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1 Introduction

Continuing our work [PR] we examine the following problem, initiated by
Linnik:

What is the smallest integer K such that every sufficiently large even
integer (N > N0 = N0(K)) could be written as the sum of two primes and
K powers of two?

Naturally the binary Goldbach conjecture is equivalent with K = 0 and
N0 = 2. However, Linnik succeeded about 70 years ago in showing the exis-
tence of such a K (without specifying any bound for it) in two subsequent
papers [Lin1, Lin2]. The first one assumes the Generalized Riemann Hy-
pothesis (GRH), the second work is unconditional. The first explicit bounds
were proven at the end of 1990’s.

K = 54000 (Liu, Liu, Wang [LLW2]),
K = 25000 (Li [Li1]),
K = 2250 (Wang [Wan]),
K = 1906 (Li [Li2]

Under the assumption of (GRH) these bounds could be reduced to:

(GRH) ⇒ K = 770 (Liu, Liu, Wang [LLW1]),
(GRH) ⇒ K = 200 (Liu, Liu, Wang [LLW3]),
(GRH) ⇒ K = 160 (Wang [Wan]).

In [PR] we showed that K = 7 is possible under GRH and announced
the result of our present work:

Theorem 1. Every sufficiently large even number can be written as a sum
of two primes and 8 powers of two.

∗Supported by the National Research Development and Innovation Office, NKFIH,
K 119528.
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We mention that independently of us, the results K = 7 (on GRH)
and K = 13 (unconditionally) were proved by D. R. Heath-Brown and J. C.
Puchta [HP]. This second bound was improved to K = 12 by C. Elsholtz
(unpublished) and later independently by Z. Liu and G. Liu [LL].

Finally we remark that all these proofs make use of Gallagher’s [Gal]
important contribution to this problem who significantly simplified Linnik’s
work in 1975.

2 Notation. The explicit formula

We will follow closely [PR] in our notation. However, in order to apply
the explicit formula of [Pin2] in its original form, we must attach the usual
weights log p to the primes. So we will choose an arbitrary ε > 0 and set
N1 = N1−ε, N > N0(ε, k)
(2.1)

e(α) = e2πiα, S(α) =
∑

N1<p≤N
log p e(pα), L =

[
log2N −

√
log2N

]
,

where log2N denotes the logarithm to base 2, and p, p′, pi will always denote
primes.

Further, let for even N and m

r′′k(N) =
∑

N=p1+p2+2ν1+···+2νk
1≤νi≤L, pi∈(N1,N)

log p1 log p2,(2.2)

r′k(N) =
∑

N=p+2ν1+···+2νk
1≤νi≤L, p∈(N1,N)

log p,(2.3)

rk,k(m) = #
{
m = 2ν1 + · · ·+ 2νk − 2µ1 − · · · − 2µk : νi, µj ∈ [1, L]

}
.(2.4)

Similarly to (2.1)–(2.3) of [PR] let

(2.5) 2 ≤ P < Q =
N

P
,

and let us define the major (M) and minor (C(M)) arcs, respectively by

(2.6) M =
⋃
q≤p

q⋃
a=1

(a,q)=1

[
a

q
− 1

qQ
,
a

q
+

1

qQ

]
,

(2.7) C(M) = [1/Q, 1 + 1/Q] \M.
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The main difference compared with the results of [Li1], [Li2], [Wan],
[LLW1], [LLW2], [LLW3] is a

(i) much more effective treatment of the exponential sum

(2.8) G(α) =

L∑
ν=1

2ν

and
(ii) the possibility of having control of S(α) on M even if we choose P

as large as N
4
9
−ε. Since the estimate of S(α) on the minor arcs does not

improve if P increases from N2/5 to N4/9 we will choose P suitably with

(2.9) P =
[
N0.4, N0.41

]
.

While the treatment of G(α), the exponential sum over powers of two
was fully worked out in [PR] (we have just to apply Corollary 2 there – our
present Lemma 6), the methods yielding (ii) were worked out in [Pin2] in
form of the explicit formula. We remark, for comparison, that the choice of
P was P = N4/9−ε in [Pin3] for example. Under the assumption of GRH
we could choose P =

√
NL−8 (see (2.5) of [PR]). Our present choice (2.9)

comes very close to it. This explains the surprisingly small loss of just one
power of two in our present unconditional result compared with the result
K = 7 of [PR], valid on GRH.

In order to introduce the explicit formula let

(2.10) R(h) :=
∑

p1−p2=h
pi∈(N1,N)

log p1 log p2 = R1(h) +R2(h)

where

(2.11) R1(h) =

∫
M

|S(α)|2e(−hα)dα, R2(h) =

∫
C(M)

|S(α)|2e(−hα)dα.

The explicit formula evaluates the contribution R1(h) of the major arcs
by the aid of so called primitive ‘generalized exceptional characters’ χi be-
longing to ‘generalized exceptional moduli’ ri ≤ P . These characters are
defined by the property that the corresponding L(s, χ) functions have ‘gen-
eralized exceptional zeros’

(2.12) %i = 1− δi + γi, δi ≤
H

logN
, |γi| ≤

√
N,
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where H is a parameter, which will be chosen as a large constant depending
on ε. The formula will contain apart from the main term involving the usual
singular series
(2.13)

S(h) = 2C0

∏
p|h
p>2

(
1 +

1

p− 2

)
, C0 =

∏
p>2

(
1− 1

(p− 1)2

)
= 0.66016 . . . ,

a ‘generalized singular series’ for every pair of χi, χj generalized exceptional
characters, satisfying

(2.14)
∣∣S(χi, χj , h)

∣∣ ≤ S(h).

An important feature of the explicit formula is that the number of zeros
(to be counted with multiplicity) is bounded if H is bounded. Their total
number M is by a density theorem of Jutila [Jut]

(2.15) M ≤ Ce3H .

Apart from the zeros in (2.12) we will include the pole % = 1 of ζ(s) =
L(s, χ0) (χ0 mod 1) into the set E = E(N,H) of ‘generalized exceptional
singularities’ of L′

L (s, χ) for primitive characters and will consider χ0 as a
primitive character mod 1, S(m) as S(m,χ0, χ0). Further we define

(2.16) I(h, %i, %j) =
∑

m,`∈(N1,N)
m−`=h

m%i−1`%j−1

for %i, %j ∈ E(X,H). For %i = %j = 1 we obtain the term

(2.17) I(h) = I(h, 1, 1) = N − |h|+O(N1−ε).

We further define

(2.18) A(1) = 1, A(%i) = −1 if %i 6= 1.

After this long preparation we can formulate the result.

Theorem 2 (Explicit formula). For every P0 ≤ N
4
9
−ε0 we can choose a

P =
[
P0N

−ε0 , P0

]
such that for

(2.19)

R1(h) =
∑
%i∈E

∑
%j∈E

S(χi, χj , h)A(%i)A(%j)I(h, %i, %j) +O(Ne−cH) +O(N1)
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where the generalized singular series satisfy (2.14) and

(2.20)
∣∣S(χi, χj , h)

∣∣ ≤ ε′
unless (with a suitable constant C(ε′) depending on ε′)

(2.21) l.c.m.[ri, rj ] | C(ε′)h.

Further we have R1(h)� S(h)N for all h ≤ N .

Remark. In the application we will choose first H as large that

(2.22)
∣∣O(Ne−cH) +O(N1)

∣∣ ≤ εN

2

should hold. Afterwards, let (cf. (2.15))

(2.23) ε′ =
ε

6(Ce3H + 1)2
, C(ε′) = C1(ε).

Then by the trivial relation

(2.24)
∣∣I(h, %i, %j)

∣∣ ≤ I(h)

we obtain the following

Corollary 1. For h ≤ εN/4 we have R1(h)� S(h)N , further

(2.25)
∣∣R1(h)−S(h)N

∣∣ ≤ εS(h)N

if for i = 1, 2, . . . ,M

(2.26) ri - C1(ε)h,

where the odd square-free part of ri’s satisfies

(2.27) r′i =
∏

p|ri, p>2

p� L2 (i = 1, 2, . . . ,M).

Proof. The parts (2.25)–(2.26) follow from the explicit formula. In order to
see (2.27) we first note that if χi is real primitive ( mod ri) then by Chapter 5
of [Dav] we have

(2.28) ri = Air
′
i with Ai = 1, 4 or 8;
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further that the existence of a zero with (2.12) implies by [Pin1] or [GS]

(2.29)
1
√
ri
� 1

L
⇐⇒ ri � L2.

On the other hand, if χi is non-real mod ri > C, then the zero-free region(
`i = log(ri(|t|+ 2))

)
(2.30) σ > 1− 1

4 · 104
(
log(2r′i) + (`i log `i)3/4

)
proved by Iwaniec [Iwa] shows

(2.31) log ri � L.

Remark. In our present applications any bound of type

(2.32) ri −→∞ as N −→∞

would be sufficient in place of (2.27).

The important point in our Corollary 1 is that although we cannot guar-
antee the asymptotic formula (2.25) for all relevant values of h but it will be
true for almost all h values even if h is restricted to a thin set of numbers
like

(2.33) h = 2ν1 + · · ·+ 2ν` − (2µ1 + · · ·+ 2µ`) νi, µj ∈ [1, L]

in our present case, where ` will be 1 or k. This is possible since by the
explicit formula we know exactly (cf. (2.26)) which values of h might be bad
(depending on the finitely many generalized exceptional moduli).

According to this, the contribution of the generalized exceptional moduli
might be estimated by the aid of the following

Lemma 1. Let m ≤ N be arbitrary, q be an odd squarefree number. Then
for any η > 0

(2.34) A(m, q) :=
∑
ν≤L
2ν<m
q|m−2ν

S(m− 2ν) ≤ ηL

if min(q,N) > C0(η).
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Proof. Let, as in the following always,
∑′ mean summation over odd square-

free integers. Let, further, for any odd d with [a, b] = l.c.m.[a, b]

(2.35) k(d) =
∏

p|d, p>2

1

p− 2
, ξ(d) = min

{
ν; 2ν ≡ 1( mod d)

}
.

Then

A(m, q)

2C0
≤
∑′

d<m

k(d)
∑
ν≤L

2ν≡mmod ([d,q])

1(2.36)

≤
∑′

d<m

k(d)
L

ξ([d, q])
+
∑′

d<m

k(d)S(m, d) =
∑

1
+
∑

2

where S(m, d) = 1 if there exists a ν ≤ L with d |m−2ν and S(m, d) = 0
otherwise. Let us choose D = D(η) in such a way that

(2.37)
∑′

d>D

k(d)

ξ(d)
<
η

8
.

This is possible, since the infinite series (2.37) is convergent according to
Romanov’s basic result (the complete series is, in fact, less than 1.94 – cf.
(8.14) of [PR]). Since we have trivially ξ(m) ≥ log2m we obtain from (2.37)
by
∑
d≤x

k(d) ≤ C log x:

(2.38) L−1
∑

1
≤
∑
d≤D

k(d)

ξ(q)
+
∑
d>D

k(d)

ξ(d)
≤ C logD

log q
+
η

8
≤ η

4

if C0(η) was chosen large enough. Further we have

(2.39) P (m) :=
∏

2ν<m, ν≤L
(m− 2ν) ≤ NL ≤ eL2

.

Consequently we have by
∑

p|P (m)

log p� L2:

∑
2
≤

∏
2<p|P (m)

(
1 +

1

p− 2

)
� exp

( ∑
p|P (m)

1

p

)
(2.40)

≤ exp

( ∑
p|P (m)
p>L3

log p

p
+
∑
p≤L3

1

p

)
≤ exp(log logL+O(1))

� logL = o(L).

Hence, (2.36), (2.38) and (2.40) prove our lemma.
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3 Two basic results about primes

In this and later sections we will closely follow the structure of proof of [PR]
with the appropriate changes adapted to our present situation when we work
without any unproved hypothesis.

The estimate on the minor arcs is the celebrated result of Vinogradov
[Vin] which can be proved more easily by the method of Vaughan [Vau].

Lemma 2. For α ∈ C(M) we have

(3.1) S(α)�
(
N√
P

+N4/5 +
√
NP

)
L4 � L4N4/5.

It follows by sieve methods that R(h), the actual number of solution of
p−p′ = h (cf. (2.10)) is at most constant times more than the expected one.
The classical result of this type is the following one of Chen Jing Run [Che].

Lemma 3. For N > N0 we have with C∗ = 3.9171 and h < N

(3.2) R(h) ≤ C∗S(h)N.

4 Numbers of the form p+ 2ν

Similarly to (8.2)–(8.3) of [PR], using the notation (2.1), (2.3), (2.8) we
introduce
(4.1)

S(N) :=
∑

p1−p2=2m1−2m2

pi∈(N1,N ], mi∈[1,L]

log p1 · log p2 =
∑
n

(
r′1(n)

)2
=

1∫
0

|S(α)G(α)|2dα.

The following result is Lemma 10 of [PR]. Here and later we omit the
condition N > N0, which we assumed at any rate from the beginning.

Lemma 4. S(N) ≤ 2C2NL
2 with C2 = C0R0C

∗+ log 2
2 where R0 ∈ (1.936, 1.94).

Actually we will need only an estimation of the integral of (SG)2 on the
minor arcs. Lemma 4 serves just as an auxiliary result to show

Lemma 5. With C ′2 < 4.0826 we have

(4.2) S2(N) :=

∫
C(M)

|S(α)G(α)|2dα ≤ 2C ′2NL
2.
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Remark. This is slightly weaker than the corresponding Lemma 11 of
[PR], valid under GRH, where we had the estimate C ′2 < 3.9095. However,
its proof is much more difficult since we cannot use GRH. Here is where the
explicit formula and Lemma 1 comes into play. Here and later we need the
definition of the exceptional set H from Corollary 1:

(4.3) H =

M⋃
i=1

Hi, Hi =

{
h ≤ εN

4
; ri | C(ε)h

}
.

We remark that H may be empty if there are no generalized exceptional
zeros.
Proof of Lemma 5. Analogously to (8.17)–(8.22) of [PR] we have (cf. (2.11))

(4.4) S2(N) =

1∫
0

−
∫
M

= S(N)− 2
∑

1≤ν1<ν2≤L
R1(2

ν2 − 2ν1)− LR1(0).

Now, from Corollary 1 and Lemma 1 we have with the notation
∑∗ for the

condition 1 ≤ ν1 < ν2 ≤ L

2
∑∗

R1(2
ν2 − 2ν1) = (1 +O(ε))2N

∑∗
S(2ν2 − 2ν1)(4.5)

+O

(
N

M∑
i=1

∑∗

2ν2−2ν1∈Hi

S
(
2ν2 − 2ν1

))
.

Now the error term is here for any fixed class Hi and for any fixed ν2 at
most εL

M by Lemma 1 if N > C̃(ε) with a suitable constant ε. On the other
hand, we have by (8.8)–(8.14) of [PR]

(4.6) 2
∑∗

S(2ν2 − 2ν1) ∼ 2C0R0L
2 as L→∞.

Now (4.4)–(4.6) together imply by R1(0) > 0

(4.7) S2(N) ≤ 2NL2

(
C0R0(C

∗ − 1) +
log 2

2
+O(ε)

)
Q.E.D.

Remark. Evaluating R1(0) the same way as in (8.20) of [PR] we can show
the relation

(4.8) R1(0) = (1 + o(1))N logP ≥ 2 log 2(1 + o(1))

5
NL,

which improves (4.7). This leads still to K = 8 but enables to apply Lemma
3 with C∗ = 4 + o(1) obtainable by Selberg’s sieve.
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5 Sums of powers of 2

In this section we quote from [PR] two basic results for sums of powers of
two. The first one is exactly Corollary 2 of [PR].

Lemma 6. We have (µ(S) is the Lebesgue measure of S)

(5.1) |G(α)| =
∣∣∣∣ L∑
j=1

e(2jα)

∣∣∣∣ < 0.789401L =: c1L

if α ∈ [0, 1] \ E∗ where µ(E∗)� N−3/5L−100.

Lemma 7 is a consequence of Theorems 1 and 2 of [KP] (for this form
see Theorem 4 of [PR]). Lemma 8 is the nearly trivial Lemma 12 of [PR]
(originally Lemma 5 of [Gal]).

Lemma 7. We have for fixed k ≥ 1 and L→∞

(5.2) S(k, L) :=

∞∑
m=−∞

rk,k(m)S(m) ∼ 2L2k(1 +A(k))

where A(k) is a positive constant depending on k and

(5.3) A(4) ∈ (0.003, 0.004).

Lemma 8. rk,k(0) ≤ 2L2k−2.

6 Proof of Theorem 1

Our crucial estimate, the following Lemma 9 is an exact analogue of Lem-
ma 13 of [PR]. However, since we are not allowed to use GRH, its proof will
again use Corollary 1 of the explicit formula and Lemma 1. We will use also
the unconditional Lemma 6 of [PR].

∑
m

will mean that m runs through all

integers.

Lemma 9. Let c1 = 0.789401, C ′2 = 4.0826. For N > N0(k, ε) we have

(6.1)
∑
m≤N

(
r′k(m)

)2 ≤ 2NL2k
(
1 +A(k) + C ′2c

2k−2
1 + ε

)
.
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Proof. Parseval’s identity implies

(6.2)
∑

1≤m≤N

(
r′k(m)

)2 ≤ 1∫
0

∣∣S(α)Gk(α)
∣∣2dα =

∫
M

+

∫
C(M)∩E∗

+

∫
C(M)∩C(E∗)

.

Using again Corollary 1, Lemma 1, further Lemma 8, we obtain similarly to
Lemma 5∫

M

|SGk|2 =
∑
m

rk,k(m)

∫
M

|S(α)|2e(mα)dα(6.3)

≤ rk,k(0)

1∫
0

|S(α)|2dα+
∑
m6=0

rk,k(m)R1(m)

≤ 2L2k−2 · 2N logN +N(1 +O(ε))
∑
m 6=0

rk,k(m)S(m)

+O

(
N

M∑
i=1

∑
m=2ν1+···+2νk−2µ1−···−2µk−1

m−2µk∈Hi

S(m− 2µk)

)

≤ N(1 +O(ε))S(k, L) +O(εNL2k)

≤ 2NL2k(1 +A(k) +O(ε)).

Using Lemmas 5 and 6 we have
(6.4) ∫

C(M)∩C(E∗)

|SGk|2 ≤ (c1L)2k−2
∫

C(M)

|S(α)G(α)|2dα ≤ 2NL2kC ′2c
2k−2
1 .

Finally, using |E∗| � N−3/5L−100 from Lemma 6 we conclude by Lemma 2

(6.5)

∫
C(M)∩E

|SGk|2 � |E∗|N8/5L8 � L−92N.

The three estimates (6.3)–(6.5) prove our lemma.
Now, the last step of the proof is apart from the different numerical data

the same as in (10.7)–(10.16) of [PR], so we will be brief.
Using the almost trivial consequence of the prime number theorem we

have

(6.6)
∑
n≤N

r′k(n) ∼ NLk.
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Thus the average value of r′k(n) is 2Lk for odd n’s. So denoting for an even
K = 2k (in our case K = 8)

(6.7) sk(n) = r′k(n)− 2Lk for 2 - n,

by (6.6) we have (
∑† will denote summation over odd numbers)

(6.8)
∑†

m≤N
sk(m) = o(NLk).

Our final goal is to show the positivity of

r′′K(N) =
∑†

m+n=N

r′k(m)r′k(n)(6.9)

= 4L2k
∑†

m+n=N

1 + 4Lk
∑†

n≤N
sk(n) +

∑†

m+n=N

sk(m)sk(n)

= 2L2kN + o(NL2k) +
∑†

m+n=N

sk(m)sk(n).

However, the last term here is by Cauchy’s inequality, (6.6) and Lemma 9

∣∣∣∣ ∑†

m+n=N

∣∣∣∣sk(m)sk(n) ≤
∑†

n≤N
s2k(n)

(6.10)

=
∑†

n≤N

(
r′k(n)− 2Lk

)2
=
∑†

n≤N
(r′k(n))2 − 4Lk

∑†

n≤N
rk(n) + 4L2k · N

2

≤ 2NL2k
(

1 +A(k) + C ′2c
2k−2
1 +

ε

2

)
− 2NL2k

(
1− ε

2

)
≤ 2NL2k ·

(
A(k) + C ′2c

2k−2
1 + ε

)
:= 2NL2kC3(k).

Now in our case K = 8, k = 4 our constant is by Lemmas 5–7

(6.11) C3(4) = A(4) + C ′2c
6
1 + ε < 0.992,

which proves our Theorem 1 in view of (6.9)–(6.10).
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Rényi Mathematical Institute
of the Hungarian Academy of Sciences
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