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Abstract. For a nonautonomous differential equation, we consider the almost re-
ducibility property that corresponds to the reduction of the original equation to an
autonomous equation via a coordinate change preserving the Lyapunov exponents. In
particular, we characterize the class of equations to which a given equation is almost
reducible. The proof is based on a characterization of the almost reducibility to an au-
tonomous equation with a diagonal coefficient matrix. We also characterize the notion
of almost reducibility for an equation x′ = A(t, θ)x depending continuously on a real
parameter θ. In particular, we show that the almost reducibility set is always an Fσδ-set
and for any Fσδ-set containing zero we construct a differential equation with that set as
its almost reducibility set.
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1 Introduction

We first describe the reducibility property and the type of problems considered in the paper.
Let A(t) and B(t) be q× q matrices varying continuously with t ≥ 0 and consider the linear
equations

x′ = A(t)x and y′ = B(t)y. (1.1)

Let T(t, s) and S(t, s) be the corresponding evolution families such that

T(t, s)x(s) = x(t) and S(t, s)y(s) = y(t)

for any solutions x and y of the equations in (1.1) and for any t, s ≥ 0. We say that the
equations are equivalent via a coordinate change U(t) given by invertible q× q matrices if

U(t)−1T(t, s)U(s) = S(t, s) for all t, s ≥ 0. (1.2)
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More generally, one can also consider piecewise continuous functions A(t) and B(t) (see
Section 2), in which case the evolution families T(t, s) and S(t, s) are still continuous in (t, s).

In this paper we consider the class of equations that are equivalent to an autonomous
equation. Namely, we say that the equation x′ = A(t)x is reducible via a coordinate change U(t)
if it is equivalent to some autonomous equation y′ = By. Moreover, we say that the equation
x′ = A(t)x is almost reducible if it is equivalent to some autonomous equation via a Lyapunov
coordinate change U(t), that is, a coordinate change satisfying

lim
t→∞

1
t

log‖U(t)‖ = lim
t→∞

1
t

log‖U(t)−1‖ = 0. (1.3)

The Lyapunov coordinate changes are the only coordinate changes that preserve simulta-
neously the Lyapunov exponents of all sequences of invertible matrices with a finite Lyapunov
exponent. More precisely, for each v ∈ Rq let

λA(v) = lim
t→∞

1
t

log‖T(t, 0)v‖

be the Lyapunov exponent associated with the equation x′ = A(t)x, with the convention that
log 0 = −∞. The Lyapunov exponent λB(v) for the equation y′ = B(t)y is defined similarly.
The former statement on the preservation of the Lyapunov exponents means that a coordinate
change U(t) is a Lyapunov coordinate change if and only if the evolution families of any two
equivalent equations as in (1.1) that satisfy (1.2) also satisfy

λA(U(0)v) = λB(v) for all v ∈ Rq.

This causes that the almost reducibility property occurs naturally whenever we want to reduce
the original dynamics to a simpler one without changing the asymptotic behavior given by
the Lyapunov exponents.

A first notion of reducibility is due to Lyapunov [5] (see [7] for an English translation).
He considered instead bounded coordinate changes with bounded inverses, that is, transfor-
mations satisfying

sup
t≥0
‖U(t)‖ < +∞ and sup

t≥0
‖U(t)−1‖ < +∞. (1.4)

We refer the reader to [4, 6, 8, 9] and the references therein for some early results as well as to
the book [3] for a global panorama of the area in 1980. While the coordinate changes satis-
fying (1.4) are appropriate to study uniform Lyapunov stability (because bounded coordinate
changes preserve this type of stability), in order to study nonuniform Lyapunov stability it is
crucial to consider Lyapunov coordinate changes as in (1.3).

We first give a characterization of the almost reducibility of an equation to an autonomous
equation with a diagonal coefficient matrix (see Theorem 2.1).

Theorem 1.1. For an equation x′ = A(t)x on Rq such that the Lyapunov exponent λA is finite on
Rq \ {0}, we have

lim
t→∞

1
t

∫ t

0
tr A(s) ds = inf

q

∑
j=1

λA(vj)

with the infimum taken over all bases v1, . . . , vq for Rq if and only if the equation is almost reducible
to an equation y′ = By with B diagonal.

We shall use this result to characterize the autonomous equations to which a given equa-
tion is almost reducible (see Theorem 2.2).
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Theorem 1.2. x′ = A(t)x is almost reducible to y′ = By and y′ = Cy if and only if the eigenvalues
of B and C, counted with multiplicities and eventually up to a permutation, have the same real parts.

We also characterize completely the notion of almost reducibility for continuous 1-para-
meter families of linear differential equations. Namely, we consider equations x′ = A(t, θ)x
depending continuously on a real parameter θ. The almost reducibility set of this equation is
the set of all θ ∈ R for which the equation is almost reducible. We have the following result
(see Theorem 3.1).

Theorem 1.3. The almost reducibility set of x′ = A(t, θ)x is an Fσδ-set.

Finally, we establish a partial converse of Theorem 1.3. Namely, we construct a differential
equation with given Fσδ-set containing zero as its almost reducibility set (see Theorem 4.1).

Theorem 1.4. Given an integer q ≥ 2 and an Fσδ-set M containing zero, there exists an equation x′ =
A(t, θ)x whose almost reducibility set is equal to M. Moreover, given an unbounded nondecreasing
function ρ(t) ≥ 0, we may require that

‖A(t, θ)‖ ≤ ρ(t)(1 + |θ|) for all t ≥ 0 and θ ∈ R.

The proof of Theorem 1.4 is partly inspired by arguments in [1].

2 The notion of almost reducibility

We introduce the notion of almost reducibility for the class of nonautonomous linear equations
and we establish some of its basic properties. In particular, we characterize completely the
class of autonomous equations to which a given nonautonomous equation is almost reducible.

Let Mq be the set of all q× q matrices with real entries and let GLq ⊂ Mq be the subset of
all invertible matrices. Consider a piecewise continuous function A : R+

0 → Mq. We say that
the equation

x′ = A(t)x (2.1)

is almost reducible to an equation x′ = Bx for some matrix B ∈ Mq if there exist matrices
U(t) ∈ GLq for t ≥ 0 satisfying

lim
t→∞

1
t

log‖U(t)‖ = lim
t→∞

1
t

log‖U(t)−1‖ = 0 (2.2)

such that
U(t)−1T(t, s)U(s) = eB(t−s) for t, s ≥ 0, (2.3)

where T(t, s) is the evolution family associated with equation (2.1). This means that we have
T(t, s)x(s) = x(t) for any solution x = x(t) of the equation x′ = A(t)x and all t, s ≥ 0. Then
we also say that equation (2.1) is almost reducible. The family (U(t))t≥0 is called a Lyapunov
coordinate change.

We start by describing when a nonautonomous equation is almost reducible to an au-
tonomous equation with a diagonal coefficient matrix. The Lyapunov exponent λ : Rq →
[−∞,+∞] associated with equation (2.1) is defined by

λ(v) = lim
t→∞

1
t

log‖T(t, 0)v‖,
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with the convention that log 0 = −∞. We shall always assume that λ takes only finite values
on Rq \ {0}. It follows from the theory of Lyapunov exponents that these finite values are say
λ1 < · · · < λp for some positive integer p ≤ q and that the sets

Ei =
{

v ∈ Rq : λ(v) ≤ λi
}

are linear subspaces for i = 1, . . . , p. A basis v1, . . . , vq for Rq is said to be normal (with respect
to equation (2.1)) if for each i = 1, . . . , p some elements of {v1, . . . , vq} form a basis for Ei.

Theorem 2.1. Let x′ = A(t)x be an equation on Rq whose Lyapunov λ takes only finite values on
Rq \ {0}. Then

lim
t→∞

1
t

∫ t

0
tr A(s) ds =

q

∑
j=1

λ(vj) (2.4)

for some normal basis v1, . . . , vq for Rq if and only if the equation x′ = A(t)x is almost reducible
to an autonomous equation with a diagonal coefficient matrix, whose entries on the diagonal are then
necessarily λ(v1), . . . , λ(vq), up to a permutation.

Proof. Assume first that (2.4) holds for some normal basis v1, . . . , vq for Rq. Let U(0) be the
matrix with columns v1, . . . , vq and for each t > 0, let

U(t) = T(t, 0)U(0)diag
(
e−λ(v1)t, . . . , e−λ(vq)t

)
.

Then
U(t)−1T(t, s)U(s) = diag

(
eλ(v1)(t−s), . . . , eλ(vq)(t−s)),

that is, property (2.3) holds taking

B = diag
(
λ(v1), . . . , λ(vq)

)
.

In order to show that (U(t))t≥0 is a Lyapunov coordinate change, notice that the columns
of U(t) are the vectors

T(t, 0)v1e−λ(v1)t, . . . , T(t, 0)vqe−λ(vq)t.

Since
lim
t→∞

1
t

log
(
‖T(t, 0)vi‖e−λ(vi)t

)
= 0, (2.5)

we obtain
lim
t→∞

1
t

log ‖U(t)‖ ≤ 0.

Now we consider the matrices

U(t)−1 = diag
(
eλ(v1)t, . . . , eλ(vq)t

)
(T(t, 0)U(0))−1.

We have
(T(t, 0)U(0))−1 = C(t)/ det(T(t, 0)U(0))

for some matrices C(t) with (i, j) entry given by (−1)i+j∆ji(t), where ∆ji(t) is the determinant
of the matrix obtained from T(t, 0)U(0) erasing its jth line and ith column. Then

U(t)−1 = D(t)
exp ∑

q
j=1 λ(vj)t

det(T(t, 0)U(0))
, (2.6)
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where
D(t) = diag

(
e−∑j 6=1 λ(vj)t, . . . , e−∑j 6=q λ(vj)(m−1))C(t).

By Liouville’s theorem we have

det T(t, 0) = exp
∫ t

0
tr A(s) ds (2.7)

and so it follows from (2.4) that

lim
t→∞

1
t

log det T(t, 0) =
q

∑
j=1

λ(vj).

Therefore,

lim
t→∞

1
t

log
exp ∑

q
j=1 λ(vj)t

|det(T(t, 0)U(0))| = 0. (2.8)

The (i, j) entry of D(t) is given by (−1)i+j∆̄ji(t), where ∆̄ji(t) is the determinant of the matrix
obtained from T(t, 0)U(0) dividing each kth column by eλ(vk)t and then erasing the jth line
and the ith column. It follows from (2.5) that

lim
t→∞

1
t

log |∆̄ji(t)| ≤ 0 and so lim
t→∞

1
t

log ‖D(t)‖ ≤ 0.

Therefore, by (2.6) and (2.8), we obtain

lim
t→∞

1
t

log
(
‖U(t)−1‖−1) = − lim

t→∞

1
t

log ‖U(t)−1‖ ≥ 0,

which shows that (U(t))t≥0 is a Lyapunov coordinate change.
Now assume that the equation x′ = A(t)x is almost reducible to an autonomous equation

with a diagonal coefficient matrix, that is,

U(t)−1T(t, s)U(s) = diag
(
ea1(t−s), . . . , eaq(t−s)) (2.9)

for some matrices U(t) ∈ GLq, for t ≥ 0, satisfying (2.2) and some numbers a1, . . . , aq ∈ R. Let
v1, . . . , vq be the columns of U(0). Then

‖U(t)−1T(t, 0)vi‖ = eait.

By (2.2), this implies that the basis v1, . . . , vq is normal with λ(vi) = ai for i = 1, . . . , q. More-
over, again by (2.9), we have

det(U(t)−1)det T(t, 0)det U(0) = e∑
q
j=1 λ(vi)t. (2.10)

Since det U(t) is a sum of products of the entries of U(t), by (2.2) we have

lim
t→∞

1
t

log|det U(t)| = 0

and so it follows from (2.7) and (2.10), that identity (2.4) holds.

We use Theorem 2.1 to characterize the class of autonomous equations to which an equa-
tion x′ = A(t)x is almost reducible.
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Theorem 2.2. Let x′ = A(t)x be an equation on Rq that is almost reducible to an equation x′ = Bx.
Then the equation x′ = A(t)x is almost reducible to an equation x′ = Cx if and only if the eigenvalues
λi(B) and λi(C), respectively, of B and C counted with multiplicities, satisfy

Re λi(B) = Re λi(C) for i = 1, . . . , q,

eventually up to a permutation.

Proof. First assume that the equation x′ = A(t)x is almost reducible to both x′ = Bx and
x′ = Cx. Consider Lyapunov coordinate changes (U(t))t≥0 and (V(t))t≥0 such that

U(t)−1T(t, s)U(s) = eB(t−s) and V(t)−1T(t, s)V(s) = eC(t−s)

for t, s ≥ 0. Then
W(t)−1eB(t−s)W(s) = eC(t−s)

for t, s ≥ 0, where the matrices W(t) = U(t)−1V(t) form again a Lyapunov coordinate change.
It follows readily from the identity

W(t)−1eBtW(0) = eCt

that the Lyapunov exponents λB and λC associated, respectively, with the equations x′ = Bx
and x′ = Cx satisfy

λB(W(0)v) = λC(v) for all v ∈ Rq. (2.11)

The values of λB and λC are, respectively, Re λi(B) and Re λi(C) for i = 1, . . . , q, counted with
their multiplicities and so it follows readily from (2.11) that

Re λi(B) = Re λi(C) for i = 1, . . . , q, (2.12)

eventually up to a permutation.
Now assume that property (2.12) holds, eventually up to a permutation. Again, the values

of the Lyapunov exponents λB and λC are, respectively, Re λi(B) and Re λi(C) for i = 1, . . . , q,
counted with their multiplicities. Therefore, condition (2.4) holds for the differential equations
x′ = Bx and x′ = Cx. By Theorem 2.1, there exist Lyapunov coordinate changes (Ū(t))t≥0 and
(V̄(t))t≥0 such that

Ū(t)−1eB(t−s)Ū(s) = diag
(
Re λ1(B), . . . , Re λq(B)

)t−s

and
V̄(t)−1eC(t−s)V̄(s) = diag

(
Re λ1(C), . . . , Re λq(C)

)t−s

for t ≥ 0. By (2.12), we obtain

Ū(t)−1eB(t−s)Ū(s) = V̄(t)−1eC(t−s)V̄(s)

for t ≥ 0 and so
W(t)−1T(t, s)W(s) = eC(t−s)

for t, s ≥ 0, where
W(t) = U(t)Ū(t)V̄(t)−1

for each t ≥ 0. Since (W(t))t≥0 is a Lyapunov coordinate change, we conclude that x′ = A(t)x
is almost reducible to the equation x′ = Cx.
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3 Characterization of almost reducibility sets

In this section we give a characterization of the almost reducibility sets of a differential equa-
tion x′ = A(t, θ)x depending on a real parameter θ. Namely, we show that any such set is an
Fσδ-set. More precisely, let M be the set of all equations x′ = A(t, θ)x such that the map

R+
0 ×R 3 (t, θ) 7→ A(t, θ) ∈ Mq

is piecewise continuous in t and continuous in θ. We denote by Tθ(t, s) the corresponding
evolution family. The almost reducibility set of an equation x′ = A(t, θ)x is the set of all θ ∈ R

for which the equation is almost reducible.

Theorem 3.1. The almost reducibility set of any equation x′ = A(t, θ)x in M is an Fσδ-set.

Proof. Let M be the almost reducibility set of the equation. For each n ∈ N and ε > 0, we
define a function gn,ε : Mq × GLq ×R→ [0, n] by

gn,ε(B, C, θ) = sup
t≥0

min{n, ht(B, C, θ)},

where
ft(B, C, θ) = max

{
‖eBtCTθ(0, t)‖e−εt, ‖Tθ(t, 0)C−1e−Bt‖e−εt}.

The function gn,ε is lower semicontinuous in (B, C, θ) since the functions

‖eBtCTθ(0, t)‖e−εt and ‖Tθ(t, 0)C−1e−Bt‖e−εt

are continuous (in view of the continuous dependence of a solution on a parameter) and the
supremum of any number of continuous functions is lower semicontinuous. Therefore, the set

Dn,ε = g−1
n,ε (−∞, n/2]

is closed for each n ∈N and ε > 0.

Lemma 3.2. The equation x′ = A(t, θ)x is almost reducible to the equation x′ = Bx if and only if
there exists C ∈ GLq such that for each ε > 0 we have

gn,ε(B, C, θ) ≤ n/2 for some n ∈N. (3.1)

Proof of the lemma. First assume that the equation x′ = A(t)x is almost reducible to the equa-
tion x′ = Bx. Then there exists a Lyapunov coordinate change (U(t))t≥0 satisfying (2.3).
By property (2.2), for each ε > 0 we have

−ε < −1
t

log‖U(t)−1‖ ≤ 1
t

log‖U(t)‖ < ε

for any sufficiently large t and so there exists c = c(ε) > 0 such that

c−1e−εt < ‖U(t)−1‖−1 ≤ ‖U(t)‖ < ceεt (3.2)

for all t ≥ 0. Now take C = U(0)−1. By (2.3) with s = 0 we have

U(t) = Tθ(t, 0)C−1e−Bt and U(t)−1 = eBtCTθ(0, t).
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Hence, it follows readily from (3.2) that

sup
t≥0

(
‖eBtCTθ(0, t)‖e−εt + ‖Tθ(t, 0)C−1e−Bt‖e−εt) < ∞

and so property (3.1) holds.
Now assume that there exists C ∈ GLq satisfying (3.1) for each ε > 0. Then there exists

n ∈N such that

max
{
‖eBtCTθ(0, t)‖e−εt, ‖Tθ(t, 0)C−1e−Bt‖e−εt} ≤ n/2

for all t ≥ 0 and so

lim
t→∞

1
t

log‖eBtCTθ(0, t)‖ ≤ 0 (3.3)

and
lim
t→∞

1
t

log‖Tθ(t, 0)C−1e−Bt‖ ≤ 0. (3.4)

Finally, let
U(t) = Tθ(t, 0)C−1e−Bt for t ≥ 0.

Note that U(0) = C−1. Therefore,

eB(t−s) = eBte−Bs

= U(t)−1Tθ(t, 0)U(0)
(
U(0)−1Tθ(0, s)U(s)

)
= U(t)−1Tθ(t, s)U(s).

Moreover, since
U(t)−1 = eBtCTθ(0, t),

it follows readily from (3.3) and (3.4) that

0 ≤ lim
t→∞

1
t

log(‖U(t)−1‖−1) ≤ lim
t→∞

1
t

log‖U(t)‖ ≤ 0

and so condition (2.2) also holds.

By Lemma 3.2, the equation x′ = A(t, θ)x is almost reducible if and only if there exist
B ∈ Mq and C ∈ GLq such that

(B, C, θ) ∈ Dε :=
⋃

n∈N

Dn,ε

for each ε > 0. Therefore, the almost reducibility set is

M =
⋂
ε>0

π(Dε),

where π : Mq × GLq ×R→ R is the projection onto the third component. For k ∈N let

Ek =
{
(B, C, θ) ∈ Mq × GLq ×R : ‖B‖ ≤ k, k−1 ≤ |det C| ≤ k, |θ| ≤ k

}
.

Then each set Dn,ε ∩ Ek is compact and

Dε =
⋃

n∈N

Dn,ε =
⋃

n,k∈N

(Dn,ε ∩ Ek).

Therefore,
M =

⋂
ε>0

π(Dε) =
⋂

p∈N

⋃
n,k∈N

π(Dn,1/p ∩ Ek)

and since the map π is continuous, each set π(Dn,1/p ∩ Ek) is compact. This shows that the
almost reducibility set M is an Fσδ-set.
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4 Construction of families of equations

We also construct (as explicitly as possible) a differential equation in M with a given Fσδ-set
containing zero as its almost reducibility set.

Theorem 4.1. Given an integer q ≥ 2 and an Fσδ-set M containing zero, there exists an equation
x′ = A(t, θ)x in M whose almost reducibility set is equal to M. Moreover, given an unbounded
nondecreasing function ρ(t) ≥ 0, we may require that

‖A(t, θ)‖ ≤ ρ(t)(1 + |θ|) for all t ≥ 0 and θ ∈ R.

Proof. We start by describing some auxiliary notions that will be used in the proof. Given
a, b, c, θ ∈ R, we consider the 2× 2 matrices

B(u, θ) =

(
aθ c(1− θ) + bθ

−c(1− θ)− bθ −aθ

)
, (4.1)

where u = (a, b, c) and

ν = ν(u, θ) =
√
(a2 − (b− c)2)θ2 − 2c(b− c)θ − c2. (4.2)

Then B(u, θ) has eigenvalues ±ν. Given r, s ∈ R with rs > 0 and d ∈ R+, we define

a = d(s− r), b = d(2rs− r− s), c = 2drs. (4.3)

Then
a2 − (b− c)2 = −4d2rs < 0

and one can show that θ ∈ [r, s] if and only if

P(u, θ) := (a2 − (b− c)2)θ2 − 2c(b− c)θ − c2 ≥ 0. (4.4)

Since M is an Fσδ-set containing zero, one can write

R \M =
⋃

w∈N

Hw, where Hw =
⋂

i∈N

Uw
i

for some nonempty open sets Uw
i ⊂ R \ {0} satisfying Uw

i+1 ⊂ Uw
i for each w, i ∈N. Moreover,

Uw
i =

⋃
m∈N Iw

im for some nonempty open finite intervals Iw
im ⊂ R \ {0} with the property that

each θ ∈ Uw
i belongs to at most two intervals Iw

im (for each w, i ∈N).
We still need an additional decomposition. For each interval Iw

im = (α, β), we consider the
sequence (cl)l∈Z defined recursively as follows. Take c0 = (α + β)/2. For each l ∈N, let

c2l =
c2l−2 + β

2
, c−2l =

c−2l+2 + α

2

and
c2l−1 =

c2l−2 + c2l

2
, c−2l+1 =

c−2l+2 + c−2l

2
.

We define Jw
iml = [cl , cl+2] for l ∈ Z and so

Iw
im =

⋃
l∈Z

Jw
iml .
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Note that each point θ ∈ Uw
i belongs to at most three intervals Jw

iml (for each w, i, m ∈ N).
Moreover, given θ ∈ Iw

im, there exists l = l(θ) ∈ Z with θ ∈ Jw
iml such that θ is at least at a

distance |Jw
iml |/6 from each endpoint of Jw

iml (where |I| denotes the length of the interval I).
Now let ι : N → N3 ×Z be a bijection. Writing Jw

iml = [r, s] and η = ι−1(w, i, m, l), we
consider the unique d = d(η) ∈ R+ such that

max
θ∈R

P(u(η), θ) = d2rs(r− s)2 =
1
w

, (4.5)

with u(η) = (a, b, c) given by (4.3). Then

P(u(η), θ) ≥ 5
9

d2rs(r− s)2 =
5

9w
for θ ∈

[
r +

s− r
6

, s− s− r
6

]
. (4.6)

Consider the function σ(t) = min{ρ(t), t} for t ≥ 0. Moreover, consider a strictly increas-
ing sequence of positive integers (`j)j∈N such that `1 = 1,

`3j−2

`3j−1

j−1

∑
i=1

σ(`3i−1) <
1
j
,

`3j−1

`3j
<

1
j
, `3j+1 = 2`3j − `3j−1 (4.7)

and
σ(`3j−1) ≥ 2κ‖u(j)‖ (4.8)

for all j ∈N, where κ > 0 is fixed constant such that∥∥( a b
c d

)∥∥ ≤ κ‖(a, b, c, d)‖ for any a, b, c, d ∈ R.

Finally, let ∆j = [`j, `j+1) for each j ∈N and define

A(t, θ) =


B(u(j), θ) if t ∈ ∆3j for some j ∈N,

−B(u(j), θ) if t ∈ ∆3j−1 for some j ∈N,

Id if t ∈ ∆3j−2 for some j ∈N.

By (4.1) together with (4.8), we obtain

‖A(t, θ)‖ ≤ ‖B(u(j), θ)‖ ≤ κ‖u(j)‖
≤ σ(`3j−1)(1 + |θ|)
≤ σ(t)(1 + |θ|) ≤ ρ(t)(1 + |θ|).

Lemma 4.2. x′ = A(t, θ)x is not almost irreducible for θ ∈ R \M.

Proof of the lemma. Take w ∈ N such that θ ∈ Uw
i for all i ∈ N. For each i ∈ N there exists

m ∈ N such that θ ∈ Iw
im. Moreover, let l = l(θ) ∈ Z be the integer introduced before (4.5)

and write ι−1(w, i, m, l) = ri. For each j ∈ ∆3ri−1 ∪ ∆3ri the matrices ±B(u(3ri), θ) have real
eigenvalues. Denoting their (common) top eigenvalue by νi, it follows readily from (4.2)
and (4.4) together with (4.5) and (4.6) that

1
2
√

w
≤ νi ≤

1√
w

.

Denoting by Tθ(t, s) the evolution family associated with the equation x′ = A(t, θ)x, we have
Tθ(`3ri−1, 0) = Id and so

Tθ(`3ri , 0) = Tθ(`3ri , `3ri−1).
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Therefore,

‖Tθ(`3ri , 0)‖ = ‖Tθ(`3ri , `3ri−1)‖
=
∥∥e(`3ri−`3ri−1)B(u(3ri),θ)

∥∥
≥ eνi(`3ri−`3ri−1)

≥ exp
(
`3ri − `3ri−1

2
√

w

)
which in view of (4.7) gives

lim
i→∞

1
`3ri

log‖Tθ(`3ri , 0)‖ ≥ lim
i→∞

1
2
√

w

(
1− `3ri−1

`3ri

)
=

1
2
√

w
> 0. (4.9)

Now we assume that the equation x′ = A(t, θ)x is almost reducible to an equation x′ = Bx.
Then there exist matrices U(t) satisfying (2.2) and (2.3). Since Tθ(`3ri−1, 0) = Id, we have

eB`3ri−1 = U(`3ri−1)
−1U(0)

and
e−B`3ri−1 = U(0)−1U(`3ri−1)

for all i ∈N. Therefore, for each ε > 0 there exists c0 = c0(ε) > 0 such that

max
{
‖eB`3ri−1‖, ‖e−B`3ri−1‖

}
≤ c0eε`3ri−1

for all i ∈ N. Since `3ri−1 → ∞ when i → ∞ and ε is arbitrary, all eigenvalues of B have real
part equal to 0 and so

‖eBt‖ ≤ c1(1 + |t|) for some c1 > 0 and any t ≥ 0.

On the other hand, by (2.3) we have

Tθ(t, 0) = U(t)eBtU(0)−1

and so

‖Tθ(`3ri , 0)‖ ≤ ‖U(0)−1‖ · ‖U(`3ri)‖ · ‖e
B`3ri ‖

≤ c1(1 + |`3ri |)‖U(0)−1‖ · ‖U(`3ri)‖.

Finally, taking into account that U(t) satisfies (2.2) we obtain

lim
i→∞

1
`3ri

log‖Tθ(`3ri , 0)‖ ≤ 0,

which contradicts (4.9). This shows that the equation x′ = A(t, θ)x is not almost reducible.

Lemma 4.3. x′ = A(t, θ)x is almost reducible for θ ∈ M.

Proof of the lemma. Since θ 6∈ Hw for every w ∈ N, θ belongs to at most finitely many sets Uw
i ,

i ∈ N (because Uw
i+1 ⊂ Uw

i for each w, i ∈ N) and since each element of Uw
i belongs to at

most two intervals Iw
im with m ∈ N and to at most three closed intervals Jw

iml with l ∈ Z, we
conclude that θ belongs to finitely many closed intervals Jw

iml with i, m ∈N and l ∈ Z for each
w ∈ N. This implies that for each w ∈ N there exists N = Nw ∈ N such that for η ≥ N
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with ι(η) = (wη , iη , mη , lη) we have θ 6∈ Jwη

iηmη lη
and so also P(u(η), θ) < 0 whenever wη ≤ w.

In particular, for η ≥ N with wη ≤ w we have ν = iν̄ with ν̄ ∈ R and so

‖eB(u(η),θ)t‖ ≤ 1 + 2‖B(u(η), θ)‖ · |t|

(see for example [2, p. 65]). For the values of η ≥ N with wη > w, in view of (4.5) we have

P(u(η), θ) ≤ 1
wη
≤ 1

w + 1
.

Take w ∈N. If η ≥ N, then

‖Tθ(t, `3η−1)‖ ≤
∥∥eB(u(η),θ)(t−`3η−1)

∥∥
≤
(
1 + 2σ(`3η−1)(1 + |θ|)(t− `3η−1)

)
exp

(
t− `3η−1√

w + 1

)
≤
(
1 + 2σ(`3η−1)(1 + |θ|)t

)
exp

(
t− `3η−1√

w + 1

) (4.10)

for t ∈ ∆3η−1 ∪ ∆3η . Now take

t ∈ ∆3η−1 ∪ ∆3η ∪ ∆3η+1 with η ∈N.

Since A(t, θ) = Id for t ∈ ∆3η−2 and

Tθ(t, `3N−1) = Tθ(t, `3η−1)
η−1

∏
i=N

Tθ(`3i+1, `3i−1),

using (4.10) we obtain

‖Tθ(t, `3N−1)‖ ≤ ‖Tθ(t, `3η−1)‖
η−1

∏
i=N
‖Tθ(`3i+1, `3i−1)‖

≤
(
1 + 2σ(`3η−1)(1 + |θ|)t

) η−1

∏
i=N

(
1 + 2σ(`3i−1)(1 + |θ|)`3i+1

)
× exp

(
1√

w + 1

(
(t− `3η−1) +

η−1

∑
i=N

(`3i+1 − `3i−1)

))

≤
(
1 + 2σ(`3η−1)(1 + |θ|)t

) η−1

∏
i=1

(
1 + 2σ(`3i−1)(1 + |θ|)`3i+1

)
× exp

(
t− `3η−1 + `3η−2 − `3N−1√

w + 1

)
≤
(
1 + 2σ(`3η−1)(1 + |θ|)t

) η−1

∏
i=1

(
1 + 2σ(`3i−1)(1 + |θ|)`3i+1

)
exp

t√
w + 1

.

Then

lim
t→∞

1
t

log‖Tθ(t, `3N−1)‖ ≤
1√

w + 1
+ lim

t→∞

1
t

log
(
1 + 2σ(`3η−1)(1 + |θ|)t

)
+ lim

t→∞

1
t

η−1

∑
i=1

log
(
1 + 2σ(`3i−1)(1 + |θ|)`3i+1

)
.

(4.11)
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Since
σ(`3η−1) = min{ρ(`3η−1), `3η−1} ≤ `3η−1 ≤ t,

we obtain
lim
t→∞

1
t

log
(
1 + 2σ(`3η−1)(1 + |θ|)t

)
= 0. (4.12)

Moreover, since log(1 + x) ≤ x for all x ≥ 0, it follows from (4.7) that

1
t

η−1

∑
i=1

log
(
1 + 2σ(`3i−1)(1 + |θ|)`3i+1

)
≤ 2

`3η−1

η−1

∑
i=1

(
σ(`3i−1)(1 + |θ|)`3i+1

)
≤

2(1 + |θ|)`3η−2

`3η−1

η−1

∑
i=1

σ(`3i−1)

≤ 2(1 + |θ|)
η

.

Therefore,

lim
t→∞

1
t

η−1

∑
i=1

log
(
1 + 2σ(`3i−1)(1 + |θ|)`3i+1

)
= 0 (4.13)

since η → ∞ when t→ ∞. By (4.12) and (4.13), it follows from (4.11) that

lim
t→∞

1
t

log‖Tθ(t, `3N−1)‖ ≤
1√

w + 1

for any w ∈N and so

lim
t→∞

1
n

log‖Tθ(t, 0)‖ ≤ 0.

One can also show that
lim
t→∞

1
n

log‖Tθ(0, t)‖ ≤ 0

interchanging B(u, θ) with −B(u, θ) in the definition of A(t, θ). This implies that

lim
t→∞

1
t

log‖Tθ(t, 0)‖ ≥ lim
t→∞

1
t

log
(
‖Tθ(0, t)‖−1)

= − lim
t→∞

1
t

log‖Tθ(0, t)‖ ≥ 0

and so
lim
t→∞

1
t

log‖T(t, 0)±1‖ = 0.

For Uθ(t) = Tθ(t, 0) we have

Uθ(t)−1Tθ(t, 0)Uθ(t) = Tθ(0, t)Tθ(t, 0) = Id.

So, identity (2.3) holds with B = 0. This shows that the differential equation x′ = A(t, θ)x is
almost reducible.

In order to construct an equation x′ = Ã(t, θ)x on Rq with almost reducibility set M for
q > 2, it suffices to take

Ã(t, θ) = diag(A(t, θ), 0).

This concludes the proof of the theorem.
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