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Abstract: Copper(II) complexes of thiosemicarbazones (TSCs) often exhibit anticancer properties,
and their pharmacokinetic behavior can be affected by their interaction with blood transport proteins.
Interaction of copper(II) complexes of an {N,N,S} donor α-N-pyridyl TSC (Triapine) and an {O,N,S}
donor 2-hydroxybenzaldehyde TSC (STSC) with human serum albumin (HSA) was investigated by
UV–visible and electron paramagnetic resonance spectroscopy at physiological pH. Asp-Ala-His-
Lys and the monodentate N-methylimidazole were also applied as binding models. Conditional
formation constants were determined for the ternary copper(II)-TSC complexes formed with HSA,
DAHK, and N-methylimidazole based on the spectral changes of both charge transfer and d-d bands.
The neutral N-methylimidazole displays a similar binding affinity to both TSC complexes. The
partially negatively charged tetrapeptide binds stronger to the positively charged Triapine complex
in comparison to the neutral STSC complex, while the opposite trend was observed for HSA, which
demonstrates the limitations of the use of simple ligands to model the protein binding. The studied
TSC complexes are able to bind to HSA in a fast process, and the conditional constants suggest that
their binding strength is only weak-to-moderate.

Keywords: peptide model; albumin binding; EPR spectroscopy; ternary complexes

1. Introduction

Thiosemicarbazones (TSCs) show wide pharmacological versatility including antibac-
terial, antifungal, antiviral, and antitumor activity. Among them, 3-aminopyridine-2-
carboxaldehyde thiosemicarbazone (Triapine, Scheme 1) is the best-known compound [1,2],
and it has been tested in more than 30 phase I and II clinical trials in both solid and hema-
tological tumors [3], and a phase III trial is recruiting patients to study the combination of
Triapine with cisplatin during radiation [4]. Triapine is administered intravenously, while
4-(2-pyridinyl)-2-(6,7-dihydro-8(5H)-quinolinylid- ene)hydrazide (COTI-2) [5] and di-2-
pyridylketone-4-cyclohexyl-4-methyl-3-TSC (DpC) [6] have entered clinical studies as oral
drugs. The mechanism of action of anticancer TSCs is often linked to their interaction with
endogenous metal ions such as iron and copper [1–3]. They can form metal chelates via the
{N,S} donor set; however, more diversified binding modes can occur when an additional
coordinating group is present in the TSC molecule. Tridentate {N,N,S} coordination mode
is realized with α-N-pyridyl TSCs (e.g., Triapine), and the {O,N,S} binding motif occurs
in complexes of 2-hydroxybenzaldehyde TSCs such as the simplest representative, the
salicylaldehyde TSC (STSC, Scheme 1) [3,7,8]. Numerous metal complexes of TSCs were
developed and tested as potential anticancer agents, and copper(II) complexes gained a
special interest since they often exhibit higher cytotoxicity, compared to their corresponding
ligands [9–14]. Both Triapine and STSC form highly stable and redox-active complexes with
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copper(II) [15–18], and X-ray crystallography studies showed that the metal ion adopts a
square planar coordination geometry with the tridentate binding of the TSC ligand and
a chlorido co-ligand (or water) [9,18,19]. Based on the solution stability and structural
studies, complexes with {N,N,S−} and {O−,N,S−} coordination modes predominate at
physiological pH in the case of Triapine and STSC, respectively [15,16]. The co-ligands (Cl−

or H2O) can be replaced by the donor atoms of endogenous compounds such as proteins
in the biofluids, and interaction with human serum albumin (HSA) may have a strong
influence on the pharmacokinetic properties of the copper(II) complexes.
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Scheme 1. Chemical structures of Triapine, STSC in their neutral forms, and their copper(II) complexes predominating at
pH 7.4, and structures of the binding models (DAHK, mim).

HSA is the most abundant protein in the blood with an average concentration of
630 µM, and it greatly augments the transport capacity of serum due to its extraordinary
binding affinity toward endogenous and exogenous compounds [20]. Binding to HSA
affects the half-life of drugs, and this protein can act as a transport vehicle; thus, HSA is
considered as a promising drug delivery system as well [20–22]. It should be noted that the
microenvironment of malignant and inflamed tissues such as solid tumors often exhibits
an increased level of HSA accumulation as a consequence of the enhanced permeability
and retention effect [21]. Fairly diverse scenarios are possible considering the binding
modes on HSA and reaction rates for metallodrugs [23–25]. On the one hand, HSA has
three main nonspecific binding pockets located in subdomains IIA, IIA, and IB, where
compounds can bind via noncovalent bonds [23,24]. On the other hand, HSA has four
partially selective metal-binding sites with well-defined metal preferences [25], and the
N-terminal site (also known as ATCUN motif) consisting of the tripeptide sequence Asp-
Ala-His can efficiently coordinate to copper(II) in a square planar geometry, with the
participation of the N-terminal amine, histidine imidazole and two backbone amides [25].
However, copper(II) complexes with vacant coordination sites can bind to HSA via, e.g.,
accessible surface imidazole nitrogen donors of histidines as well. Coordination of His242
and Lys199 of HSA to the copper(II) complex of a tridentate Schiff base ligand bearing
{O,N,O} donor set was reported by Guo et al. [22], and the adduct formation with the
protein increased the anticancer activity of the complex. Yang and Liang developed various
copper(II)-α-N-pyridinyl TSC-HSA adducts [26,27], which exhibited better selectivity and
improved capacity of inhibiting tumor growth in in vivo (mice) tests in comparison to the
copper(II)-TSC complexes alone. On the basis of X-ray crystallography analysis of the
complex–protein adducts, coordination of His nitrogen donors (His242 and His146) was
proved [26,27].

Although the binding affinity of HSA toward copper(II) ions was already reported, and
conditional constant was determined by Bal et al. at physiological pH [28], no equilibrium
constants are available for the binding of copper(II)-TSC complexes to HSA. In this work, we
investigated the interaction of copper(II) complexes of Triapine and STSC (Scheme 1) with
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HSA and two His-containing simpler ligands by pH-potentiometry, UV–visible (UV–vis)
spectrophotometry, and electron paramagnetic resonance (EPR) spectroscopy to reveal the
binding strength and rates, namely, the tetrapeptide Asp-Ala-His-Lys (DAHK) consisting of
the native HSA sequence for copper(II) binding and the monodentate N-methylimidazole
(mim) were selected as binding models (Scheme 1).

2. Results and Discussion
2.1. Solution Speciation in the Binary Systems

Thiosemicarbazones and their metal complexes are generally characterized by insuf-
ficient water solubility, and this is the reason why solution equilibrium studies are often
performed in mixtures of water and an organic solvent with a relatively lower dielectric
constant. The proton dissociation processes of Triapine and STSC and their complex forma-
tion with copper(II) ions were characterized in a 30% (w/w) DMSO/H2O solvent mixture in
our previous works [15,16], and this medium was also used for the speciation studies pre-
sented here. Triapine forms high stability mono-ligand [CuHA]2+, [CuA]+ and [CuA(OH)]
complexes (in which A− is the completely deprotonated form of the ligand), and [CuA]+

predominates at pH 7.4 characterized by a {Npyridine,N,S−}{H2O} binding mode (Scheme 1).
In this species, the negative charge is localized on the sulfur atom due to the thione–thiol
tautomeric equilibrium following the loss of the proton from the hydrazonic-N atom [15].
Notably, at ligand excess, bis-ligand complexes and the dinuclear species [Cu2A3]+ are also
formed [15]. On the contrary, STSC forms exclusively mono complexes and the predomi-
nant species is also [CuA] (Scheme 1) at physiological pH; however, in this case, the ligand
is coordinated in its dianionic form with an {O−,N,S−} donor set [16]. It is noteworthy that
DMSO weakly coordinates to the copper(II) ions, and as a consequence, the complexes
of Triapine, 2-formylpyridine thiosemicarbazone, and their N-terminally dimethylated
derivatives were characterized by somewhat higher solution stabilities in pure water in
comparison to 30% (w/w) DMSO/H2O [29,30].

The pKa values of DAHK and N-methylimidazole (Scheme 1) and the overall stability
constants of their copper(II) complexes were determined by pH-potentiometric titrations
(Table 1). DAHK possesses five dissociable protons; however, the dissociation processes
overlap resulting in difficulties in the assignment of the pKa values to the functional groups;
thus, they are considered as macroscopic constants. Based on chemical evidence and
data reported for related tri- and tetrapeptides (Asp-Ala-His-NH2, Asp-Ala-His-Lys-NH2)
in pure water [31,32], the two lowest pKa values are assigned to the carboxyl groups of
Asp and Lys residues, pK3 belongs to the histidine-nitrogen, while pK4 and pK5 to the
N-terminal and the side-chain Lys amino groups, respectively. In the copper(II)-DAHK
system formation of mainly mono complexes in different protonation states was found
(Table 1), similarly to the speciation model obtained for copper(II)-Asp-Ala-His-Lys-NH2
reported by Bal et al. [31]. The C-terminal amide group of Asp-Ala-His-Lys-NH2 is not
involved in the coordination, and the same probably holds for the C-terminal COOH of
DAHK; thus, the speciation models and the overall stability constants can be compared
with each other. Bal et al. found four copper(II)-bound nitrogen donors in the square
planar [CuH−2L]− dominating in a wide pH range including the physiological pH (L− is
the completely deprotonated form of the ligand). These are the N-terminal amino group,
the amide nitrogen atoms located between Asp and Ala and between Ala and His, and one
His nitrogen [31].

Complexes [CuH3L]3+, [CuH2L]2+, [CuHL]+, [CuH−1L]−, and [CuH−2L]2− were
observed with DAHK in the 30% (w/w) DMSO/H2O solvent mixture. On the basis of the
overall stability constants, concentration distribution curves were calculated (Figure 1),
showing the formation of [CuH3L]3+, [CuH2L]2+, and [CuHL]+ in the acidic pH range,
and [CuH−1L]− becomes the predominating species at pH > 5.5, while [CuH−2L]2− forms
in the alkaline medium. Due to the close similarity between the complexation scheme of
DAHK and Asp-Ala-His-Lys-NH2 [31], the coordination of four nitrogen donors (Asp-N,
amide-N of Asp-Ala, amide-N of Ala-His residues, and His-N) can be assumed in the
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complex [CuH−1L]−. It should be noted that at ligand excess bis complexes are also
present. Additionally, the conditional stability constant for the DAHK complex was also
calculated at pH 7.4 in 30% (w/w) DMSO/H2O, and the obtained value is logK’7.4 = 14.2,
which shows an acceptable agreement with values 13.6 and 13.7 (in pure water) reported
for DAHK by isothermal titration calorimetry [32] and for DAHK-NH2 obtained by pH-
potentiometry [31], respectively.

Table 1. pKa values of DAHK and mim, overall stability constants (logβ) of their copper(II) complexes in 30% (w/w)
DMSO/H2O,a and pCu values b (calculated at pH 7.4 at cCu(II) = cligand = 100 µM). {T = 25 #C, I = 0.10 M (KCl)}.

DAHK Cu(II)-DAHK mim Cu(II)-mim

pK1 2.82(5) Logβ [CuH3L]3+ 27.15(14) pK1 6.62(1) logβ [CuL]2+ 4.76(4)
pK2 3.59(4) logβ [CuH2L]2+ 23.39(9) logβ [CuL2]2+ 7.84(9)
pK3 6.40(3) logβ [CuHL]+ 19.73(3) logβ [CuL3]2+ 11.45(5)
pK4 7.69(2) logβ [CuH−1L]− 10.30(3) logβ [CuH−1L3]+ 3.68(7)
pK5 10.44(2) logβ [CuH−2L]2− 0.24(5)

logβ [CuHL2]− 31.47(5)
logβ [CuL2]2− 23.76(7)

pCu = 11.12 pCu(II) = 4.44
a Uncertainties (SD) of the last digits are in parenthesis. b pCu calculated for Triapine: 7.79, for STSC: 9.40 (in 30% (w/w) DMSO/H2O,
0.1 M KCl) and for HSA: 8.00 (in 0.1 M NaCl, pure water) 7.70 (in 0.1 M NaCl, 0.1 M 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic
acid (HEPES) buffered pure water) based on data in Refs. [15,16,28].
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For N-methylimidazole (Scheme 1), only one pKa (6.62) was determined experimen-
tally, attributed to the imidazolium-NH+ moiety (Table 1), and it is somewhat lower
than the value reported in pure water (pKa = 7.05 [33]) since the neutral form of the
ligand (L) is better solvated in the presence of DMSO. Complexes with various metal-to-
ligand ratios, i.e., [CuL]2+, [CuL2]2+, [CuL3]2+, and a mixed hydroxido species [CuH−1L]+

(Table 1), were observed for this monodentate ligand. The calculated EPR parameters are
found in Table S1. Notably, the formation of [CuL4]2+ is suggested (instead of [CuH−1L]+)
based on the recorded frozen solution EPR spectra (Figure S1).

In order to compare the affinity of the ligands toward copper(II), pCu (-log[Cu(II)])
values were calculated for Triapine, STSC, DAHK, and N-methylimidazole at pH 7.4
(Table 1). These data reveal the strongest copper(II) binding property of the tetradentate
DAHK, and the weakest for the monodentate mim, as was expected.

2.2. Interaction of the Copper(II)-TSC Complexes with HSA, DAHK, and N-Methylimidazol

Since the donor atoms occupy only three coordination sites in the copper(II) complexes
of Triapine and STSC (Scheme 1), there are vacant sites where the donor atoms of HSA
and its simple binding models can coordinate. In order to characterize the binding affinity
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of the protein, DAHK, and N-methylimidazole to these copper(II)-TSC complexes, condi-
tional binding constants were determined. The copper(II)-TSC-DAHK/N-methylimidazole
ternary systems were attempted to be studied first by pH-potentiometric titrations apply-
ing mM concentration of the components. However, precipitate formation at pH > 6.5
in all systems and slow equilibrium processes with DAHK prevented the execution of
titrations. Therefore, formation constants for the ternary complexes were determined at
pH 7.4 in 30% (w/w) DMSO/H2O by UV–vis spectrophotometry using lower concentra-
tions, and the spectra were always recorded after a proper equilibration time based on the
preliminary time-dependence assays. The reaction between the copper(II)-TSC complex
and the oligopeptide DAHK was found to be relatively slow, since at least 30 min was
necessary to reach the equilibrium, and thus, a minimum 4 h waiting time was utilized. By
increasing the DAHK content of the samples, significant spectral changes were observed
(as an example, see spectra for the Triapine complexes in Figure 2a), and the changes ended
at ca. four equivalents of the peptide (Figure 2b).
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Figure 2. (a) UV–vis spectra recorded for the copper(II)-Triapine-DAHK (1:1:x) system at pH 7.4 after 4 h equilibration time
(x:0–4). (b) Absorbance values at 430 nm plotted against the ratio of DAHK and the copper(II)-Triapine complex. (c) Molar
absorbance spectra of the Triapine complex ([CuA]+), the Triapine-DAHK ternary complex ([CuAL]−), and the unbound
Triapine molecule (HA). {cCu(II) = cTriapine = 200 µM, cDAHK = 0-800 µM; 30% (w/w) DMSO/H2O; pH = 7.4 (20 mM HEPES);
T = 25 ◦C; I = 0.10 M (KCl); ` = 0.5 cm}.

The appearance of clear-cut isobestic points suggests a single equilibrium process,
which is most probably the formation of a copper(II)-Triapine-DAHK ternary complex. On
the other hand, the absorbance decrease at 430 nm and the increase at 368 nm might be
the consequence of the displacement of the original TSC ligand by the stronger copper(II)
binder DAHK (see pCu values in Table 1) instead of the formation of a ternary complex.
However, the final spectrum recorded for the ternary system at the applied highest excess of
DAHK is rather different from the spectrum of the free Triapine (Figure 2c) suggesting the
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formation of mixed-ligand species (notably, DAHK and its copper(II) complex have no or
negligible characteristic absorption bands in the monitored wavelength range (Figure S2)).
The S−→Cu2+ charge transfer (CT) band located at 430 nm displays significant changes
indicating a rearrangement in the coordination sphere. Similar but somewhat smaller
spectral changes were observed for the STSC complex (Figure S2). Additionally, UV–vis
spectra were recorded in the wavelength range of d-d transitions (not shown) using a longer
path length (5 cm). The λmax value observed in this wavelength range in the absence of the
peptide shifted toward lower wavelength values upon the addition of DAHK (625 nm→
584 nm (Triapine), 583 nm→ 540 nm (STSC)).

In order to confirm the formation of ternary complexes anisotropic EPR spectra were
recorded for the copper(II)-TSC, copper(II)-DAHK, and the copper(II)-TSC-DAHK ternary
systems (for Triapine complexes see Figure 3, and for STSC Figure S3). EPR parameters
were calculated for the various species formed in the binary and ternary systems via the
deconvolution of the spectra (Table 2). Analysis of these data indicates that the species
formed in the ternary systems possess different EPR parameters than the copper(II)-DAHK
complex ([CuH−1L]−), considering especially Ax and Az. Upon the interaction of the
copper(II)-TSC complexes with DAHK, the g factor is decreased in general, while the A
value is increased suggesting a stronger ligand field due to the coordination of an additional
donor atom.
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Figure 3. Experimental (black) and simulated (red) anisotropic EPR spectra recorded at 77 K for the
(a) copper(II)-DAHK and (b) copper(II)-Triapine-DAHK systems at pH 7.4 after 4 h equilibration
time. Numbers above the spectra indicate the copper(II):Triapine:DAHK ratios. {cCu(II) = cTriapine =
495 µM, cDAHK = 0–908 µM; 30% (w/w) DMSO/H2O; pH = 7.4 (20 mM HEPES); I = 0.10 M (KCl)}.

The interaction of the binary complexes of Triapine and STSC with the monodentate N-
methylimidazole was also followed by UV–vis spectrophotometry. The reaction was found
to be fairly fast (<5 min), and spectral changes were also observed (Figure 4). However, the
changes in the visible range were much more pronounced than in the wavelength range
of the CT bands (c.f. Figure 4a,b). In order to achieve a complete spectral change a much
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higher excess of N-methylimidazole was needed (>10) in comparison to DAHK; however,
two overlapping processes were observed (Figure 4c).

Table 2. Anisotropic EPR parameters calculated for the various species formed in the binary copper(II)-
Triapine/STSC/DAHK and ternary copper(II)-Triapine/STSC (A)-DAHK (L)/HSA systems in 30% (w/w) DMSO/H2O at
pH 7.4 (20 mM HEPES).a {I = 0.10 M (KCl)}.

Cu(II)
Complexes

Triapine
[CuA]+

Triapine-
DAHK

[CuAL]−

STSC
[CuA]

STSC-DAHK
[CuAL]2−

STSC-HSA
[CuA(HSA)]

DAHK
[CuH−1L]−

gx 2.0278 2.0259 2.0408 2.0361 2.0225 2.0276
gy 2.0579 2.0547 2.0503 2.0472 2.0444 2.0545
gz 2.1843 2.1798 2.2069 2.1853 2.1709 2.1801

g0,calc
b 2.0900 c 2.0868 2.0993 d 2.0895 2.0793 2.0874

Ax (G) 30.6 31.6 22.7 36.6 31.1 8.6
Ay (G) 34.5 38.2 18.2 34.5 41.5 32.3
Az (G) 173.4 185.5 180.7 190.0 198.9 200.2
ax (G) 12.6/15.5 9.1/14.2 20.0 12.3/16.3 5.5/18.0 13.2/19.2
ax (G) 16.6/10.0 14.7/12.7 15.7 19.3/18.8 20.5/9.5 15.5/9.9
ax (G) 8.0/8.1 8.0/10.8 12.0 8.0/13.0 14.5/12.6 16.1/10.0

a The experimental errors are ±0.001 for g, ± 1 G for A and aN tensor values. b Isotropic values of the g tensor were calculated via equation:
g0 = (gx + gy + gz)/3. c g0 = 2.0958 (obtained from room temperature measurement) [15]. d g0 = 2.0945 (room temperature) [16].
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Figure 4. UV–vis spectra recorded for the copper(II)-Triapine-N-methylimidazole (mim) system at pH 7.4 after 5 min
equilibration time in the wavelength range of the (a) CT bands and the (b) d-d bands at various equivalents of mim.
(c) Absorbance values at 580 nm plotted against the ratio of mim and the copper(II)-Triapine complex obtained from the d-d
range of the UV–vis spectra. (d) Calculated molar absorbance spectra of the Triapine complex ([CuA]+), the Triapine-mim
ternary complexes ([CuAL]+ and [CuAL2]+). {30% (w/w) DMSO/H2O; pH = 7.4 (20 mM HEPES); T = 25 ◦C; I = 0.10 M
(KCl); a: cCu(II) = cTriapine = 102 µM, cmim = 0–1.80 mM; ` = 1 cm; b: cCu(II) = cTriapine = 250 µM, cmim = 0–2.50 mM; ` = 4 cm}.
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Based on the recorded UV–vis spectra conditional formation constants (logK’) were
calculated for the ternary complexes formed with DAHK and N-methylimidazole covering
both wavelength ranges (CT and d-d bands) (Table 3) (see representative molar absorbance
spectra in Figures 2c and 4d). The constants obtained from the two different wavelength
ranges were in good agreement with each other. The obtained results indicate that only one
DAHK, compared to two N-methylimidazole ligands, can coordinate to the binary TSC
complex. These equilibrium constants reflect the similar binding strength of the neutral
N-methylimidazole ligand to both TSC complexes. On the contrary, the binding affinity of
the DAHK peptide, which is partially negatively charged at pH 7.4 (32% HL−, 60% H2L, 8%
H3L+), is somewhat stronger to the positively charged [CuA]+ Triapine complex, compared
to the neutral [CuA] species of STSC. In these ternary complexes, N-methylimidazole can
coordinate via only the imidazole-nitrogen, while DAHK migth coordinate in a bidentate
fashion (e.g., via imidazole and terminal amine nitrogen donors forming a macrochelate)
(Scheme S1), which leads to the changes of the S− → Cu2+ CT band, especially in the
copper(II)-Triapine-DAHK complex.

Table 3. Conditional stability constants (logK’) for the formation of ternary copper(II)-STSC-DAHK/mim/HSA complexes
in 30% (w/w) DMSO/H2O at pH 7.4 (20 mM HEPES) determined by UV–vis spectrophotometric measurements. In systems
of DAHK and HSA 4 h, while with min only 5 min equilibration time was applied. Uncertainties (SD) of the last digits are
in parenthesis. {T = 25 ◦C; I = 0.10 M (KCl)}.

Triapine STSC

ligand L band constant(s) ligand L band constant(s)

DAHK CT logK’ 4.40(5) DAHK CT logK’ 3.17(6)
DAHK d-d logK’ 4.41(9) DAHK d-d logK’ 2.94(6)

mim CT logK1’
logK2’

4.89(8)
3.38(6) mim CT logK1’

logK2’
4.74(4)
3.28(4)

mim d-d logK1’
logK2’

4.72(6)
3.33(6) HSA CT logK’ 4.04(7)

HSA CT logK’ 2.91(11) d-d logK’ 4.08(3)
HSA d-d logK’ 2.88(5)

Interaction between the two copper(II)-TSC complexes and HSA was followed spec-
trophotometrically and conditional constants were calculated based on the spectral changes
at the CT and d-d bands (Table 3). Representative spectra are shown for the copper(II)-TSC-
HSA systems in the visible range (Figure 5). Similar to the model compounds, the binding
of HSA also results in significant spectral changes. A leveling of the changes could be
reached at a lower excess of HSA with STSC (ca. three equivalents), compared to Triapine.
It is noteworthy that the addition of various equivalents of the copper(II)-Triapine complex
to HSA did not result in measurable changes of the circular dichroism spectra of the protein,
suggesting that HSA maintains its α-helical structure upon the interaction (see Figure S4).

EPR spectra were recorded in the copper(II)-STSC system at various excess of HSA
(Figure 6), and the EPR parameters (Table 2) calculated for the ternary system differ from
those of the binary systems. It should be noted that these parameters reveal differences
from the data obtained for the ternary complex of DAHK, suggesting a somewhat al-
tered coordination.
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Figure 5. (a) Visible spectra recorded for the copper(II)-STSC-HSA system at pH 7.4 after 4 h equilibration time in the
wavelength range of the d-d bands at various equivalents of HSA and b) the calculated molar absorbance spectra of the
binary STSC [CuA], and the ternary [CuA(HSA)] complex. {30% (w/w) DMSO/H2O; pH = 7.4 (20 mM HEPES); T = 25 ◦C;
I = 0.10 M (KCl); cCu(II) = cTSC = 200 µM, cHSA = 0–600 µM; ` = 5 cm}.
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Figure 6. Experimental (black) and simulated (red) anisotropic EPR spectra recorded for the
copper(II)-STSC-HSA system at pH 7.4 after 4 h equilibration time at 77 K. Numbers above the
spectra indicate the copper(II):STSC:HSA ratios. {cCu(II) = cSTSC = 202 µM, cHSA = 0–600 µM; 30%
(w/w) DMSO/H2O; pH = 7.4 (20 mM HEPES); I = 0.10 M (KCl)}.

The molar absorbance spectra calculated for the ternary adducts of the two TSC
complexes formed with HSA (Figure 7) indicate a bathochromic shift of the CT bands upon
binding to the protein; however, this type of change is different from those observed for the
adducts formed with DAHK and N-methylimidazole. The conditional binding constants
reflect a stronger binding of DAHK to the Triapine complex relative to the binding of HSA,
while the trend is the opposite with the STSC complex. All these findings suggest that
conclusions drawn for the binding modes and strength of HSA on the basis of the results
obtained with the simplified model compounds should be considered carefully. Besides
the coordinative binding, secondary interactions might play a role as well. The conditional
constants determined for the HSA adducts suggest a weak-to-moderate binding affinity of
the studied TSC complexes to this protein, namely, ~66% (Triapine) and ~15% (STSC) of
the complexes are predicted to be unbound under biologically more relevant conditions
(e.g., cHSA = 630 µM, ccomplex = 10 µM).
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2.3. Redox Properties of the Copper(II)-TSC Complexes Affected by HSA and DAHK

Since the anticancer activity of the copper(II)-TSC complexes is often related to their
redox properties [7,10,29,34], we also investigated whether these features are affected by
the binding of HSA (or the model DAHK). Cyclic voltammetric studies were performed
for the copper(II)-Triapine (1:1) system in the absence and presence of DAHK in 30%
(w/w) DMSO/H2O at pH 7.4 (Figure 8). Only the position of the cathodic peak could
be observed in the voltammograms due to the irreversible nature of the redox processes.
The reduction peak potential of the copper(II)-Triapine complex corresponds well to the
literature data [18], and a significant shift toward the higher potentials is seen as a result
of the coordination of DAHK. It suggests the somewhat stronger oxidizing power of the
ternary complex, compared to the binary species.
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Figure 8. Cyclic voltammograms of the copper(II)-Triapine (1:1) (solid line) and the copper(II)-
Triapine-DAHK (1:1:1, dashed line; 1:1:2, dotted line) systems at pH 7.4. {cCu(II) = cTriapine = 500 µM,
cDAHK = 0, 500 or 1000 µM; 30% (w/w) DMSO/H2O; pH = 7.4 (20 mM HEPES); T = 25 ◦C; I = 0.10 M
(KCl); scan rate: 5 mV/s}.

Investigation of the redox reaction of these copper(II) complexes with physiological
reductants can provide more direct information about their ability to react with reducing
agents than solely the values of reduction peak potentials. Therefore, the reaction of the
copper(II)-Triapine complex in the presence of HSA (and DAHK) with ascorbic acid and
glutathione (GSH) was followed spectrophotometrically under anaerobic conditions. The
copper(II)-Triapine complex alone was already studied in one of our previous works [30,34].
Ascorbic acid, which is a weaker reducing agent than GSH, was not able to reduce the
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copper(II) complex either in the absence or in the presence of HSA. On the contrary, the
addition of GSH resulted in significant spectral changes (Figure 9a).
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Figure 9. (a) Time-dependent changes of the UV–vis absorption spectra of the copper(II)-Triapine-HSA (1:1:1) system in the
presence of 50 equiv. GSH at pH 7.4 in pure water under argon atmosphere. (b) Absorbance changes at 422 nm recorded
for the binary copper(II)-Triapine (•) and for the ternary copper(II)-Triapine-HSA (�) systems. {cCu(II) = cTriapine = cHSA =
25 µM, cGSH = 1250 µM; pH = 7.4 (20 mM HEPES); T = 25 ◦C; I = 0.10 M (KCl); ` = 1 cm}.

For the copper(II)-Triapine system, it was reported that a ternary Cu(II)-Triapine-GSH
complex is formed in the first step after mixing the reactants. Then, the free TSC ligand
appears in the solution as a consequence of the dissociation of the generated copper(I)
complex since copper(I) tends to form a stable complex with GSH, which is present in
a high excess, compared to the TSC. In the presence of one equivalent HSA, the initial
spectrum differs from that of the copper(II)-Triapine complex due to the formation of the
ternary adduct. Moreover, upon the addition of GSH, the spectrum becomes identical
to that observed without the protein. The rate of the subsequent redox reaction is also
very similar (Figure 9b). The same phenomenon was observed in the presence of DAHK.
Accordingly, it can be concluded that the redox potential is changed due to the ternary
complex formation; however, the donor atoms of the protein (or DAHK) can be replaced
by other endogenous ligands such as GSH.

3. Materials and Methods
3.1. Chemicals

Triapine, STSC, HEPES, GSH, ascorbic acid, mim, and HSA (A8763, essentially globu-
lin free) were purchased from Sigma-Aldrich (Hungary), while KCl, HCl, KOH, and DMSO
were from VWR (Hungary). DAHK was obtained from GenScript (the Netherlands). The
concentration of the stock solution of CuCl2 was determined by complexometry using a
standard solution of EDTA (VWR, Hungary). The strong acid content of the metal stock
solutions was determined by pH-potentiometric titrations. All solvents were of analytical
grade and used without further purification. Milli-Q water was used for sample prepara-
tions.

3.2. pH-Potentiometry

The pH-potentiometric measurements for the determination of the proton dissociation
constants of DAHK, mim, Triapine, and STSC, and the overall stability constants of the
copper(II) complexes were carried out at 25.0 ± 0.1 ◦C in a 30% (w/w) DMSO/H2O solvent
mixture. The titrations were performed in the pH range of 2.0–12.5 at an ionic strength
of 0.10 M (KCl) with a carbonate-free KOH solution of known concentration (0.10 M).
The concentrations of the base and the HCl were determined by pH-potentiometric titra-
tions. An Orion 710A pH-meter equipped with a Metrohm combined glass electrode (type
6.0234.100) and a Metrohm 665 Dosimat autoburette were used for the titrations. The
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electrode system was calibrated to the pH = −log[H+] scale in the DMSO/H2O medium
by means of blank titrations (HCl vs. KOH), similar to the method suggested by Irving
et al. [35] in pure aqueous solutions. The average water ionization constant, pKw, was
14.54 ± 0.05, which corresponds well to the literature data [15,16]. The initial volume of
the samples was 5.00 or 10.0 mL. The ligand concentrations were 1 × 10−3 (DAHK) or
5 × 10−3 M (mim). The copper(II):ligand ratios were varied between 1:1–1:2 (DAHK), or
1:1–1:10 (mim) in the binary systems, while 1:1:1, 1:1:1.5, and 1:1:2 copper(II):TSC:model
ligand ratios were applied in the ternary systems at 1 × 10−3 M copper(II) and TSC con-
centrations. Samples were deoxygenated by bubbling purified argon through the solutions
for approximately 10 min prior to the measurements. Argon was also passing over the
solutions during the titrations. The exact concentrations of the ligand stock solutions,
together with the proton dissociation constants, were determined by pH-potentiometric
titrations with the use of the computer program HYPERQUAD [36]. It was also utilized
to establish the stoichiometry of the complexes and to calculate the formation constants
(β(MpLqHr)). β(MpLqHr) is defined for the general equilibrium pM + qL + rH 
 MpLqHr,
β (MpLqHr) = [MpLqHr]/[M]p[L]q[H]r, where M denotes the metal ion and L the com-
pletely deprotonated ligand. In all calculations, titration data were used exclusively from
experiments in which no precipitate was visible during the titrations.

3.3. UV–Vis Spectrophotometry

A Thermo Scientific Evolution 220 spectrophotometer was used to record the UV–vis
spectra. Equilibrium constants and the molar absorbance spectra of the individual species
were calculated with the computer program PSEQUAD [37]. Spectrophotometric titrations
were performed when the reaction was found to be fast or batch samples were used
when longer time was needed to reach the equilibrium (>10 min). The samples contained
1.0 × 10−4 M copper(II) for monitoring the CT bands, while 1 × 10−3 or 0.5 × 10−3 M for
the d-d bands. The copper(II):TSC ratio was always 1:1, and HSA, DAHK, or mim was
added at various concentrations (up to 10-fold excess). The measurements were carried out
at pH 7.40 (2 × 10−2 or 5 × 10−2 M HEPES) at 25.0 ± 0.1 ◦C in DMSO:water 30:70 (w/w) at
an ionic strength of 0.10 M (KCl).

The redox reactions of the Cu(II)-TSC complexes with GSH and ascorbic acid in the
presence or absence of HSA, DAHK, or mim were studied in pure water at 25.0 ± 0.1 ◦C
on a Hewlett Packard 8452A diode array spectrophotometer using a special, tightly closed
tandem cuvette (Hellma Tandem Cell, 238-QS). The reactants were separated until the
reaction was triggered. Both isolated pockets of the cuvette were completely deoxygenated
by a stream of argon bubbling through the sample for 10 min before mixing the reactants.
Spectra were recorded before and immediately after the mixing, and spectral changes were
followed until no further absorbance change was observed. One of the isolated pockets
contained the reducing agent, while the other contained the metal complex, and their final
concentrations after mixing were 1.25 × 10−3 M and 2.5 × 10−5 M, respectively. The pH
of each solution was adjusted to 7.40 by a 50 mM HEPES buffer and an ionic strength of
0.10 M (KCl) was applied. The stock solutions of the reducing agents and the complexes
were freshly prepared every day.

3.4. EPR Spectroscopy

All EPR spectra were recorded with a BRUKER EleXsys E500 spectrometer (microwave
frequency 9.81 GHz, microwave power 10 mW, modulation amplitude 5 G, modulation
frequency 100 kHz). The stock solution contained 5 × 10−4 or 2 × 10−4 M CuCl2 with one
equivalent of TSC ligand and 0–3 equivalents of HSA or DAHK in 30% (w/w) DMSO/H2O
at an ionic strength of 0.10 M (KCl) at pH 7.4 (2 × 10−2 M HEPES). The samples were
measured in a Dewar containing liquid nitrogen (at 77 K). The anisotropic spectra were
analyzed individually with the EPR program [38], which gives the anisotropic EPR parame-
ters (gx, gy, gz, Ax

Cu, Ay
Cu, Az

Cu, Ax
N, Ay

N, Az
N, and the orientation-dependent linewidth

parameters). Since a natural CuCl2 was used for the measurements, the spectra were
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calculated as the weighted sum of the spectra of 63Cu and 65Cu according to their natural
abundances. The copper and nitrogen coupling constants and the relaxation parameters
were obtained in field units (Gauss = 10−4 T).

3.5. Cyclic Voltammetry

Cyclic voltammograms of the copper(II) complexes in 30–70% (w/w) DMSO/0.02
M HEPES (pH = 7.4) solution containing 5 × 10−4 M CuCl2, 5 × 10−4 M Triapine and 0,
5× 10−4 or 1× 10−3 M DAHK were determined at 25.0± 0.1 ◦C. Ionic strength was 0.10 M
(KCl). Measurements were performed on a conventional three-electrode system under
nitrogen atmosphere using an Autolab PGSTAT 204 potentiostat/galvanostat monitored by
Metrohm’s Nova software. Samples were purged with argon for 15 min before recording
the cyclic voltammograms. A platinum electrode was used as the working and auxiliary
electrode and Ag/AgCl/3 M KCl as a reference electrode. The electrochemical system was
calibrated with an aqueous solution of K3[Fe(CN)6] (E1/2 = +0.386 V vs. NHE).

4. Conclusions

Interaction of copper(II) complexes of Triapine and STSC with HSA and its binding
models DAHK and N-methylimidazole was monitored by UV–vis and EPR spectroscopic
methods at physiological pH. It was found that DAHK has a higher affinity toward
copper(II) than the tridentate thiosemicarbazones at pH 7.4 due to the strong coordination
of four nitrogen donor atoms, while the monodentate N-methylimidazole was found to be
the weakest copper(II) binder. DAHK reacts with the TSC complexes much slower than the
protein and N-methylimidazole. Formation of ternary copper(II)-TSC-DAHK complexes
resulted in significant changes of the S− → Cu2+ charge transfer band suggesting the
rearrangement of the coordination sphere. The calculated anisotropic EPR parameters
showed a stronger ligand field upon the coordination of DAHK to the copper(II)-TSC
complexes. Conditional formation constants were calculated for the ternary complexes
formed with DAHK and N-methylimidazole from the spectral changes of the CT and d-d
bands. These equilibrium constants revealed the similar binding strength of the neutral
N-methylimidazole to both TSC complexes, while the partially negatively charged DAHK
exhibits a stronger affinity toward the positively charged Triapine complex in comparison
to the neutral STSC complex. The binding of DAHK resulted in somewhat more positive
cathodic redox potentials, although the ternary complexes formed with DAHK (and HSA)
could be reduced by GSH with the same rate and extent as the parent TSC complexes.
Formation of ternary copper(II)-TSC-HSA complexes was proved by UV–vis and EPR
spectroscopy, and the spectral characteristics suggest different binding modes of HSA,
compared to the tetrapeptide. The binding of HSA to the STSC complex was found to be
stronger than to the Triapine complex, and this trend is the opposite of that observed for
DAHK. This observation highlights that simplified binding models should be used with
special and careful consideration since secondary interactions may also play role in the
protein binding of these copper(II) complexes besides the coordination bonds. Based on
the conditional constants, the title TSC complexes bind to HSA with weak-to-moderate
strength, suggesting a relatively lower fraction of the complexes bound to the protein in
the blood serum under biologically relevant conditions.

Supplementary Materials: Figure S1: Simulated EPR spectra calculated for the copper(II) com-
plexes of mim with the parameters given in Table S1; and measured and calculated frozen solution
EPR spectra, Figure S2: UV–vis spectra recorded for the copper(II)-STSC-DAHK system at pH 7.4,
Figure S3: Simulated EPR spectra calculated for species formed in the copper(II)-STSC-HSA sys-
tem with parameters given in Table 2; and measured and calculated frozen solution EPR spectra,
Figure S4: Circular dichroism spectra recorded for HSA in the absence and in the presence of the
copper(II)-Triapine complex, Scheme S1: Possible structures for the [CuAL] ternary complexes,
Table S1: EPR parameters of the components obtained in Cu-mim solutions.
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et al. Copper and conquer: Copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.
Metallomics 2016, 8, 874–886. [CrossRef]

12. Gulea, A.; Poirier, D.; Roy, J.; Stavila, V.; Bulimestru, I.; Tapcov, V.; Birca, M.; Popovschi, L. In vitro antileukemia, antibacterial and
antifungal activities of some 3d metal complexes: Chemical synthesis and structure—Activity relationships. J. Enzyme Inhib. Med.
Chem. 2008, 23, 806–818. [CrossRef] [PubMed]

13. Milunovic, M.N.M.; Enyedy, E.A.; Nagy, N.V.; Kiss, T.; Trondl, R.; Jakupec, M.A.; Keppler, B.K.; Krachler, R.; Novitchi, G.; Arion,
V.B. L- and D-Proline thiosemicarbazone conjugates: Coordination behavior in solution and the effect of copper(II) coordination
on their antiproliferative activity. Inorg. Chem. 2012, 51, 9309–9321. [CrossRef] [PubMed]

14. Bacher, F.; Enyedy, E.A.; Nagy, N.V.; Rockenbauer, A.; Bognár, G.M.; Trondl, R.; Novak, M.S.; Klapproth, E.; Kiss, T.; Arion,
V.B. Copper(II) complexes with highly water-soluble L- and D-Proline–thiosemicarbazone conjugates as potential inhibitors of
topoisomerase IIα. Inorg. Chem. 2013, 52, 8895–8908. [CrossRef]

15. Enyedy, É.A.; Nagy, N.V.; Zsigó, É.; Kowol, C.R.; Arion, V.B.; Roller, A.; Keppler, B.K.; Kiss, T. Comparative solution equilibrium
study of the interactions of copper(II), iron(II) and zinc(II) with Triapine (3-aminopyridine-2-carbaldehyde thiosemicarbazone)
and related ligands. Eur. J. Inorg. Chem. 2010, 2010, 1717–1728. [CrossRef]

16. Enyedy, É.A.; Zsigó, É.; Nagy, N.V.; Kowol, C.R.; Roller, A.; Keppler, B.K.; Kiss, T. Complex-formation ability of salicylaldehyde
thiosemicarbazone towards ZnII, CuII, FeII, FeIII and GaIII Ions. Eur. J. Inorg. Chem. 2012, 2012, 4036–4047. [CrossRef]

17. Petrasheuskaya, T.V.; Kiss, M.A.; Dömötör, O.; Holczbauer, T.; May, N.V.; Spengler, G.; Kincses, A.; Čipak Gašparović, A.; Frank,
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