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We show that for any positive integer n, there is some fixed 
A such that d(x) = d(x + n) = A infinitely often where d(x)
denotes the number of divisors of x. In fact, we establish the 
stronger result that both x and x + n have the same fixed 
exponent pattern for infinitely many x. Here the exponent 
pattern of an integer x > 1 is the multiset of nonzero 
exponents which appear in the prime factorization of x.
© 2020 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper is intended as a sequel to [GGPY11] written by four of the coauthors here. 
In the paper, they proved a stronger form of the Erdős-Mirksy conjecture mentioned in 
[EM52] which states that there are infinitely many positive integers x such that d(x) =
d(x +1) where d(x) denotes the number of divisors of x. This conjecture was first proven 
by Heath-Brown in 1984 [HB84], but the method did not reveal the nature of the set of 
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values d(x) for such x. In particular, one could not conclude that there was any particular 
value A for which d(x) = d(x +1) = A infinitely often. In [GGPY11], the authors showed 
that

d(x) = d(x + 1) = 24 for infinitely many positive integers x. (0.1)

Similar results were proven for other related arithmetic functions which count numbers 
of prime divisors. The goal of this paper is to establish results for an arbitrary shift n, 
i.e., d(x) = d(x + n) = A infinitely often for some fixed A.

2. Notation and preliminaries

For our purposes, a linear form is an expression L(m) = am + b where a and b are 
integers and a > 0. We view L both as a polynomial and as a function in m. We say 
L is reduced if gcd(a, b) = 1. If K(m) = cm + d is another linear form, then a relation
between L and K is an equation of the form |cL · L − cK ·K| = n where cL, cK , n are 
all positive integers. We call cL, cK the relation coefficients and we call n the relation 
value. We define the determinant of L and K as det(L, K) = |ad − bc|.

For a prime p, a k-tuple of linear forms L1, L2, . . . , Lk is called p-admissible if there 
is an integer tp such that

L1(tp)L2(tp) · · ·Lk(tp) �≡ 0 (mod p)

We say that a k-tuple of linear forms is admissible if it is p-admissible for every prime 
p. Note that a k-tuple of linear forms is admissible iff all the forms are reduced and the 
tuple is p-admissible for every prime p ≤ k.

An Er number is a positive integer that is the product of r distinct primes. Several 
of the coauthors here proved the following result on E2-numbers in admissible triples in 
[GGPY09]. Later, Frank Thorne [Tho08] obtained a generalization for Er-numbers with 
r ≥ 3.

Theorem 1. Let C be any constant. If L1, L2, L3 is an admissible triple of linear forms, 
then there are two among them, say Lj and Lk such that both Lj(x) and Lk(x) are 
E2-numbers with both prime factors larger than C for infinitely many x.

The results obtained in this paper will use Theorem 1 above in combination with 
Theorem 2 below, a special case of which was proven in the previous paper [GGPY11]. 
We provide a proof here of the general version since it contains important ideas relevant 
for the rest of the paper.

Theorem 2 (Adjoining Primes). Assume that Li = aim + bi for i = 1, . . . , k gives an 
admissible k-tuple with relations |ci,jLi − cj,iLj | = ni,j . We can always “adjoin” prime 
factors to the relation coefficients without changing the relation values: for every choice of 
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positive integers r1, r2, . . ., rk such that gcd(ri, ai) = gcd(ri, det(Li, Lj)) = gcd(ri, rj) =
1 whenever i �= j, there is an admissible k-tuple of linear forms K1, K2, . . . , Kk with 
relations |ci,jriKi − cj,irjKj | = ni,j .

Proof. Let x be a solution of the congruences Li(x) ≡ ri (mod r2
i ) for 1 ≤ i ≤ k. Such an 

x exists by the Chinese Remainder Theorem since gcd(ai, ri) = gcd(ri, rj) = 1. This x is 
unique modulo r = (r1r2 · · · rk)2. Now define a new k-tuple via Ki(m) = Li(rm + x)/ri. 
By construction, we have |ci,jriKi − cj,irjKj | = ni,j , so we only need to check that this 
new k-tuple is admissible. We will show that the new k-tuple is p-admissible for every 
prime p. There are two cases.

Case 1: Suppose that p|r. Since gcd(ri, rj) = 1 for i �= j, we have that p|r� for exactly 
one index �. Now

K�(0) = L�(x)/r� ≡ 1 (mod r�)

so K�(0) ≡ 1 �≡ 0 (mod p). We claim that also Ki(0) �≡ 0 (mod p) when i �= �. Suppose, 
by way of contradiction, that Ki(0) ≡ 0 (mod p) for some i �= �. Then Li(x) ≡ 0 (mod p)
since ri �≡ 0 (mod p), but L�(x) ≡ r� ≡ 0 (mod p), so

det(L�, Li) = |aib� − a�bi| = |aiL�(x) − a�Li(x)| ≡ 0 (mod p),

but this contradicts the assumption that gcd(r�, det(L�, Li)) = 1. Thus K1(0) · · ·Kk(0) �≡
0 (mod p).

Case 2: Now suppose p � r. Since L1, . . . , Lk is admissible, there is an integer tp such 
that L1(tp) · · ·Lk(tp) �≡ 0 (mod p). Choose τp such that rτp + x ≡ tp (mod p). Then 
Li(rτp + x) ≡ Li(tp) �≡ 0 (mod p) and ri �≡ 0 (mod p) for all i, so

K1(τp) · · ·Kk(τp) = L1(rτp + x)
r1

· · · Lk(rτp + x)
rk

�≡ 0 (mod p). �
Let n be a positive integer and write its prime factorization as n = pk1

1 pk2
2 · · · pkj

j where 
the pi are distinct primes with ki > 0. Then the exponent pattern of n is the multiset 
{k1, k2, . . . , kj} where order does not matter but repetitions are allowed. The values of 
many important arithmetic functions depend only on the exponent pattern of the input; 
such functions include:

d(x) = # of divisors of x

Ω(x) = # of prime factors (counted with multiplicity) of x

ω(x) = # of distinct prime factors of x

μ(x) = Möbius function = (−1)ω(x) if n is squarefree, zero otherwise

λ(x) = Liouville function = (−1)Ω(x)
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Thus if both x and x + n have the same exponent pattern, then d(x) = d(x + n), 
Ω(x) = Ω(x + n), ω(x) = ω(x + n), etc. In establishing the strong form of the Erdős-
Mirsky Conjecture (0.1), the authors in [GGPY11] actually proved the following result.

Theorem 3. There are infinitely many positive integers x such that both x and x +1 have 
exponent pattern {2, 1, 1, 1}.

We will show that for any shift n, there are infinitely many positive integers x such 
that both x and x + n have a fixed small exponent pattern. A key tool for doing this is 
contained in the next remark.

Remark 4. Suppose we have an admissible triple of forms Li with relations |ci,jLi −
cj,iLj | = n. For a given form Li in the triple, we call ci,j and ci,k where {i, j, k} =
{1, 2, 3} the pair of relation coefficients for Li in the triple. Suppose these pairs of relation 
coefficients for each form in the triple have matching exponent patterns, i.e., ci,j and ci,k
have the same exponent pattern with any choices of i, j, k such that {i, j, k} = {1, 2, 3}. 
We then can choose pairwise coprime integers having any desired exponent pattern 
which are relatively prime to all linear coefficients and determinants (since determinants 
of distinct reduced forms are always nonzero). In particular, we can adjoin integers to 
the relation coefficients so that the new triple has the property that all of its relation 
coefficients have any given exponent pattern P which contains the exponent patterns of 
every ci,j . Hence by Theorem 1, we would then get infinitely many positive integers x
such that both x and x +n have exponent pattern P ∪{1, 1}. The proofs of Theorems 5
and 7 below will rely heavily on this idea.

3. Shifts which are even or not divisible by 15

Theorem 5. Let n be a positive integer with 2|n or 15 � n. Then there are infinitely many 
positive integers x such that both x and x + n have exponent pattern {2, 1, 1, 1, 1}.

Proof. Consider the following triple of linear forms: L1 = 2m + n, L2 = 3m + n, and 
L3 = 5m + 2n. We have the relations

3L1 − 2L2 = n

5L1 − 2L3 = n

3L3 − 5L2 = n

Now define gi = gcd(i, n) and reduce the linear forms: take ˜L1 = L1/g2, ˜L2 = L2/g3, 
and ˜L3 = L3/g5. Then the relations become

3 · g2˜L1 − 2 · g3˜L2 = n

5 · g2˜L1 − 2 · g5˜L3 = n
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3 · g5˜L3 − 5 · g3˜L2 = n

Case 1: Suppose n is even and write n = 2n2. Then g2 = 2, so ˜L1 = m + n2, ˜L2 =
(3/g3)m + 2(n2/g3), and ˜L3 = (5/g5)m + 4(n2/g5).

Subcase 1a: Suppose 2 | n2. Then

˜L1(1)˜L2(1)˜L3(1) ≡ 13 �≡ 0 (mod 2),

so the triple ˜L1, ˜L2, ˜L3 is 2-admissible. Now we check this triple is also 3-admissible 
(and therefore admissible).

• If 3 � n2, then

˜L1(0)˜L2(0)˜L3(0) ≡ n2(−n2)(n2/g5) �≡ 0 (mod 3).

• If 3 | n2, then g3 = 3, so ˜L1 ≡ m ≡ ±˜L3 (mod 3). Now choose m0 ∈ {1, −1} such that 
˜L2(m0) �≡ 0 (mod 3). Then

˜L1(m0)˜L2(m0)˜L3(m0) ≡ m0 · ˜L2(m0) · (±m0) �≡ 0 (mod 3).

Here the relation coefficients match in pairs for a given form in the triple and all have 
exponent patterns contained in {1, 1}, so by appeal to Remark 4 we have a slightly 
stronger result, namely, there are infinitely many positive integers x such that both x
and x + n have exponent pattern {1, 1, 1, 1}.

Subcase 1b: Suppose now 2 � n2. Let

K1 = ˜L1(4m + n2)/2 = 2m + n2

K2 = ˜L2(4m + n2) = 4 · 3
g3

m + 5 · n2

g3

K3 = ˜L3(4m + n2) = 4 · 5
g5

m + 9 · n2

g5

Our relations thus become

22 · 3K1 − 2 · g3K2 = n

22 · 5K1 − 2 · g5K3 = n

3 · g5K3 − 5 · g3K2 = n

Here the pairs of relation coefficients for each form in the triple have matching exponent 
patterns. We will check that the triple K1, K2, K3 is admissible. First, we note that each 
form is still reduced:

K1 = 2m + n2
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is reduced since 2 � n2.

K2 = 4 · 3
g3

m + 5 · n2

g3

is reduced since the constant term is odd and not divisible by 3 if g3 = 1.

K3 = 4 · 5
g5

m + 9 · n2

g5

is reduced since the constant term is odd and not divisible by 5 if g5 = 1.
Next K1K2K3 ≡ 1 (mod 2), so the triple is indeed 2-admissible. Now we check that 

this triple is 3-admissible.

• If 3 � n2, then g3 = 1, so

K1(−n2)K2(−n2)K3(−n2) ≡ (−n2)2(n2/g5) �≡ 0 (mod 3)

• If 3 | n2, then K1K3 ≡ ±m2 (mod 3). Choose m0 ∈ {1, −1} such that K2(m0) �≡ 0
(mod 3). Then

K1(m0)K2(m0)K3(m0) ≡ ±(m0)2K2(m0) �≡ 0 (mod 3).

Here the relation coefficients all have exponent patterns contained in {2, 1, 1}, so adjoin-
ing primes again gives us the statement of the theorem.

Case 2: Now suppose n is odd, so g2 = 1 from now on. Our relations for ˜Li become

3˜L1 − 2 · g3˜L2 = n

5˜L1 − 2 · g5˜L3 = n

3 · g5˜L3 − 5 · g3˜L2 = n

If we look at this modulo 2, we get ˜L1 ≡ 1, ˜L2 ≡ m + 1, ˜L3 ≡ m. Thus this triple is not 
2-admissible here. However, we can restrict m (mod 2) and reduce to get 2-admissible. 
To do this, we write

M1 = ˜L1(2m) = 4m + n

M2 = ˜L2(2m) = 2 · 3
g3

m + n

g3

M3 = ˜L3(2m)/2 = 5
g5

m + n

g5
.

The triple M1, M2, M3 has reduced forms and is 2-admissible with relations
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3M1 − 2 · g3M2 = n

5M1 − 22 · g5M3 = n

2 · 3 · g5M3 − 5 · g3M2 = n

Note, however, that the relation coefficients for M3 do not have matching exponent 
patterns. We can remedy this by restricting and reducing modulo 3.

Subcase 2a: Suppose 3 � n, so g3 = 1. Take

N1 = M1(3m + n) = 12m + 5n

N2 = M2(3m + n) = 18m + 7n

N3 = M3(3m + n)/3 = 5
g5

m + 2 · n

g5

Now we get relations

3N1 − 2N2 = n

5N1 − 22 · 3 · g5N3 = n

2 · 32 · g5N3 − 5N2 = n

All these forms are reduced and the triple is still 2-admissible since N1(1)N2(1)N3(1) ≡
13 �≡ 0 (mod 2). In fact, the triple is 3-admissible too since

N1(0)N2(0)N3(0) ≡ (−n)(n)(−n/g5) �≡ 0 (mod 3).

Here the relation coefficients all have exponent patterns contained in {2, 1, 1}, so adjoin-
ing primes again gives us the statement of the theorem. In fact, if we also have 5 � n
here, then the relation coefficients all have exponent patterns contained in {2, 1} so we 
get infinitely many positive integers x such that x and x +n both have exponent pattern 
{2, 1, 1, 1}.

Subcase 2b: Suppose now 3 | n, so 5 � n by our assumption that 15 � n. We still must 
factor out a 3 from M3, but doing so will force us to also factor out a 3 from M1 which 
then tells us to also factor out a 5 from M1 to make its pair of relation coefficients in the 
triple have matching exponent patterns. Thus we will restrict modulo 15: write n = 3n3
and take

J1 = M1(15m− 4n)/15 = 4m− n

J2 = M2(15m− 4n)/(g9/3) = 10 · 9
g9

m− 23 · n

g9

J3 = M3(15m− 4n)/3 = 25m− 19n3
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where, as indicated above, g9 = gcd(9, n) which is either 3 or 9 in this case. Here we 
have relations

32 · 5J1 − 2 · g9J2 = n

3 · 52J1 − 22 · 3J3 = n

2 · 32J3 − 5 · g9J2 = n

All the forms are reduced (since 5 � n) and the triple is 2-admissible since J1(0)J2(0)J3(0)
≡ 13 �≡ 0 (mod 2).

Now we check that this triple is 3-admissible.

• If 3 � n3, then g9 = 3, so

J1(−n3)J2(−n3)J3(−n3) ≡ (−n3)(n3)2 �≡ 0 (mod 3).

• If 3 | n3, then g9 = 9 so J1J3 ≡ m2 (mod 3). Choose m0 ∈ {1, −1} such that J2(m0) �≡
0 (mod 3). Then

J1(m0)J2(m0)J3(m0) ≡ (m0)2J2(m0) �≡ 0 (mod 3).

Here the relation coefficients all have exponent patterns contained in {2, 1, 1} (or even 
in {2, 1} in the case that 9|n), so adjoining primes again gives us the statement of the 
theorem. �
Remark 6. If we assume the twin prime conjecture, then for any positive integer n, there 
are primes p and p +2 such that neither divide 15n. In this case, we can use the following 
triple: L1 = 2m + n, L2 = pm + n(p − 1)/2, L3 = (p + 2)m + n(p + 1)/2. Building off 
this triple will show—as in Subcase 2a above—that there are infinitely many positive 
integers x such that x and x + n both have exponent pattern {2, 1, 1, 1}. We will not 
include the details here since we give an unconditional proof of a result for the remaining 
case not covered by Theorem 5.

4. Shifts which are odd and divisible by 15

Theorem 7. Let n be a positive integer with 2 � n and 15|n. Then there are infinitely 
many positive integers x such both x and x + n have exponent pattern {3, 2, 1, 1, 1, 1, 1}.

Proof. By considering the admissible triple m, m +4, m +10, we find that for any constant 
C there are infinitely many pairs of E2 numbers each having prime factors bigger than 
C and which are a distance of either 4, 6, or 10 apart. In particular, there are odd E2
numbers q1, q2 such that gcd(qi, n) = 1 for i = 1, 2 and q2 = q1 + 2j where j ∈ {2, 3, 5}. 
Thus we may write q1 = p1,1p1,2 and q2 = p2,1p2,2 where p1,1, p1,2, p2,1, and p2,2 are all 
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distinct primes, none of which divide 2n. There are integers a, b with a even and b odd 
such that −aq2 + bq1 = 1. Write a = 2a2 and define the triple of linear forms

L1 = q1m + a2n

L2 = 2q2m + bn

L3 = 4 · j
g
m + (b− a)n

g

where g = 1 if j = 2 and g = j otherwise. Now we check that this triple is admissi-
ble. We only need to check for 2-admissible and 3-admissible since each form is reduced 
by construction. The triple is 2-admissible since L1 · L2 · L3 ≡ L1 · 1 · 1 (mod 2). To 
check the triple is 3-admissible, choose m0 ∈ {1, −1} with L3(m0) �≡ 0 (mod 3). Then 
L1(m0)L2(m0)L3(m0) ≡ (q1m0)(−q2m0)L3(m0) �≡ 0 (mod 3). Moreover, the triple sat-
isfies the relations

q1L2 − 2q2L1 = n

gq1L3 − 22jL1 = n (7.1)

gq2L3 − 2jL2 = n

However, the pairs of relation coefficients for L1, L2 do not have matching exponent 
patterns in the triple, so we will need to adjoin primes using Theorem 2. We will break 
up the proof into cases depending on the value of j, but in both cases we need to note 
that the pairwise determinants are relatively prime to the integers we want to adjoin:

det(L1, L2) = q1bn− 2a2nq2 = n

det(L1, L3) = q1(b− a)n
g
− 4a2n · j

g
= n

g

det(L2, L3) = 2q2(b− a)n
g
− 4bn · j

g
= 2 · n

g

Case 1: Suppose j = 2, so g = 1.
We apply Theorem 2 directly with r1 = p2

2,1p2,2, r2 = p1,1, and r3 = 1, so we get a 
new admissible triple of forms Ki which satisfies the following relations:

|p2
1,1p1,2K2 − 2p3

2,1p
2
2,2K1| = n

|q1K3 − 23p2
2,1p2,2K1| = n

|q2K3 − 22p1,1K2| = n.

Here the relation coefficients of K1 both have exponent pattern {3, 2, 1}, the relation 
coefficients of K2 both have exponent pattern {2, 1}, and the relation coefficients of 
K3 both have exponent pattern {1, 1}. Thus by another application of Theorem 2 via 
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Remark 4 we can arrange an admissible triple with common relation value n and all 
relation coefficients having exponent pattern {3, 2, 1, 1, 1} (or even {3, 2, 1, 1} in this 
case).

Case 2: Suppose j �= 2, so g = j. We apply Theorem 2 directly with r1 = p2,1, and 
r2 = r3 = 1, so we get a new admissible triple of forms Ki which satisfies the following 
relations:

|q1K2 − 2p2
2,1p2,2K1| = n

|jq1K3 − 22jp2,1K1| = n

|jq2K3 − 2jK2| = n.

Here the relation coefficients of K1 both have exponent pattern {2, 1, 1}, the relation 
coefficients of K2 both have exponent pattern {1, 1}, and the relation coefficients of K3
both have exponent pattern {1, 1, 1}. Thus by appeal to Theorem 2 via Remark 4 we can 
arrange an admissible triple with common relation value n and all relation coefficients 
having exponent pattern {3, 2, 1, 1, 1} (or even {2, 1, 1, 1} in this case).

Therefore, in either case, there are infinitely many pairs of positive integers both 
having exponent pattern {3, 2, 1, 1, 1, 1, 1} which are a distance of n apart. �
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