General Section

Small gaps between almost primes, the parity problem, and some conjectures of Erdős on consecutive integers II

Daniel A. Goldston, Sidney W. Graham, Apoorva Panidapu, Janos Pintz ${ }^{1}$, Jordan Schettler *, Cem Y. Yıldırım

A R T I C L E I N F O

Article history:

Received 25 April 2020
Accepted 28 June 2020
Available online 16 July 2020
Communicated by S.J. Miller
Keywords:
Almost prime
Small gaps
Erdos
Mirsky
Divisor
Exponent pattern

A B S T R A C T

We show that for any positive integer n, there is some fixed A such that $d(x)=d(x+n)=A$ infinitely often where $d(x)$ denotes the number of divisors of x. In fact, we establish the stronger result that both x and $x+n$ have the same fixed exponent pattern for infinitely many x. Here the exponent pattern of an integer $x>1$ is the multiset of nonzero exponents which appear in the prime factorization of x.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper is intended as a sequel to [GGPY11] written by four of the coauthors here. In the paper, they proved a stronger form of the Erdős-Mirksy conjecture mentioned in [EM52] which states that there are infinitely many positive integers x such that $d(x)=$ $d(x+1)$ where $d(x)$ denotes the number of divisors of x. This conjecture was first proven by Heath-Brown in 1984 [HB84], but the method did not reveal the nature of the set of

[^0]values $d(x)$ for such x. In particular, one could not conclude that there was any particular value A for which $d(x)=d(x+1)=A$ infinitely often. In [GGPY11], the authors showed that
\[

$$
\begin{equation*}
d(x)=d(x+1)=24 \text { for infinitely many positive integers } x \tag{0.1}
\end{equation*}
$$

\]

Similar results were proven for other related arithmetic functions which count numbers of prime divisors. The goal of this paper is to establish results for an arbitrary shift n, i.e., $d(x)=d(x+n)=A$ infinitely often for some fixed A.

2. Notation and preliminaries

For our purposes, a linear form is an expression $L(m)=a m+b$ where a and b are integers and $a>0$. We view L both as a polynomial and as a function in m. We say L is reduced if $\operatorname{gcd}(a, b)=1$. If $K(m)=c m+d$ is another linear form, then a relation between L and K is an equation of the form $\left|c_{L} \cdot L-c_{K} \cdot K\right|=n$ where c_{L}, c_{K}, n are all positive integers. We call c_{L}, c_{K} the relation coefficients and we call n the relation value. We define the determinant of L and K as $\operatorname{det}(L, K)=|a d-b c|$.

For a prime p, a k-tuple of linear forms $L_{1}, L_{2}, \ldots, L_{k}$ is called p-admissible if there is an integer t_{p} such that

$$
L_{1}\left(t_{p}\right) L_{2}\left(t_{p}\right) \cdots L_{k}\left(t_{p}\right) \not \equiv 0 \quad(\bmod p)
$$

We say that a k-tuple of linear forms is admissible if it is p-admissible for every prime p. Note that a k-tuple of linear forms is admissible iff all the forms are reduced and the tuple is p-admissible for every prime $p \leq k$.

An E_{r} number is a positive integer that is the product of r distinct primes. Several of the coauthors here proved the following result on E_{2}-numbers in admissible triples in [GGPY09]. Later, Frank Thorne [Tho08] obtained a generalization for E_{r}-numbers with $r \geq 3$.

Theorem 1. Let C be any constant. If L_{1}, L_{2}, L_{3} is an admissible triple of linear forms, then there are two among them, say L_{j} and L_{k} such that both $L_{j}(x)$ and $L_{k}(x)$ are E_{2}-numbers with both prime factors larger than C for infinitely many x.

The results obtained in this paper will use Theorem 1 above in combination with Theorem 2 below, a special case of which was proven in the previous paper [GGPY11]. We provide a proof here of the general version since it contains important ideas relevant for the rest of the paper.

Theorem 2 (Adjoining Primes). Assume that $L_{i}=a_{i} m+b_{i}$ for $i=1, \ldots, k$ gives an admissible k-tuple with relations $\left|c_{i, j} L_{i}-c_{j, i} L_{j}\right|=n_{i, j}$. We can always "adjoin" prime factors to the relation coefficients without changing the relation values: for every choice of
positive integers $r_{1}, r_{2}, \ldots, r_{k}$ such that $\operatorname{gcd}\left(r_{i}, a_{i}\right)=\operatorname{gcd}\left(r_{i}, \operatorname{det}\left(L_{i}, L_{j}\right)\right)=\operatorname{gcd}\left(r_{i}, r_{j}\right)=$ 1 whenever $i \neq j$, there is an admissible k-tuple of linear forms $K_{1}, K_{2}, \ldots, K_{k}$ with relations $\left|c_{i, j} r_{i} K_{i}-c_{j, i} r_{j} K_{j}\right|=n_{i, j}$.

Proof. Let x be a solution of the congruences $L_{i}(x) \equiv r_{i}\left(\bmod r_{i}^{2}\right)$ for $1 \leq i \leq k$. Such an x exists by the Chinese Remainder Theorem since $\operatorname{gcd}\left(a_{i}, r_{i}\right)=\operatorname{gcd}\left(r_{i}, r_{j}\right)=1$. This x is unique modulo $r=\left(r_{1} r_{2} \cdots r_{k}\right)^{2}$. Now define a new k-tuple via $K_{i}(m)=L_{i}(r m+x) / r_{i}$. By construction, we have $\left|c_{i, j} r_{i} K_{i}-c_{j, i} r_{j} K_{j}\right|=n_{i, j}$, so we only need to check that this new k-tuple is admissible. We will show that the new k-tuple is p-admissible for every prime p. There are two cases.

Case 1: Suppose that $p \mid r$. Since $\operatorname{gcd}\left(r_{i}, r_{j}\right)=1$ for $i \neq j$, we have that $p \mid r_{\ell}$ for exactly one index ℓ. Now

$$
K_{\ell}(0)=L_{\ell}(x) / r_{\ell} \equiv 1 \quad\left(\bmod r_{\ell}\right)
$$

so $K_{\ell}(0) \equiv 1 \not \equiv 0(\bmod p)$. We claim that also $K_{i}(0) \not \equiv 0(\bmod p)$ when $i \neq \ell$. Suppose, by way of contradiction, that $K_{i}(0) \equiv 0(\bmod p)$ for some $i \neq \ell$. Then $L_{i}(x) \equiv 0(\bmod p)$ since $r_{i} \not \equiv 0(\bmod p)$, but $L_{\ell}(x) \equiv r_{\ell} \equiv 0(\bmod p)$, so

$$
\operatorname{det}\left(L_{\ell}, L_{i}\right)=\left|a_{i} b_{\ell}-a_{\ell} b_{i}\right|=\left|a_{i} L_{\ell}(x)-a_{\ell} L_{i}(x)\right| \equiv 0 \quad(\bmod p)
$$

but this contradicts the assumption that $\operatorname{gcd}\left(r_{\ell}, \operatorname{det}\left(L_{\ell}, L_{i}\right)\right)=1$. Thus $K_{1}(0) \cdots K_{k}(0) \not \equiv$ $0(\bmod p)$.
Case 2: Now suppose $p \nmid r$. Since L_{1}, \ldots, L_{k} is admissible, there is an integer t_{p} such that $L_{1}\left(t_{p}\right) \cdots L_{k}\left(t_{p}\right) \not \equiv 0(\bmod p)$. Choose τ_{p} such that $r \tau_{p}+x \equiv t_{p}(\bmod p)$. Then $L_{i}\left(r \tau_{p}+x\right) \equiv L_{i}\left(t_{p}\right) \not \equiv 0(\bmod p)$ and $r_{i} \not \equiv 0(\bmod p)$ for all i, so

$$
K_{1}\left(\tau_{p}\right) \cdots K_{k}\left(\tau_{p}\right)=\frac{L_{1}\left(r \tau_{p}+x\right)}{r_{1}} \cdots \frac{L_{k}\left(r \tau_{p}+x\right)}{r_{k}} \not \equiv 0 \quad(\bmod p)
$$

Let n be a positive integer and write its prime factorization as $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{j}^{k_{j}}$ where the p_{i} are distinct primes with $k_{i}>0$. Then the exponent pattern of n is the multiset $\left\{k_{1}, k_{2}, \ldots, k_{j}\right\}$ where order does not matter but repetitions are allowed. The values of many important arithmetic functions depend only on the exponent pattern of the input; such functions include:

$$
d(x)=\# \text { of divisors of } x
$$

$\Omega(x)=\#$ of prime factors (counted with multiplicity) of x

$$
\omega(x)=\# \text { of distinct prime factors of } x
$$

$$
\mu(x)=\text { Möbius function }=(-1)^{\omega(x)} \text { if } n \text { is squarefree, zero otherwise }
$$

$$
\lambda(x)=\text { Liouville function }=(-1)^{\Omega(x)}
$$

Thus if both x and $x+n$ have the same exponent pattern, then $d(x)=d(x+n)$, $\Omega(x)=\Omega(x+n), \omega(x)=\omega(x+n)$, etc. In establishing the strong form of the ErdősMirsky Conjecture (0.1), the authors in [GGPY11] actually proved the following result.

Theorem 3. There are infinitely many positive integers x such that both x and $x+1$ have exponent pattern $\{2,1,1,1\}$.

We will show that for any shift n, there are infinitely many positive integers x such that both x and $x+n$ have a fixed small exponent pattern. A key tool for doing this is contained in the next remark.

Remark 4. Suppose we have an admissible triple of forms L_{i} with relations $\mid c_{i, j} L_{i}-$ $c_{j, i} L_{j} \mid=n$. For a given form L_{i} in the triple, we call $c_{i, j}$ and $c_{i, k}$ where $\{i, j, k\}=$ $\{1,2,3\}$ the pair of relation coefficients for L_{i} in the triple. Suppose these pairs of relation coefficients for each form in the triple have matching exponent patterns, i.e., $c_{i, j}$ and $c_{i, k}$ have the same exponent pattern with any choices of i, j, k such that $\{i, j, k\}=\{1,2,3\}$. We then can choose pairwise coprime integers having any desired exponent pattern which are relatively prime to all linear coefficients and determinants (since determinants of distinct reduced forms are always nonzero). In particular, we can adjoin integers to the relation coefficients so that the new triple has the property that all of its relation coefficients have any given exponent pattern \mathscr{P} which contains the exponent patterns of every $c_{i, j}$. Hence by Theorem 1 , we would then get infinitely many positive integers x such that both x and $x+n$ have exponent pattern $\mathscr{P} \cup\{1,1\}$. The proofs of Theorems 5 and 7 below will rely heavily on this idea.

3. Shifts which are even or not divisible by 15

Theorem 5. Let n be a positive integer with $2 \mid n$ or $15 \nmid n$. Then there are infinitely many positive integers x such that both x and $x+n$ have exponent pattern $\{2,1,1,1,1\}$.

Proof. Consider the following triple of linear forms: $L_{1}=2 m+n, L_{2}=3 m+n$, and $L_{3}=5 m+2 n$. We have the relations

$$
\begin{aligned}
& 3 L_{1}-2 L_{2}=n \\
& 5 L_{1}-2 L_{3}=n \\
& 3 L_{3}-5 L_{2}=n
\end{aligned}
$$

Now define $g_{i}=\operatorname{gcd}(i, n)$ and reduce the linear forms: take $\widetilde{L}_{1}=L_{1} / g_{2}, \widetilde{L}_{2}=L_{2} / g_{3}$, and $\widetilde{L}_{3}=L_{3} / g_{5}$. Then the relations become

$$
\begin{aligned}
& 3 \cdot g_{2} \widetilde{L}_{1}-2 \cdot g_{3} \widetilde{L}_{2}=n \\
& 5 \cdot g_{2} \widetilde{L}_{1}-2 \cdot g_{5} \widetilde{L}_{3}=n
\end{aligned}
$$

$$
3 \cdot g_{5} \widetilde{L}_{3}-5 \cdot g_{3} \widetilde{L}_{2}=n
$$

Case 1: Suppose n is even and write $n=2 n_{2}$. Then $g_{2}=2$, so $\widetilde{L}_{1}=m+n_{2}, \widetilde{L}_{2}=$ $\left(3 / g_{3}\right) m+2\left(n_{2} / g_{3}\right)$, and $\widetilde{L}_{3}=\left(5 / g_{5}\right) m+4\left(n_{2} / g_{5}\right)$.

Subcase 1a: Suppose $2 \mid n_{2}$. Then

$$
\widetilde{L}_{1}(1) \widetilde{L}_{2}(1) \widetilde{L}_{3}(1) \equiv 1^{3} \not \equiv 0 \quad(\bmod 2),
$$

so the triple $\widetilde{L}_{1}, \widetilde{L}_{2}, \widetilde{L}_{3}$ is 2-admissible. Now we check this triple is also 3 -admissible (and therefore admissible).

- If $3 \nmid n_{2}$, then

$$
\widetilde{L}_{1}(0) \widetilde{L}_{2}(0) \widetilde{L}_{3}(0) \equiv n_{2}\left(-n_{2}\right)\left(n_{2} / g_{5}\right) \not \equiv 0 \quad(\bmod 3)
$$

- If $3 \mid n_{2}$, then $g_{3}=3$, so $\widetilde{L}_{1} \equiv m \equiv \pm \widetilde{L}_{3}(\bmod 3)$. Now choose $m_{0} \in\{1,-1\}$ such that $\widetilde{L}_{2}\left(m_{0}\right) \not \equiv 0(\bmod 3)$. Then

$$
\widetilde{L}_{1}\left(m_{0}\right) \widetilde{L}_{2}\left(m_{0}\right) \widetilde{L}_{3}\left(m_{0}\right) \equiv m_{0} \cdot \widetilde{L}_{2}\left(m_{0}\right) \cdot\left(\pm m_{0}\right) \not \equiv 0 \quad(\bmod 3)
$$

Here the relation coefficients match in pairs for a given form in the triple and all have exponent patterns contained in $\{1,1\}$, so by appeal to Remark 4 we have a slightly stronger result, namely, there are infinitely many positive integers x such that both x and $x+n$ have exponent pattern $\{1,1,1,1\}$.

Subcase 1b: Suppose now $2 \nmid n_{2}$. Let

$$
\begin{aligned}
& K_{1}=\widetilde{L}_{1}\left(4 m+n_{2}\right) / 2=2 m+n_{2} \\
& K_{2}=\widetilde{L}_{2}\left(4 m+n_{2}\right)=4 \cdot \frac{3}{g_{3}} m+5 \cdot \frac{n_{2}}{g_{3}} \\
& K_{3}=\widetilde{L}_{3}\left(4 m+n_{2}\right)=4 \cdot \frac{5}{g_{5}} m+9 \cdot \frac{n_{2}}{g_{5}}
\end{aligned}
$$

Our relations thus become

$$
\begin{aligned}
& 2^{2} \cdot 3 K_{1}-2 \cdot g_{3} K_{2}=n \\
& 2^{2} \cdot 5 K_{1}-2 \cdot g_{5} K_{3}=n \\
& 3 \cdot g_{5} K_{3}-5 \cdot g_{3} K_{2}=n
\end{aligned}
$$

Here the pairs of relation coefficients for each form in the triple have matching exponent patterns. We will check that the triple K_{1}, K_{2}, K_{3} is admissible. First, we note that each form is still reduced:

$$
K_{1}=2 m+n_{2}
$$

is reduced since $2 \nmid n_{2}$.

$$
K_{2}=4 \cdot \frac{3}{g_{3}} m+5 \cdot \frac{n_{2}}{g_{3}}
$$

is reduced since the constant term is odd and not divisible by 3 if $g_{3}=1$.

$$
K_{3}=4 \cdot \frac{5}{g_{5}} m+9 \cdot \frac{n_{2}}{g_{5}}
$$

is reduced since the constant term is odd and not divisible by 5 if $g_{5}=1$.
Next $K_{1} K_{2} K_{3} \equiv 1(\bmod 2)$, so the triple is indeed 2-admissible. Now we check that this triple is 3 -admissible.

- If $3 \nmid n_{2}$, then $g_{3}=1$, so

$$
K_{1}\left(-n_{2}\right) K_{2}\left(-n_{2}\right) K_{3}\left(-n_{2}\right) \equiv\left(-n_{2}\right)^{2}\left(n_{2} / g_{5}\right) \not \equiv \equiv 0 \quad(\bmod 3)
$$

- If $3 \mid n_{2}$, then $K_{1} K_{3} \equiv \pm m^{2}(\bmod 3)$. Choose $m_{0} \in\{1,-1\}$ such that $K_{2}\left(m_{0}\right) \not \equiv 0$ $(\bmod 3)$. Then

$$
K_{1}\left(m_{0}\right) K_{2}\left(m_{0}\right) K_{3}\left(m_{0}\right) \equiv \pm\left(m_{0}\right)^{2} K_{2}\left(m_{0}\right) \not \equiv 0 \quad(\bmod 3) .
$$

Here the relation coefficients all have exponent patterns contained in $\{2,1,1\}$, so adjoining primes again gives us the statement of the theorem.

Case 2: Now suppose n is odd, so $g_{2}=1$ from now on. Our relations for \widetilde{L}_{i} become

$$
\begin{array}{r}
3 \widetilde{L}_{1}-2 \cdot g_{3} \widetilde{L}_{2}=n \\
5 \widetilde{L}_{1}-2 \cdot g_{5} \widetilde{L}_{3}=n \\
3 \cdot g_{5} \widetilde{L}_{3}-5 \cdot g_{3} \widetilde{L}_{2}=n
\end{array}
$$

If we look at this modulo 2 , we get $\widetilde{L}_{1} \equiv 1, \widetilde{L}_{2} \equiv m+1, \widetilde{L}_{3} \equiv m$. Thus this triple is not 2 -admissible here. However, we can restrict $m(\bmod 2)$ and reduce to get 2 -admissible. To do this, we write

$$
\begin{aligned}
& M_{1}=\widetilde{L}_{1}(2 m)=4 m+n \\
& M_{2}=\widetilde{L}_{2}(2 m)=2 \cdot \frac{3}{g_{3}} m+\frac{n}{g_{3}} \\
& M_{3}=\widetilde{L}_{3}(2 m) / 2=\frac{5}{g_{5}} m+\frac{n}{g_{5}} .
\end{aligned}
$$

The triple M_{1}, M_{2}, M_{3} has reduced forms and is 2-admissible with relations

$$
\begin{aligned}
3 M_{1}-2 \cdot g_{3} M_{2} & =n \\
5 M_{1}-2^{2} \cdot g_{5} M_{3} & =n \\
2 \cdot 3 \cdot g_{5} M_{3}-5 \cdot g_{3} M_{2} & =n
\end{aligned}
$$

Note, however, that the relation coefficients for M_{3} do not have matching exponent patterns. We can remedy this by restricting and reducing modulo 3 .
Subcase 2a: Suppose $3 \nmid n$, so $g_{3}=1$. Take

$$
\begin{aligned}
& N_{1}=M_{1}(3 m+n)=12 m+5 n \\
& N_{2}=M_{2}(3 m+n)=18 m+7 n \\
& N_{3}=M_{3}(3 m+n) / 3=\frac{5}{g_{5}} m+2 \cdot \frac{n}{g_{5}}
\end{aligned}
$$

Now we get relations

$$
\begin{aligned}
3 N_{1}-2 N_{2} & =n \\
5 N_{1}-2^{2} \cdot 3 \cdot g_{5} N_{3} & =n \\
2 \cdot 3^{2} \cdot g_{5} N_{3}-5 N_{2} & =n
\end{aligned}
$$

All these forms are reduced and the triple is still 2-admissible since $N_{1}(1) N_{2}(1) N_{3}(1) \equiv$ $1^{3} \not \equiv 0(\bmod 2)$. In fact, the triple is 3 -admissible too since

$$
N_{1}(0) N_{2}(0) N_{3}(0) \equiv(-n)(n)\left(-n / g_{5}\right) \not \equiv 0 \quad(\bmod 3) .
$$

Here the relation coefficients all have exponent patterns contained in $\{2,1,1\}$, so adjoining primes again gives us the statement of the theorem. In fact, if we also have $5 \nmid n$ here, then the relation coefficients all have exponent patterns contained in $\{2,1\}$ so we get infinitely many positive integers x such that x and $x+n$ both have exponent pattern $\{2,1,1,1\}$.

Subcase 2b: Suppose now $3 \mid n$, so $5 \nmid n$ by our assumption that $15 \nmid n$. We still must factor out a 3 from M_{3}, but doing so will force us to also factor out a 3 from M_{1} which then tells us to also factor out a 5 from M_{1} to make its pair of relation coefficients in the triple have matching exponent patterns. Thus we will restrict modulo 15: write $n=3 n_{3}$ and take

$$
\begin{aligned}
& J_{1}=M_{1}(15 m-4 n) / 15=4 m-n \\
& J_{2}=M_{2}(15 m-4 n) /\left(g_{9} / 3\right)=10 \cdot \frac{9}{g_{9}} m-23 \cdot \frac{n}{g_{9}} \\
& J_{3}=M_{3}(15 m-4 n) / 3=25 m-19 n_{3}
\end{aligned}
$$

where, as indicated above, $g_{9}=\operatorname{gcd}(9, n)$ which is either 3 or 9 in this case. Here we have relations

$$
\begin{aligned}
& 3^{2} \cdot 5 J_{1}-2 \cdot g_{9} J_{2}=n \\
& 3 \cdot 5^{2} J_{1}-2^{2} \cdot 3 J_{3}=n \\
& 2 \cdot 3^{2} J_{3}-5 \cdot g_{9} J_{2}=n
\end{aligned}
$$

All the forms are reduced (since $5 \nmid n$) and the triple is 2-admissible since $J_{1}(0) J_{2}(0) J_{3}(0)$ $\equiv 1^{3} \not \equiv 0(\bmod 2)$.

Now we check that this triple is 3 -admissible.

- If $3 \nmid n_{3}$, then $g_{9}=3$, so

$$
J_{1}\left(-n_{3}\right) J_{2}\left(-n_{3}\right) J_{3}\left(-n_{3}\right) \equiv\left(-n_{3}\right)\left(n_{3}\right)^{2} \not \equiv 0 \quad(\bmod 3)
$$

- If $3 \mid n_{3}$, then $g_{9}=9$ so $J_{1} J_{3} \equiv m^{2}(\bmod 3)$. Choose $m_{0} \in\{1,-1\}$ such that $J_{2}\left(m_{0}\right) \not \equiv$ $0(\bmod 3)$. Then

$$
J_{1}\left(m_{0}\right) J_{2}\left(m_{0}\right) J_{3}\left(m_{0}\right) \equiv\left(m_{0}\right)^{2} J_{2}\left(m_{0}\right) \not \equiv 0 \quad(\bmod 3)
$$

Here the relation coefficients all have exponent patterns contained in $\{2,1,1\}$ (or even in $\{2,1\}$ in the case that $9 \mid n$), so adjoining primes again gives us the statement of the theorem.

Remark 6. If we assume the twin prime conjecture, then for any positive integer n, there are primes p and $p+2$ such that neither divide $15 n$. In this case, we can use the following triple: $L_{1}=2 m+n, L_{2}=p m+n(p-1) / 2, L_{3}=(p+2) m+n(p+1) / 2$. Building off this triple will show-as in Subcase 2a above - that there are infinitely many positive integers x such that x and $x+n$ both have exponent pattern $\{2,1,1,1\}$. We will not include the details here since we give an unconditional proof of a result for the remaining case not covered by Theorem 5 .

4. Shifts which are odd and divisible by 15

Theorem 7. Let n be a positive integer with $2 \nmid n$ and $15 \mid n$. Then there are infinitely many positive integers x such both x and $x+n$ have exponent pattern $\{3,2,1,1,1,1,1\}$.

Proof. By considering the admissible triple $m, m+4, m+10$, we find that for any constant C there are infinitely many pairs of E_{2} numbers each having prime factors bigger than C and which are a distance of either 4,6 , or 10 apart. In particular, there are odd E_{2} numbers q_{1}, q_{2} such that $\operatorname{gcd}\left(q_{i}, n\right)=1$ for $i=1,2$ and $q_{2}=q_{1}+2 j$ where $j \in\{2,3,5\}$. Thus we may write $q_{1}=p_{1,1} p_{1,2}$ and $q_{2}=p_{2,1} p_{2,2}$ where $p_{1,1}, p_{1,2}, p_{2,1}$, and $p_{2,2}$ are all
distinct primes, none of which divide $2 n$. There are integers a, b with a even and b odd such that $-a q_{2}+b q_{1}=1$. Write $a=2 a_{2}$ and define the triple of linear forms

$$
\begin{aligned}
L_{1} & =q_{1} m+a_{2} n \\
L_{2} & =2 q_{2} m+b n \\
L_{3} & =4 \cdot \frac{j}{g} m+(b-a) \frac{n}{g}
\end{aligned}
$$

where $g=1$ if $j=2$ and $g=j$ otherwise. Now we check that this triple is admissible. We only need to check for 2 -admissible and 3 -admissible since each form is reduced by construction. The triple is 2 -admissible since $L_{1} \cdot L_{2} \cdot L_{3} \equiv L_{1} \cdot 1 \cdot 1(\bmod 2)$. To check the triple is 3 -admissible, choose $m_{0} \in\{1,-1\}$ with $L_{3}\left(m_{0}\right) \not \equiv 0(\bmod 3)$. Then $L_{1}\left(m_{0}\right) L_{2}\left(m_{0}\right) L_{3}\left(m_{0}\right) \equiv\left(q_{1} m_{0}\right)\left(-q_{2} m_{0}\right) L_{3}\left(m_{0}\right) \not \equiv 0(\bmod 3)$. Moreover, the triple satisfies the relations

$$
\begin{array}{r}
q_{1} L_{2}-2 q_{2} L_{1}=n \\
g q_{1} L_{3}-2^{2} j L_{1}=n \tag{7.1}\\
g q_{2} L_{3}-2 j L_{2}=n
\end{array}
$$

However, the pairs of relation coefficients for L_{1}, L_{2} do not have matching exponent patterns in the triple, so we will need to adjoin primes using Theorem 2. We will break up the proof into cases depending on the value of j, but in both cases we need to note that the pairwise determinants are relatively prime to the integers we want to adjoin:

$$
\begin{aligned}
& \operatorname{det}\left(L_{1}, L_{2}\right)=q_{1} b n-2 a_{2} n q_{2}=n \\
& \operatorname{det}\left(L_{1}, L_{3}\right)=q_{1}(b-a) \frac{n}{g}-4 a_{2} n \cdot \frac{j}{g}=\frac{n}{g} \\
& \operatorname{det}\left(L_{2}, L_{3}\right)=2 q_{2}(b-a) \frac{n}{g}-4 b n \cdot \frac{j}{g}=2 \cdot \frac{n}{g}
\end{aligned}
$$

Case 1: Suppose $j=2$, so $g=1$.
We apply Theorem 2 directly with $r_{1}=p_{2,1}^{2} p_{2,2}, r_{2}=p_{1,1}$, and $r_{3}=1$, so we get a new admissible triple of forms K_{i} which satisfies the following relations:

$$
\begin{aligned}
\left|p_{1,1}^{2} p_{1,2} K_{2}-2 p_{2,1}^{3} p_{2,2}^{2} K_{1}\right| & =n \\
\left|q_{1} K_{3}-2^{3} p_{2,1}^{2} p_{2,2} K_{1}\right| & =n \\
\left|q_{2} K_{3}-2^{2} p_{1,1} K_{2}\right| & =n
\end{aligned}
$$

Here the relation coefficients of K_{1} both have exponent pattern $\{3,2,1\}$, the relation coefficients of K_{2} both have exponent pattern $\{2,1\}$, and the relation coefficients of K_{3} both have exponent pattern $\{1,1\}$. Thus by another application of Theorem 2 via

Remark 4 we can arrange an admissible triple with common relation value n and all relation coefficients having exponent pattern $\{3,2,1,1,1\}$ (or even $\{3,2,1,1\}$ in this case).

Case 2: Suppose $j \neq 2$, so $g=j$. We apply Theorem 2 directly with $r_{1}=p_{2,1}$, and $r_{2}=r_{3}=1$, so we get a new admissible triple of forms K_{i} which satisfies the following relations:

$$
\begin{aligned}
\left|q_{1} K_{2}-2 p_{2,1}^{2} p_{2,2} K_{1}\right| & =n \\
\left|j q_{1} K_{3}-2^{2} j p_{2,1} K_{1}\right| & =n \\
\left|j q_{2} K_{3}-2 j K_{2}\right| & =n
\end{aligned}
$$

Here the relation coefficients of K_{1} both have exponent pattern $\{2,1,1\}$, the relation coefficients of K_{2} both have exponent pattern $\{1,1\}$, and the relation coefficients of K_{3} both have exponent pattern $\{1,1,1\}$. Thus by appeal to Theorem 2 via Remark 4 we can arrange an admissible triple with common relation value n and all relation coefficients having exponent pattern $\{3,2,1,1,1\}$ (or even $\{2,1,1,1\}$ in this case).

Therefore, in either case, there are infinitely many pairs of positive integers both having exponent pattern $\{3,2,1,1,1,1,1\}$ which are a distance of n apart.

References

[EM52] Paul Erdős, Leon Mirsky, The distribution of values of the divisor function $d(n)$, Proc. Lond. Math. Soc. 2 (3) (1952) 257-271.
[GGPY09] D.A. Goldston, S.W. Graham, J. Pintz, C.Y. Yıldırım, Small gaps between products of two primes, Proc. Lond. Math. Soc. 98 (3) (2009) 741-774.
[GGPY11] D.A. Goldston, S.W. Graham, J. Pintz, C.Y. Yıldırım, Small gaps between almost primes, the parity problem, and some conjectures of Erdős on consecutive integers, Int. Math. Res. Not. 2011 (7) (2011) 1439-1450.
[HB84] D.R. Heath-Brown, The divisor function at consecutive integers, Mathematika 31 (1984) 141-149.
[Tho08] Frank Thorne, Bounded gaps between products of primes with applications to ideal class groups and elliptic curves, Int. Math. Res. Not. 2008 (5) (2008) 156.

[^0]: * Corresponding author.

 E-mail address: jordan.schettler@sjsu.edu (J. Schettler).
 1 Research supported by the National Research Development and Innovation Office, NKFIH, K 119528.

