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Abstract. By means of the shooting method together with the maximum principle and
the Kneser–Hukahara continuum theorem, the authors present the existence, unique-
ness and qualitative properties of solutions to nonlinear second-order boundary value
problem on the semi-infinite interval of the following type:{

y′′ = f (x, y, y′), x ∈ [0, ∞),
y′(0) = A, y(∞) = B

and {
y′′ = f (x, y, y′), x ∈ [0, ∞),
y(0) = A, y(∞) = B,

where A, B ∈ R, f (x, y, z) is continuous on [0, ∞)×R2. These results and the matching
method are then applied to the search of solutions to the nonlinear second-order non-
autonomous boundary value problem on the real line{

y′′ = f (x, y, y′), x ∈ R,
y(−∞) = A, y(∞) = B,

where A 6= B, f (x, y, z) is continuous on R3. Moreover, some examples are given to
illustrate the main results, in which a problem arising in the unsteady flow of power-
law fluids is included.
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1 Introduction

The study of heteroclinic solutions for second-order ordinary differential equations can be
applied to various biological, physical, and chemical models, for instance, phase-transition,
BCorresponding author. Email: wlb−math@163.com

https://doi.org/10.14232/ejqtde.2021.1.1
https://www.math.u-szeged.hu/ejqtde/


2 M. Pei, L. Wang and X. Lv

physical processes in which the variable transits from an unstable equilibrium to a stable
one, or front-propagation in reaction-diffusion equations, and has been intensively studied by
many authors, see [6, 16, 28–31, 34, 38, 42, 44] and references therein. In particular, we mention
that in [29], by means of a suitable fixed point technique, Malaguti and Marcelli proved the
existence of a one-parameter family of solutions of the nonautonomous problem{

u′′ = h(t, u, u′) on R,

u(−∞) = 0, u(∞) = 1,

where h : R3 → R is continuous, and h(t, u, v)/v is monotone nondecreasing in v for each
(t, u) ∈ R× (0, 1).

In [34], Marcelli and Papalini considered the following problem{
u′′ = f (t, u, u′), a.e. on R,

u(−∞) = 0, u(∞) = 1,

where f : R3 → R is a Carathéodory function satisfying the condition f (t, 0, 0) = f (t, 1, 0) = 0
for a.e. t ∈ R. Under suitable assumptions on f , the authors proved some existence and non-
existence results for the problem which become operative criteria in the case that the function
f (t, u, u′) has a product structure.

In [31], deriving from the comparison-type theory, Malaguti et al. obtained the expressive
sufficient conditions for the solvability of the following problem

u′′ = f (t, u, u′) on R,

x(−∞) = 0, x(∞) = 1,

0 ≤ u(t) ≤ 1 for t ∈ R,

where f : R3 → R is continuous, f (t, 0, 0) = f (t, 1, 0) = 0 for t ∈ R.
In recent years, due to the applications in various sciences, heteroclinic solutions of second-

order ordinary differential equations governed by nonlinear differential operators, such as the
classical p-Laplacian, Φ-Laplacian, singular Φ-Laplacian and some mixed differential opera-
tors, received more attractions see [8–11, 13, 14, 25, 32, 33, 35] and references therein. The main
tools used in these works are the upper and lower solution method together with diagonal-
ization process, and the fixed point theorem in cone.

Inspired by the above works and [19, 39], the main aim of the present paper is to estab-
lish the new results on the existence, uniqueness, and qualitative properties of heteroclinic
solutions to nonlinear second-order ordinary differential equations

y′′ = f (x, y, y′) on R (1.1)

by the matching method, where f (x, y, z) is continuous on R3. To this end, we needs to
consider the following second-order semi-infinite interval problems{

y′′ = f (x, y, y′) on [0, ∞),

y′(0) = A, y(∞) = B,
(1.2)

and {
y′′ = f (x, y, y′) on [0, ∞),

y(0) = A, y(∞) = B,
(1.3)



Second-order infinite interval problem 3

where A, B ∈ R, f (x, y, z) is continuous on [0, ∞)×R2.
Second-order semi-infinite interval problems arise in the modeling of a great variety of

physical phenomena such as the unsteady flow of a gas through semi-infinite porous medium,
the heat transfer in radial flow between circular disks, plasma physics, the mass transfer on a
rotating disk in a non-Newtonian fluid, the travelling waves in reaction-diffusion equations,
et cetera [1, 36], and have been studied by many papers, for instance, see [2–5, 7, 9, 12, 15,
17, 18, 21–24, 26, 27, 37, 40, 43, 45, 46] and references therein. Among the above references, the
main research methods they used are the fixed point theorems in cones [15, 21, 24, 27, 46],
fixed point index theorems in cones [23, 37], upper and lower solutions method [2, 5, 22, 43],
diagonalization process [3, 4, 26], variational methods [17, 18], Banach contraction mapping
principle [40, 45], shooting method [7], etc.

The paper is organized as follows. In Section 2, we give some preparatory lemmas, in-
cluding maximum principle, Kneser–Hukahara continuum theorem, comparison principle,
continuum result and global existence of initial value problems for equation (1.1). In Section 3,
using shooting method together with maximum principle and Kneser–Hukahara continuum
theorem, we obtain the existence, uniqueness and qualitative properties of solutions to semi-
infinite interval problems (1.2) and (1.3). In Section 4, by matching techniques we establish
new results on existence, uniqueness and qualitative properties of solutions of full-infinite
interval problem {

y′′ = f (x, y, y′) on R,

y(−∞) = A, y(∞) = B,
(1.4)

where A 6= B. In Section 5, we demonstrate the importance of our results through some
illustrative examples, which contain a problem that arises in the unsteady flow of power-law
fluids.

To the best of our knowledge, the results presented in this paper are new. Compared with
the recent results, we obtain not only the existence and uniqueness of the heteroclinic solu-
tions, but also the monotonicity, convex-concave property, and asymptotic properties of the
heteroclinic solutions, which are rarely considered in the literature. Moreover, the hypotheses
used in this paper are different from those in recent literature, for instance, our monotonicity
condition is different from those in [28, 29]. It is worth to note that one important feature of
our work is that the nonlinearity f (x, y, z) in Theorem 4.5 may be super-quadratic with respect
to z, which are not studied by [13,14,32,33,35]. In addition, our Theorem 3.4 for problem (1.2)
complements theorem 4.2 in [7].

2 Some preliminaries

In this section, as preliminaries we shall present some lemmas, which are useful in the proof
of our main results.

Throughout this paper we shall use the following conditions:

(H1) f (x, y, z) is continuous on I ×R2;

(H2) f (x, y, z) is nondecreasing in y for each fixed pair (x, z) ∈ I ×R;

(H3) f (x, y, z) satisfies a uniform Lipschitz condition on each compact subset of I ×R2 with
respect to z, i.e., for each compact subset E ⊂ I ×R2, there exists a constant LE > 0 such
that

| f (x, y, z1)− f (x, y, z2)| ≤ LE|z1 − z2|, ∀(x, y, z1), (x, y, z2) ∈ E;
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(H4) z f (x, y, z) ≤ 0 for (x, y, z) ∈ I ×R2,

where I = [0, b](b > 0) or [0, ∞).

Lemma 2.1 (Maximum principle [41]). Let u = u(x) be a nonconstant solution of the differential
inequality

u′′ + α(x)u′ + β(x)u ≥ 0 in J = (a, b),

where α(x) and β(x) are bounded function in J, and β(x) ≤ 0 in J. Then a nonnegative maximum of
u = u(x) can only occur on ∂J, and the outward derivative du

dn > 0 there.

Lemma 2.2 ([7]). Assume f satisfies assumptions (H1), (H2) and (H3) with I = [0, b]. Suppose
φ1(x), φ2(x) have continuous second derivatives on an interval [a1, b1) ⊂ I and satisfy

φ′′1 (x) ≤ f (x, φ1(x), φ′1(x)), a1 ≤ x < b1;
φ′′2 (x) ≥ f (x, φ2(x), φ′2(x)), a1 ≤ x < b1.

Suppose further that
φ1(a1) ≤ φ2(a1), φ′1(a1) ≤ φ′2(a1)

and
φ1(a1) + φ′1(a1) < φ2(a1) + φ′2(a1).

Then
φ′1(x) ≤ φ′2(x), φ1(x) ≤ φ2(x) for a1 ≤ x < b1.

Lemma 2.3 ([7]). Suppose f satisfies assumptions (H1), (H2), (H3) and (H4) with I = [0, b]. Then
every solution φ(x) of the initial value problem{

y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = y0, y′(0) = y1

can be continued to the entire interval [0, b].

Lemma 2.4 (Kneser–Hukahara Continuum Theorem [20]). Consider the system y′ = f (x, y), y ∈
Rn. Suppose that the function f (x, y) is continuous and bounded on D = {(x, y) : a ≤ x ≤ b, y ∈
Rn}. Let C be a compact and connected subset of D and F(C) be the set of solutions which start in C.
Then F(C) is a compact and connected subset of C([a, b], Rn).

Consider the following initial value problems{
y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = λ, y′(0) = A
IVP0(λ)

and {
y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = A, y′(0) = λ.
IVP1(λ)

Now, we introduce some notations:

F0 := {φ : φ(x) is a solution of IVP0(λ), λ ∈ R}
and

F1 := {φ : φ(x) is a solution of IVP1(λ), λ ∈ R}.
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Lemma 2.5. Suppose that (H1), (H2), (H3) and (H4) with I = [0, b] hold. Let λ1, λ2 ∈ R with
λ1 < λ2. Then

F0 = {φ ∈ F0 : λ1 ≤ λ ≤ λ2}

is a compact and connected subset of C1[0, b].

Proof. Let y0 = y, y1 = y′0. Then IVP0(λ) is equivalent to the following initial value problem
of system 

dY
dx

= G(x, y0, y1),

Y(0) = (λ, A),
(2.1)

where Y = (y0, y1), G(x, y0, y1) = (y1, f (x, y0, y1)). Consider a set of solutions of (2.1), denoted
by S as follows:

S := {(y0(x, λ), y1(x, λ)) : λ1 ≤ λ ≤ λ2}.

From Lemma 2.2 and 2.3, for λ1 ≤ λ ≤ λ2 and i = 0, 1, we have

yi(x, λ1 − 1) ≤ yi(x, λ) ≤ yi(x, λ2 + 1) on [0, b],

then there exists M > 0 such that

|yi(x, λ)| ≤ M, i = 0, 1, (x, λ) ∈ [0, b]× [λ1, λ2].

Let
H := {(x, y0, y1) : 0 ≤ x ≤ b, |yi| ≤ M + 1, i = 0, 1}.

Then G(x, y0, y1) is continuous and bounded on H, and can be extended to a bounded contin-
uous function G∗(x, y0, y1) on D = [0, b]×R2 such that

G∗(x, y0, y1) ≡ G(x, y0, y1) for (x, y0, y1) ∈ H.

Now, we consider an initial value problem of system
dY
dx

= G∗(x, y0, y1),

Y(0) = (λ, A).
(2.2)

We note that
C := {(0, λ, A) : λ1 ≤ λ ≤ λ2}

is a compact and connected subset of D, and then by Lemma 2.4 the set of solutions of initial
value problem of system (2.2)

F0(C) := {(y0(x, λ), y1(x, λ)) : λ1 ≤ λ ≤ λ2}

is a compact and connected subset of C([0, b], R2). Since F0(C) = S, it follows that F0 is a
compact and connected subset of C1[0, b]. This completes the proof of the lemma.

The following lemma can be readily obtained by using Lemma 2.2 and 2.4.

Lemma 2.6. Suppose that (H1), (H2), (H3) and (H4) with I = [0, b] hold. Let λ1, λ2 ∈ R with
λ1 < λ2. Then

F1 = {φ ∈ F1 : λ1 ≤ λ ≤ λ2}

is a compact and connected subset of C1[0, b].
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Lemma 2.7 ([7]). Suppose f satisfies assumptions (H1), (H2), (H3) and (H4) with I = [0, ∞).
Suppose also that

(H5) there exist constants γ, r, ρ, M1, K for which γ ≥ 0, 0 ≤ r < γ+ 1, ρ ≥ 1, γ > ρ− 2, M1 > 0,
K > 0, and

| f (x, y, z)| ≥ M1xγ|z|ρ
|y|r for |y| ≥ K, (x, z) ∈ [0, ∞)×R.

Then every solution of the initial value problem{
y′′ = f (x, y, y′), 0 ≤ x < ∞,

y(0) = y0, y′(0) = y1

can be continued to the entire interval [0, ∞). Moreover, this global solution φ(x) is bounded and
monotone and hence limx→∞ φ(x) exists and is finite.

3 Semi-infinite interval problems

In this section, we begin with the study of the finite interval case for problem (1.2) and (1.3)
by shooting method.

Theorem 3.1. Suppose that (H1), (H2), (H3) and (H4) with I = [0, b] hold. Then the finite interval
problem {

y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y′(0) = A, y(b) = B
(3.1)

has a unique solution.

Proof. Existence. Let φ(x, λ) be a solution of the initial value problem{
y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = λ, y′(0) = A.

Then, by Lemma 2.3, φ(x, λ) can be extended to the entire interval [0, b]. From Lemma 2.2, it
follows that

φ′(x, λ) ≤ φ′(x, 0) for λ < 0

and

φ(b, λ)− φ(b, 0) = λ +
∫ b

0
(φ′(x, λ)− φ′(x, 0))dx ≤ λ.

Therefore
φ(b, λ)→ −∞ as λ→ −∞.

Hence, there exists λ1 < 0 such that φ(b, λ1) < B. Similarly, there exists λ2 > 0 such that
φ(b, λ2) > B.

From Lemma 2.5, the set

F0 = {φ(x, λ) ∈ F0 : λ1 ≤ λ ≤ λ2}

is a compact and connected subset of C1[0, b].
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Now, we define a mapping T : F0 → R as follows:

T(φ(x, λ)) = φ(b, λ)− B, ∀φ(x, λ) ∈ F0.

Then T is continuous on F0. Since T(φ(b, λ1)) < 0 and T(φ(b, λ2)) > 0, from Bolzano’s
theorem there exists φ(x, λ∗) ∈ F0 such that

T(φ(x, λ∗)) = φ(b, λ∗)− B = 0,

that is, φ(b, λ∗) = B. Obviously, φ(x, λ∗) is a solution of problem (3.1).

Uniqueness. Suppose φ1(x), φ2(x) are solutions of problem (3.1). We consider two cases.

Case 1. φ2(x) − φ1(x) is a constant on [0, b]. In this case, since φ2(b) = φ1(b), we have
φ2(x) ≡ φ1(x) on [0, b].

Case 2. φ2(x) − φ1(x) is not a constant on [0, b]. In this case, since φ2(b) = φ1(b), there
exists x1 ∈ [0, b) such that φ2(x1) 6= φ1(x1). Without loss of generality, we assume that
φ2(x1) > φ1(x1). Then there exists x2 ∈ [0, b) such that

φ2(x2)− φ1(x2) = max
x∈[0,b]

(φ2(x)− φ1(x)) > 0.

From the condition φ′2(0) = φ′1(0), it follows that

φ′2(x2) = φ′1(x2).

Also since φ2(b) = φ1(b), there exists x3 ∈ (x2, b] such that

φ2(x3)− φ1(x3) = 0, φ2(x)− φ1(x) > 0, x ∈ [x2, x3).

Now, let ψ(x) = φ2(x) − φ1(x). Then, it is easy to check that ψ(x) is a solution of the
differential inequality

u′′ + α(x)u′ + β(x)u ≥ 0 in J = (x2, x3),

where

α(x) =

−
f (x, φ2(x), φ′2(x))− f (x, φ2(x), φ′1(x))

φ′2(x)− φ′1(x)
, φ′2(x) 6= φ′1(x);

0, φ′2(x) = φ′1(x),

and

β(x) = − f (x, φ2(x), φ′1(x))− f (x, φ1(x), φ′1(x))
φ2(x)− φ1(x)

.

Obviously, assumptions (H1), (H2) and (H3) guarantees that α(x), β(x) are bounded on
(x2, x3) and β(x) ≤ 0 on (x2, x3). Therefore, by Lemma 2.1 the positive maximum of ψ(x)
can only occur on ∂J = {x2, x3} and dψ

dn > 0 there. Since ψ(x3) = 0, the maximum must
occur at x2 and dψ

dn

∣∣
x=x2

= −ψ′(x2) > 0, i.e., ψ′(x2) < 0, which is a contradiction to ψ′(x2) =

φ′2(x2)− φ′1(x2) = 0.
In summary, φ2(x) ≡ φ1(x) on [0, b]. This completes the proof of the theorem.

Theorem 3.2. Suppose that (H1), (H2), (H3) and (H4) with I = [0, b] hold. Suppose also that
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(H6) f satisfies the uniform Nagumo condition on [0, ∞) × R, i.e., for each compact subset E ⊂
[0, ∞)×R, there exists a continuous function hE : [0, ∞)→ (0, ∞) with

∫ ∞
0

s
hE(s)

ds = ∞ such
that

| f (x, y, z)| ≤ hE(|z|), ∀(x, y, z) ∈ E×R.

Then the finite interval problem {
y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = A, y(b) = B
(3.2)

has a unique solution.

Proof. If A = B, then from (H4), φ(x) ≡ A is a solution of problem (3.2). Without loss of
generality, we assume that A < B. Let φ(x, λ) be a solution of the initial value problem{

y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = A, y′(0) = λ.

Then, by Lemma 2.3, φ(x, λ) can be extended to the entire interval [0, b]. Furthermore, by
Lemma 2.2, for each λ > 0, φ(x, λ) is monotone nondecreasing on [0, b]. Let

Σ = {φ(b, λ) : λ ∈ (0, ∞)}.

We assert that sup Σ > B. Indeed, suppose by contradiction, that sup Σ ≤ B. Then there exists
R > 0 such that for each λ ∈ (0, ∞),

φ′(x, λ) ≤ R, ∀x ∈ [0, b].

In fact, let η = B− A > 0 and take r > η/b such that∫ r

η/b

s
hE(s)

ds ≥ B− A,

where E = [0, b]× [A, B]. If φ′(x, λ) > η/b on [0, b], we get the following contradiction:

η ≥ φ(b, λ)− φ(0, λ) =
∫ b

0
φ′(x, λ)dx > η.

Thus there exists x0 ∈ [0, b] such that φ′(x0, λ) ≤ η/b. If φ′(x, λ) ≤ η/b on [0, b], it is
enough to take R := η/b to finish the proof. Suppose that there exist some x ∈ [0, b] such
that φ′(x, λ) > η/b. Then by (H4), for λ > 0, φ′′(x, λ) ≤ 0 on [0, b]. Consider an interval
[x2, x1] such that φ′(x, λ) ≥ η/b on [x2, x1], φ′(x1, λ) = η/b and φ′(x, λ) > η/b > 0 for every
x ∈ [x2, x1). Applying a convenient change of variable, by the fact that φ(x, λ) is monotone
nondecreasing on [0, b], we have∫ φ′(x2,λ)

φ′(x1,λ)

s
hE(s)

ds =
∫ x2

x1

φ′(x, λ)

hE(φ′(x, λ))
φ′′(x, λ)dx

=
∫ x2

x1

φ′(x, λ)

hE(φ′(x, λ))
f (x, φ(x, λ), φ′(x, λ))dx

≤
∫ x1

x2

φ′(x, λ)dx = φ(x1, λ)− φ(x2, λ)

≤ sup Σ− A ≤
∫ r

η/b

s
hE(s)

ds.



Second-order infinite interval problem 9

Then φ′(x2, λ) ≤ r and, by the way as x1 and x2 were taken, we have

φ′(x, λ) ≤ r =: R, ∀x ∈ [0, b],

which contradicts φ′(0, λ) = λ→ ∞ as λ→ ∞.
In summary, sup Σ > B. Therefore there exists λ1 > 0 such that φ(b, λ1) > B. Notice that

A < B, it is clear from Lemma 2.2 that φ(b, λ2) < B for each λ2 < 0.
The remaining part is similar to the proof of Theorem 3.1, therefore it is omitted here. This

completes the proof of the theorem.

Remark 3.3. It is easy to see that if f (x, y, z) satisfies a uniform σ-Lipschitz condition on each
compact subset of I ×R with respect to z, that is, for each compact subset E of [0, ∞)×R,
there exists LE > 0 which depends only on E, such that

| f (x, y, z1)− f (x, y, z2)| ≤ LE|z1 − z2|σ, ∀(x, y, z1), (x, y, z2) ∈ E×R,

where 0 < σ ≤ 2, then f satisfies the condition (H6).

Now, using Theorem 3.1 and some lemmas in Section 2, we establish here our main results
for semi-infinite interval problem (1.2).

Theorem 3.4. Suppose that (H1), (H2), (H3), (H4) with I = [0, ∞) and (H5) hold. Then the
semi-infinite interval problem (1.2) has a unique solution y = φ(x) satisfying

(1) if A ≥ 0, then φ(x) is monotone nondecreasing, concave on [0, ∞) and limx→∞ φ′(x) = 0.
Furthermore, φ(x) is nonpositive on [0, ∞) when B ≤ 0;

(2) if A ≤ 0, then φ(x) is monotone nonincreasing, convex on [0, ∞) and limx→∞ φ′(x) = 0.
Furthermore, φ(x) is nonnegative on [0, ∞) when B ≥ 0.

Proof. Firstly, we show the existence of solutions of problem (1.2). Clearly, if A = 0, then
φ(x) ≡ B is the solution of problem (1.2). Without loss of generality, we assume that A > 0.
Then by Theorem 3.1, the finite interval problem{

y′′ = f (x, y, y′), 0 ≤ x ≤ 1,

y′(0) = A, y(1) = B + 1
(3.3)

has a unique solution y = ψ(x) on [0, 1], and which by Lemma 2.7 can be continued to the
entire interval [0, ∞) as a monotone solution of (1.1). Since ψ′(0) = A > 0, it follows that
ψ(x) is monotone nondecreasing on [0, ∞). Thus from Lemma 2.7, we know that ψ(∞) :=
limx→∞ ψ(x) exists, and ψ(∞) > B.

Suppose by contradiction, that problem (1.2) has no solution. Let

G = {φ ∈ C2[0, ∞) : φ(x) is solution of (1.1) with φ′(0) = A, φ(∞) < B}.

Then G 6= ∅. In fact, let φ(x, λ) be a solution of initial value problem{
y′′ = f (x, y, y′),

y(0) = λ, y′(0) = A.

Then, by Lemma 2.7, φ(x, λ) can be continued to the entire interval [0, ∞) and

φ(∞, λ) = lim
x→∞

φ(x, λ) < ∞.
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If φ(∞, 0) < B, then φ(x, 0) ∈ G, and thus G 6= ∅. If φ(∞, 0) > B, then it follows from
Lemma 2.2 that for λ < 0,

φ′(x, λ) ≤ φ′(x, 0), φ(x, λ) ≤ φ(x, 0), x ∈ [0, ∞).

Hence for each λ < 0 we have

φ(x, λ)− φ(x, 0) = λ +
∫ x

0
(φ′(t, λ)− φ′(t, 0))dt ≤ λ, x ∈ [0, ∞).

At the limit, as x → ∞, we obtain

φ(∞, λ)− φ(∞, 0) ≤ λ, λ < 0,

i.e.,
φ(∞, λ) ≤ φ(∞, 0) + λ, λ < 0.

Since φ(∞, 0) + λ→ −∞ as λ→ −∞, it follows that there exists λ̄ < 0 such that

φ(∞, λ̄) ≤ φ(∞, 0) + λ̄ < B.

Therefore φ(x, λ̄) ∈ G, and thus G 6= ∅.
Now, let

Θ = {λ = φ(0) : φ ∈ G}.

Notice that for each φ ∈ G,

φ(x) ≤ ψ(x), φ′(x) ≤ ψ′(x), x ∈ [0, ∞),

then Θ is upper bounded, and λ∗ := sup Θ < ∞. Hence there exists {λn} ⊂ Θ such that
λn < λn+1 < λ∗ and λn → λ∗ as n→ ∞. From Lemma 2.2, for φ(x, λn) ∈ G, n = 1, 2, . . . ,

φ(i)(x, λn) ≤ φ(i)(x, λn+1) ≤ φ(i)(x, λ∗), i = 0, 1, x ∈ [0, ∞).

Let φ̂(x) = supn φ(x, λn). Since for each fixed positive number b, the sequence of functions
{φ(i)(x, λn)} (i = 0, 1) is equicontinuous on [0, b], then

φ(i)(x, λn)→ φ̂(i)(x) (n→ ∞) uniformly on [0, b], i = 0, 1.

It follows that φ̂(x) is a solution of (1.1) satisfying φ̂′(0) = A and φ̂(∞) ≤ B. From the
assumption that semi-infinite interval problem (1.2) has no solution, we have φ̂(∞) < B.

Next, we show that there exists φ̌ ∈ G such that

φ̂(∞) < φ̌(∞) < B, (3.4)

and thus obtain a contradiction. To do this, choose b ≥ 1 sufficiently large such that

ψ(∞)− ψ(b) <
1
2
(B− φ̂(∞)).

Then by Theorem 3.1, the finite interval problem{
y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y′(0) = A, y(b) = (B + φ̂(∞))/2
(3.5)
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has a unique solution φ̌(x), which by Lemma 2.7 can be continued to [0, ∞) as a monotone
nondecreasing solution of (1.1). Thus from (3.5) and (3.3) we obtain

φ̌(1) ≤ φ̌(b) < B < ψ(1).

It follows from Lemma 2.2 that

φ̌′(x) ≤ ψ′(x), ∀x ∈ [b, ∞) ⊂ [1, ∞).

Therefore

φ̌(∞) = φ̌(b) +
∫ ∞

b
φ̌′(x)dx

≤ φ̌(b) +
∫ ∞

b
ψ′(x)dx

=
1
2
(B + φ̂(∞)) + ψ(∞)− ψ(b)

<
1
2
(B + φ̂(∞)) +

1
2
(B− φ̂(∞)) = B.

Also from (3.5) and φ̂(∞) < B, it follows that φ̌(b) > φ̂(∞), then by the monotonicity of φ̌(x)
on [0, ∞), we have φ̌(∞) ≥ φ̌(b) > φ̂(∞), and so φ̌(x) satisfies (3.4).

Secondly, we show the uniqueness of solutions of problem (1.2). To do this, let φ1(x), φ2(x)
be solutions of problem (1.2). We consider two cases to prove.

Case 1. φ1(0) 6= φ2(0). Without loss of generality, we assume that φ1(0) < φ2(0). Then by
Lemma 2.2, φ′1(x) ≤ φ′2(x) on [0, ∞), and thus

φ2(∞)− φ1(∞) = φ2(0)− φ1(0) +
∫ ∞

0
(φ′2(x)− φ′1(x))dx > 0,

which contradicts φ2(∞) = φ1(∞).

Case 2. φ1(0) = φ2(0). In this case, we have φ1(x) ≡ φ2(x) on [0, ∞). In fact, if not, there
exists x0 ∈ (0, ∞) such that φ1(x0) 6= φ2(x0). We can assume that φ1(x0) < φ2(x0). Then there
exists x1 ∈ [0, x0) such that φ1(x1) = φ2(x1) and φ1(x) < φ2(x) on (x1, x0], and so there exists
x2 ∈ (x1, x0] such that φ′1(x2) < φ′2(x2). It follows from Lemma 2.2 that φ′1(x) ≤ φ′2(x) on
[x2, ∞). Therefore

0 = φ2(∞)− φ1(∞) = φ2(x2)− φ1(x2) +
∫ ∞

x2

(φ′2(x)− φ′1(x))dx > 0,

which is a contradiction. In summary, φ1(x) ≡ φ2(x) on [0, ∞).
Finally, the qualitative properties of the unique solution is obvious by Lemma 2.7. This

completes the proof of the theorem.

Theorem 3.5. Suppose that (H1), (H2), (H3), (H4) with I = [0, ∞), (H5) and (H6) hold. Then the
semi-infinite interval problem (1.3) has a unique solution y = φ(x) satisfying

(1) if A ≤ B, then φ(x) is monotone nondecreasing, concave on [0, ∞) and limx→∞ φ′(x) = 0.
Furthermore, φ(x) is nonnegative or nonpositive on [0, ∞) when A ≥ 0 or B ≤ 0, respectively;

(2) if A ≥ B, then φ(x) is monotone nonincreasing, convex on [0, ∞) and limx→∞ φ′(x) = 0.
Furthermore, φ(x) is nonnegative or nonpositive on [0, ∞) when B ≥ 0 or A ≤ 0, respectively.

Proof. The proof is the same as that for Theorem 3.4 except that Theorem 3.1 is used in place
of Theorem 3.2, and we omitted here. This completes the proof of the theorem.
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4 Heteroclinic solutions

In order to obtain the existence, uniqueness and qualitative properties of solutions for full-
infinite interval problem (1.4) via matching technique, we first discuss the existence, unique-
ness and qualitative properties of solutions to the following semi-infinite interval problems{

y′′ = f (x, y, y′), −∞ < x ≤ 0,

y(−∞) = A, y′(0) = η
(4.1)

and {
y′′ = f (x, y, y′), −∞ < x ≤ 0,

y(−∞) = A, y(0) = η,
(4.2)

where η ∈ R.
Let us list the following conditions for convenience.

(H1) f (x, y, z) is continuous on R3;

(H2) f (x, y, z) is nondecreasing in y for each fixed (x, z) ∈ R2;

(H3) f (x, y, z) satisfies a uniform Lipschitz condition on each compact subset of R3 with
respect to z;

(H4) z f (x, y, z) ≥ 0 for (x, y, z) ∈ (−∞, 0]×R2, and z f (x, y, z) ≤ 0 for (x, y, z) ∈ [0, ∞)×R2;

(H5) there exist constants γ, r, ρ, M1, K for which γ ≥ 0, 0 ≤ r < γ + 1, ρ ≥ 1, γ > ρ− 2,
M1 > 0, K > 0, and

| f (x, y, z)| ≥ M1|x|γ|z|ρ
|y|r for |y| ≥ K, (x, z) ∈ R2;

(H6) f satisfies the uniform Nagumo condition on R2, i.e., for each compact subset E ⊂ R2,
there exists a continuous function hE : [0, ∞)→ (0, ∞) with

∫ ∞
0

s
hE(s)

ds = ∞ such that

| f (x, y, z)| ≤ hE(|z|) for (x, y, z) ∈ E×R;

(H
′
6) for each b > 0, there exists M = M(b) > 0 so that

| f (x, y, z)| ≤ M|x|q|z|p for (x, y, z) ∈ [−b, b]×R2,

where q ≥ 0, p ≥ 1, q ≥ p− 2.

Theorem 4.1. Suppose that (H1), (H2), (H3), (H4) and (H5) hold. Then problem (4.1) has a unique
solution y = φ(x) satisfying

(1) if η ≤ 0, then φ(x) is monotone nonincreasing, concave on (−∞, 0] and limx→−∞ φ′(x) = 0.
Furthermore, φ(x) is nonpositive on (−∞, 0] when A ≤ 0;

(2) if η ≥ 0, then φ(x) is monotone nondecreasing, convex on (−∞, 0] and limx→−∞ φ′(x) = 0.
Furthermore, φ(x) is nonnegative on (−∞, 0] when A ≥ 0.
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Proof. Let x = −t and y(x) = u(t). Then problem (4.1) is transformed into an equivalent
problem {

u′′ = F(t, u, u′), 0 ≤ t < ∞,

u′(0) = −η, u(∞) = A,
(4.3)

where F(t, y, z) = f (−t, y,−z). It is easy to check that conditions (H1), (H2), (H3), (H4) and
(H5) imply conditions (H1), (H2), (H3), (H4) with I = [0, ∞) and (H5) hold for problem (4.3).
Hence by Theorem 3.4, problem (4.3) has a unique solution u = ψ(t), and thus φ(x) = ψ(−x)
is a unique solution of problem (4.1) and satisfies property (1) and (2). This completes the
proof of the theorem.

Applying Theorem 3.5, we can easily obtain the following.

Theorem 4.2. Suppose that (H1), (H2), (H3), (H4), (H5) and (H6) hold. Then problem (4.2) has a
unique solution y = φ(x) satisfying

(1) if η ≤ A, then φ(x) is monotone nonincreasing, concave on (−∞, 0] and limx→−∞ φ′(x) = 0.
Furthermore, φ(x) is nonnegative or nonpositive on (−∞, 0] when η ≥ 0 or A ≤ 0, respectively;

(2) if η ≥ A, then φ(x) is monotone nondecreasing, convex on (−∞, 0] and limx→−∞ φ′(x) = 0.
Furthermore, φ(x) is nonnegative or nonpositive on (−∞, 0] when A ≥ 0 or η ≤ 0, respectively.

Proof. The proof is similar to that of Theorem 4.1, and is omitted. This completes the proof of
the theorem.

Remark 4.3. Due to Theorem 4.3 of [7], it is easy to see that with the same hypothesis as in
Theorem 4.2, except now (H6) is replaced by (H

′
6), the conclusion of Theorem 4.2 is still true.

With the above theorems we may now establish our main result of this section on the exis-
tence, uniqueness and qualitative properties of solutions for the full-infinite interval problem
(1.4).

Theorem 4.4. Suppose that (H1), (H2), (H3), (H4), (H5) and (H6) hold. Then problem (1.4) has a
unique solution y = φ(x) satisfying

(1) if A < B, then φ(x) is monotone nondecreasing on R, convex on (−∞, 0] concave on [0, ∞)

and limx→±∞ φ′(x) = 0. Furthermore, φ(x) is nonnegative (nonpositive) on R when A ≥ 0
(B ≤ 0);

(2) if A > B, then φ(x) is monotone nonincreasing on R, concave on (−∞, 0], convex on [0, ∞)

and limx→±∞ φ′(x) = 0. Furthermore, φ(x) is nonnegative (nonpositive) on R when B ≥ 0
(A ≤ 0).

Proof. By Theorem 3.4, for any η ∈ R, the following semi-infinite interval problem{
y′′ = f (x, y, y′), 0 ≤ x < ∞,

y′(0) = η, y(∞) = B
(4.4)

has a unique solution φ1(x, η).
First it will be shown that φ1(0, η) is a continuous and strictly decreasing function of η and

its range is the set of all real numbers.
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Let η2 > η1, then φ1(0, η2) < φ1(0, η1). Indeed, if φ1(0, η2) ≥ φ1(0, η1), then since
φ′1(0, η2) = η2 > η1 = φ′1(0, η1), it follows from Lemma 2.2 that φ′1(x, η2) ≥ φ′1(x, η1) on
[0, ∞). Notice that φ′1(0, η2) > φ′1(0, η1) and φ1(0, η2) ≥ φ1(0, η1), there exists x∗ > 0 such that
φ1(x∗, η2) > φ1(x∗, η1), and thus

φ1(x, η2)− φ1(x, η1) ≥ φ1(x∗, η2)− φ1(x∗, η1) > 0 on [x∗, ∞),

which contradicts φ1(∞, η2) = B = φ1(∞, η1). Therefore φ1(0, η) is a strictly decreasing func-
tion of η.

Suppose φ1(0, η) has a jump discontinuity at η = η1 such that

φ1(0, η−1 ) = α, φ1(0, η1) = β, φ1(0, η+
1 ) = γ,

where the monotonicity asserts that α ≥ β ≥ γ and α > γ. Let β̂ be a real number different
from β such that α ≥ β̂ ≥ γ. Then by Theorem 3.5, the following semi-infinite interval
problem {

y′′ = f (x, y, y′), 0 ≤ x < ∞,

y(0) = β̂, y(∞) = B

has a unique solution y = φ(x). Let φ′(0) = η̂. Then by Theorem 3.4, φ(x) = φ1(x, η̂) for all
x ∈ [0, ∞), and thus

φ1(0, η̂) = φ(0) = β̂,

which is a contradiction. Thus φ1(0, η) is a continuous function of η.
Suppose that for all real numbers η, φ1(0, η) is bounded from above, that is, there exists

M1 > 0 such that φ1(0, η) ≤ M1 < ∞ for all η ∈ R. By Theorem 3.5, the following semi-infinite
interval problem {

y′′ = f (x, y, y′), 0 ≤ x < ∞,

y(0) = M1 + 1, y(∞) = B

has a unique solution y = ψ(x). Let ψ′(0) = η̌, then from Theorem 3.4 it follows that ψ(x) =
φ1(x, η̌) for all x ∈ [0, ∞), and thus

φ1(0, η̌) = ψ(0) = M1 + 1,

which is a contradiction. Thus φ1(0, η) is unbounded from above. Similarly, it can be shown
that φ1(0, η) is not bounded from below.

We now denote the unique solution of the semi-infinite interval problem (4.1) by φ2(x, η).
Using Theorem 4.1 and 4.2, it can be shown by the same arguments that φ2(0, η) is a contin-
uous and strictly increasing function of η and its range is the set of all real numbers. Conse-
quently, there exists a unique η∗ ∈ R such that φ1(0, η∗) = φ2(0, η∗), and thus φ

(i)
1 (0, η∗) =

φ
(i)
2 (0, η∗), i = 0, 1. Therefore φ(x) defined as

φ(x) :=

{
φ1(x, η∗), x ∈ [0, ∞);

φ2(x, η∗), x ∈ (−∞, 0]

is a solution of problem (1.4).
We now show the uniqueness. Suppose that φ̄(x) is another solution of problem (1.4). Let

the restrictions of φ̄(x) to the subinterval [0, ∞) and (−∞, 0] be labeled as φ̄1(x) and φ̄2(x)
respectively. Then from Theorem 3.4 and 4.1, it follows that

φ̄1(x) ≡ φ1(x, η̄) on [0, ∞)
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and
φ̄2(x) ≡ φ2(x, η̄) on (−∞, 0],

where η̄ = φ̄′(0). Now, we assert that η̄ = η∗. Indeed, if η̄ > η∗, then

φ̄1(0) = φ1(0, η̄) < φ1(0, η∗) = φ2(0, η∗) < φ2(0, η̄) = φ̄2(0),

which is a contradiction, and hence η̄ ≤ η∗. Similarly, η̄ ≥ η∗. Thus η̄ = η∗. Therefore
φ̄(x) ≡ φ(x) on R, which proves the uniqueness of solution to problem (1.4).

Finally, we show the qualitative properties of the unique solution. We shall consider only
the conclusion (1), since the other conclusion is somewhat tricky. Let φ(x) be the unique
solution to problem (1.4), and let A < B. It suffices to show that A ≤ φ(0) ≤ B. Suppose,
by contradiction, that φ(0) > B or φ(0) < A. To make sure, we can assume that φ(0) > B.
Then, by Theorem 3.5 and 4.2, φ(x) is monotone nonincreasing and monotone nondecreasing
on [0, ∞) and (−∞, 0], respectively, and thus φ′(0) = 0. By the uniqueness results of solutions
of Theorem 3.4, φ(x) ≡ B on [0, ∞), and hence φ(0) = B, which contradicts φ(0) > B. In
summary, A ≤ φ(0) ≤ B. Consequently, the conclusion (1) holds. This completes the proof of
the theorem.

Theorem 4.5. Suppose that (H1), (H2), (H3), (H4), (H5) and (H
′
6) hold. Then problem (1.4) has a

unique solution y = φ(x) satisfying

(1) if A < B, then φ(x) is monotone nondecreasing on R, convex on (−∞, 0] concave on [0, ∞)

and limx→±∞ φ′(x) = 0. Furthermore, φ(x) is nonnegative (nonpositive) on R when A ≥ 0
(B ≤ 0);

(2) if A > B, then φ(x) is monotone nonincreasing on R, concave on (−∞, 0], convex on [0, ∞)

and limx→±∞ φ′(x) = 0. Furthermore, φ(x) is nonnegative (nonpositive) on R when B ≥ 0
(A ≤ 0).

Proof. The proof of this theorem is the same as that for Theorem 4.4 except that Theorem 4.3
of [7] and Remark 4.3 are used in place of Theorem 3.5 and Theorem 4.2, respectively. This
completes the proof of the theorem.

5 Some examples

In this section, as applications, we give five examples to demonstrate our main results.

Example 5.1. Consider nonlinear second-order semi-infinite interval problem

y′′ + e−yy′ = 0, 0 ≤ x < ∞, (5.1)

y′(0) = A, y(∞) = B, (5.2)

where A ≥ 0 and B ≤ 0.
We put

f (x, y, z) =

{
−g(0)z, if z < 0;

−g(y)z, if z ≥ 0,

where

g(y) =

{
e−y, if y ≤ 0;

1, if y > 0.
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It is easy to verify that f satisfies conditions (H1), (H2), (H3), (H4) with I = [0, ∞). Also we
have

| f (x, y, z)| ≥ |z| for (x, y, z) ∈ [0, ∞)×R2.

Then the condition (H5) is satisfied. Hence from Theorem 3.4, the modified semi-infinite
interval problem consisting of

y′′ = f (x, y, y′), 0 ≤ x < ∞

and (5.2) has a unique solution φ with φ′(x) ≥ 0 on [0, ∞) and φ(x) ≤ 0 on [0, ∞). Hence by
the definitions of f and g, φ is the unique solution of problem (5.1), (5.2). Furthermore, φ is
nonpositive, monotone nondecreasing, concave on [0, ∞) and limx→∞ φ′(x) = 0.

Example 5.2. Consider nonlinear second-order semi-infinite interval problem

y′′ + xh(y)(y′)2−q = 0, 0 ≤ x < ∞, (5.3)

y(0) = A, y(∞) = B, (5.4)

where 0 ≤ q ≤ 1, 0 ≤ A < B, h(y) is nonincreasing, continuous and positive on R with
infR h(y) = m > 0.

We set
f (x, y, z) = −xh(y)|z|2−q sgn z for (x, y, z) ∈ [0, ∞)×R2.

It is easy to see that f satisfies conditions (H1)–(H4) with I = [0, ∞) and (H6). Notice that

| f (x, y, z)| ≥ mx|z|2−q for (x, y, z) ∈ [0, ∞)×R2,

which implies the condition (H5) is satisfied. Notice that A < B, hence from Theorem 3.5, the
modified semi-infinite interval problem consisting of

y′′ = f (x, y, y′), 0 ≤ x < ∞

and (5.4) has a unique solution φ with φ′(x) ≥ 0 on [0, ∞). Therefore by the definition of f , φ

is the unique solution of problem (5.3), (5.4). Morever, φ is positive, nondecreasing, concave
on (0, ∞) and limx→∞ φ′(x) = 0.

Note that problem (5.3), (5.4) with h(y) ≡ m > 0 and A = 0, B = 1 models phenomena in
the unsteady flow of power-law fluids (see [36]).

Example 5.3. Consider nonlinear second-order full-infinite interval problem

y′′ + mx(y′)2−q = 0, −∞ < x < ∞, (5.5)

y(−∞) = A, y(∞) = B, (5.6)

where 0 ≤ q ≤ 1, m > 0, 0 ≤ A < B.
We set

f (x, y, z) = −mx|z|2−q sgn z for (x, y, z) ∈ R3.

It is easy to check that f (x, y, z) satisfies conditions (H1)–(H6). Hence from Theorem 4.4, the
modified full-infinite interval problem consisting of

y′′ = f (x, y, y′), −∞ < x < ∞

and (5.6) has a unique solution φ which satisfies φ′(x) ≥ 0 on R since A < B. Therefore by the
definition of f , y = φ(x) is the unique solution of problem (5.5), (5.6), which is monotone non-
decreasing on R, convex on (−∞, 0], concave on [0, ∞) and limx→±∞ φ′(x) = 0. Furthermore,
φ(x) is positive on R.
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Example 5.4. Consider nonlinear second-order full-infinite interval problem

y′′ + mx3(y′)4 = 0, −∞ < x < ∞, (5.7)

y(−∞) = A, y(∞) = B, (5.8)

where m > 0, 0 ≤ A < B.
We set

f (x, y, z) = −mx3|z|4 sgn z for (x, y, z) ∈ R3.

It is easy to check that f (x, y, z) satisfies conditions (H1)–(H5) and (H
′
6). Similar to the dis-

cussion of Example 5.3, from Theorem 4.5, problem (5.7), (5.8) has a unique solution, which is
monotone nondecreasing on R, convex on (−∞, 0], concave on [0, ∞) and limx→±∞ φ′(x) = 0.
Furthermore, φ(x) is positive on R.

We note here that the results of [13,14,32,33,35] can not be applied to obtain the existence of
solutions to problem (5.7), (5.8), since the nonlinearity of the equation (5.7) is super-quadratic
with respect to z.

Example 5.5. Consider nonlinear second-order full-infinite interval problem

y′′ + xy′(π − arctan(xyy′)) = 0, −∞ < x < ∞, (5.9)

y(−∞) = A, y(∞) = B, (5.10)

where A, B ∈ R and A 6= B.
We set

f (x, y, z) = −xz(π − arctan(xyz)), (x, y, z) ∈ R3.

It is easy to check that f (x, y, z) satisfies (H1), (H2), (H3) and (H4). Also it is easily verified
that

| f (x, y, z)| ≥ π

2
|x||z|, (x, y, z) ∈ R3

and

| f (x, y, z)| ≤ 3π

2
|x||z|, (x, y, z) ∈ R3.

Then (H5) and (H6) hold. Hence from Theorem 4.4, problem (5.9), (5.10) has a unique solution
y = φ(x) satisfying

(1) if A < B, then φ(x) is monotone nondecreasing on R, convex on (−∞, 0] and concave
on [0, ∞). Furthermore, φ(x) is nonnegative (nonpositive) on R when A ≥ 0 (B ≤ 0);

(2) if A > B, then φ(x) is monotone nonincreasing on R, concave on (−∞, 0] and convex on
[0, ∞). Furthermore, φ(x) is nonnegative (nonpositive) on R when B ≥ 0 (A ≤ 0).
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