: 3, 6, 2, 7, 1.

// defpat(T −U ) = D1.
Return value: {x, y, z, 9, v, u}.

1.4. Extend(T = P[7, 7, 7],U = {7}):
Min. obstruction Q = (P −U )[10, 10, 10] : a: 1, 2, 3, 6, 4, 8, 9, y, x, z.

b: 2, 1, 5, 3, 4, 8, 6, x, y, z.
c: 3, 4, 6, 2, 5, 1, x, 8, y, z.

Branching set: Y = {{y}, {z}, {9, z}, {y, z}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 8}.

Return value (based on call 1.4.1): {y}.
1.4.1. Extend(T = P[11, 11, 11],U = {7, y}):

// |U | = 2 and δ(T ) ∩U = {5, 9} ∩U = ∅;
// T −U : a: 1, 2, 3, 6, 4, 8, 9, x, z.

b: 2, 1, 5, 3, 4, 8, 6, x, z.
c: 3, 4, 6, 2, 5, 1, x, 8, z.

// defpat(T −U ) = D2 = {((7, 10, 10), 1, {5, 9}),
((10, 7, 10), 1, {5, 9}),
((10, 10, 7), 1, {5, 9})}.

P −U is solvable: a: 1, 2, 3, 6, 4, 8, 9, x, z, v, 5, u.
b: 2, 1, 5, 3, 4, 8, 6, x, z, u, 9, v.
c: 3, 4, 6, 2, 5, 1, x, 8, z, 9, v, u.

Return value: ∅.
1.4.2. Extend(T = P[11, 11, 11],U = {7, z}):

(T ,U ) is strongly equivalent with (T , {7, y}), the input of call 1.4.1.
// |U | = 2 and δ(T ) ∩U = {5, 9} ∩U = ∅;
// T −U : a: 1, 2, 3, 6, 4, 8, 9, y, x .

b: 2, 1, 5, 3, 4, 8, 6, x, y.
c: 3, 4, 6, 2, 5, 1, x, 8, y.

// defpat(T −U ) = D2.
Return value: ∅.

1.4.3. Extend(T = P[11, 11, 11],U = {7, 9, z}):
// |U | = 3 and δ(T ) ∩U = {5, 9} ∩U = {9};
// T −U : a: 1, 2, 3, 6, 4, 8, y, x .

b: 2, 1, 5, 3, 4, 8, 6, x, y.
c: 3, 4, 6, 2, 5, 1, x, 8, y.

// defpat(T −U ) = D3 = {((7, 10, 10), 2, {5}),
((10, 7, 10), 2, {5}),
((10, 10, 7), 2, {5})}.
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Min. obstruction Q = (P −U )[10, 7, 10] : a: 1, 2, 3, 6, 4, 8, y, x, v, 5.
b: 2, 1, 5, 3, 4, 8, 6.
c: 3, 4, 6, 2, 5, 1, x, 8, y, v.

Branching set: Y = {{v}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 8, x, y}.

Return value (based on call 1.4.3.1): {v, u}.
1.4.3.1. Extend(T = P[13, 7, 13],U = {7, 9, z, v}):

Min. obstruction Q = (P−U )[10, 10, 7] : a: 1, 2, 3, 6, 4, 8, y, x, 5, u.
b: 2, 1, 5, 3, 4, 8, 6, x, y, u.
c: 3, 4, 6, 2, 5, 1, x .

Branching set: Y = {{u}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 8, x, y}.

Return value (based on call 1.4.3.1.1): {u}.
1.4.3.1.1. Extend(T = P[14, 12, 8],U = {7, 9, z, v, u}):

P −U is solvable: a: 1, 2, 3, 6, 4, 8, y, x, 5.
b: 2, 1, 5, 3, 4, 8, 6, x, y.
c: 3, 4, 6, 2, 5, 1, x, 8, y.

Return value: ∅.
1.4.4. Extend(T = P[11, 11, 11],U = {7, y, z}):

// |U | = 3 and δ(T ) ∩U = {5, 9} ∩U = ∅;
// T −U : a: 1, 2, 3, 6, 4, 8, 9, x .

b: 2, 1, 5, 3, 4, 8, 6, x .
c: 3, 4, 6, 2, 5, 1, x, 8.

// defpat(T −U ) = D4 = {((7, 10, 10), 2, {5, 9}),
((10, 7, 10), 2, {5, 9}),
((10, 10, 7), 2, {5, 9})}.

Min. obstruction Q = (P −U )[10, 7, 10] : a: 1, 2, 3, 6, 4, 8, 9, x, v, 5.
b: 2, 1, 5, 3, 4, 8, 6.
c: 3, 4, 6, 2, 5, 1, x, 8, 9, v.

Branching set: Y = {{v}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 8, 9, x}.

Return value (based on call 1.4.4.1): {v, u}.
1.4.4.1. Extend(T = P[13, 7, 13],U = {7, y, z, v}):

Min. obstructionQ = (P−U )[10, 10, 7] : a: 1, 2, 3, 6, 4, 8, 9, x, 5, u.
b: 2, 1, 5, 3, 4, 8, 6, x, u, 9.
c: 3, 4, 6, 2, 5, 1, x .

Branching set: Y = {{u}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 8, 9, x}.

Return value (based on call 1.4.4.1.1): {u}.
1.4.4.1.1. Extend(T = P[14, 13, 8],U = {7, y, z, v, u}):

P −U is solvable: a: 1, 2, 3, 6, 4, 8, 9, x, 5.
b: 2, 1, 5, 3, 4, 8, 6, x, 9.
c: 3, 4, 6, 2, 5, 1, x, 8, 9.

Return value: ∅.
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1.5. Extend(T = P[7, 7, 7],U = {8}):
Min. obstruction Q = (P −U )[10, 10, 10] : a: 1, 2, 3, 6, 4, 7, 9, y, x, z.

b: 2, 1, 5, 3, 4, 6, x, 7, y, z.
c: 3, 4, 6, 2, 5, 7, 1, x, y, z.

Branching set: Y = {{y}, {z}, {9, z}, {y, z}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 7}.

Return value (based on call 1.5.1): {y}.
1.5.1. Extend(T = P[11, 11, 11],U = {8, y}):

(T ,U ) is strongly equivalent with (T , {7, y}), the input of call 1.4.1.
// |U | = 2 and δ(T ) ∩U = {5, 9} ∩U = ∅;
// T −U : a: 1, 2, 3, 6, 4, 7, 9, x, z.

b: 2, 1, 5, 3, 4, 6, x, 7, z.
c: 3, 4, 6, 2, 5, 7, 1, x, z.

// defpat(T −U ) = D2.
Return value: ∅.

1.5.2. Extend(T = P[11, 11, 11],U = {8, z}):
(T ,U ) is strongly equivalent with (T , {7, y}), the input of call 1.4.1.

// |U | = 2 and δ(T ) ∩U = {5, 9} ∩U = ∅;
// T −U : a: 1, 2, 3, 6, 4, 7, 9, y, x .

b: 2, 1, 5, 3, 4, 6, x, 7, y.
c: 3, 4, 6, 2, 5, 7, 1, x, y.

// defpat(T −U ) = D2.
Return value: ∅.

1.5.3. Extend(T = P[11, 11, 11],U = {8, 9, z}):
(T ,U ) is strongly equivalent with (T , {7, 9, z}), the input of call 1.4.3.

// |U | = 3 and δ(T ) ∩U = {5, 9} ∩U = {9};
// T −U : a: 1, 2, 3, 6, 4, 7, y, x .

b: 2, 1, 5, 3, 4, 6, x, 7, y.
c: 3, 4, 6, 2, 5, 7, 1, x, y.

// defpat(T −U ) = D3.

Return value: {v, u}.
1.5.4. Extend(T = P[11, 11, 11],U = {8, y, z}):

(T ,U ) is strongly equivalent with (T , {7, y, z}), the input of call 1.4.4.
// |U | = 3 and δ(T ) ∩U = {5, 9} ∩U = ∅;
// T −U : a: 1, 2, 3, 6, 4, 7, 9, x .

b: 2, 1, 5, 3, 4, 6, x, 7.
c: 3, 4, 6, 2, 5, 7, 1, x .

// defpat(T −U ) = D4.

Return value: {v, u}.
1.6. Extend(T = P[7, 7, 7],U = {7, 8}):

Min. obstruction Q = (P −U )[4, 7, 7] : a: 1, 2, 3, 6.
b: 2, 1, 5, 3, 4, 6, x .
c: 3, 4, 6, 2, 5, 1, x .

Branching set: Y = {{x}}.
// Forbidden items: {1, 2, 3, 4, 5, 6}.

Return value (based on call 1.6.1): {x, y, z}.
1.6.1. Extend(T = P[4, 9, 9],U = {7, 8, x})
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1.6.1.1. Extend(T = P[4, 10, 10],U = {7, 8, x, y})
1.6.1.1.1. Extend(T = P[4, 11, 11],U = {7, 8, x, y, z}):

P −U is solvable: a: 1, 2, 3, 6, 4, 9, v, 5, u.
b: 2, 1, 5, 3, 4, 6, u, 9, v.
c: 3, 4, 6, 2, 5, 1, 9, v, u.

Return value: ∅.
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