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Háttér 
A  projekt  célkitűzése  az  volt,  hogy  egy  korábban  évtizedeken  át  használt  öröklődési  modell  
hiányosságait  feltárja,  állítson  fel  egy  - a  valóságot  jobban  leíró  - modellt,  és  próbálja  meg  a  
történéseket  molekuláris  oldalról  alátámasztani. A  kezdeményezők  úgy  látták,  hogy  egy  hazai  
ponty  tájfajtában  a  bőrponty  változat  nem  mutatja  azt  a  letalitást,  amit  a  korábbi  modell  jósolt,  
ugyanakkor az u.n. oldalvonal-soros   változatokból   is   más   arányok   hasadtak   ki,   mint   az a 
modell szerint várható  volt.    Felmerült  az  a  kérdés   is,  hogy  milyen a kapcsolat egyéb  feno-
típusos   tulajdonságok és  a  pikkelymintázat  között.  Azt   is   láttuk, hogy előfordul  olyan  feno-
típus   is,   amilyet   korábban  nem   írtak   le,   és   amit   a  korábbi  modell   nem   értelmez.  Részben  a  
projekt   előkészítése   idején,   részben   annak   folyamán   kiderült,   hogy   három   másik   fajon   is  
előfordul  a  vad  (teljesen  pikkelyezett)  fenotípustól  eltérő  változat  is. 
A  kérdéskör  tisztázására  két  irányban  indítottuk  el  a  vizsgálatainkat.  Az  egyik  irány a  

- különféle   fenotípusok   összegyűjtése, és   ezekkel   történő   célzott   keresztezések  
elvégzése   után   morfológiai   és   növekedési   vizsgálatok, valamint hasadási   arányok  
megállapítása;;   

a  másik   irány  pedig 
- a   pikkelyek   kialakulásáért   felelős   gének   keresése   és   azok   esetleges   alléljainak   az 

elkülönítése volt. 
 

Mintázati  fenotípusok  gyűjtése,  új  altípusok, célzott  keresztezések,  hasadási  arányok 
A különböző   pikkelymintázatú   halakat   tógazdaságokból,   természetes   vizekből   és   díszhal-
kereskedésekből  szereztük  be.  Ezek  között  voltak  vadnak  nevezhető  fajták,  mint  pl.  pikkelyes  
amúri  vadponty,  valamint  nemesített  változatok,  mint  a  tatai  pikkelyes,  vagy  a legtöbb  tükrös  
változat.  A   teljesen   pikkelytelen   bőrpontyot   egy   kimondottan   európai   nemes   formát  mutató    
hazai   változatból   (hajdúböszörményi   bőrponty),   ill.   egy   megnyúlt,   ázsiai   koi-változatból  
(szingapuri   bőrkoi)   választottuk   ki.   Az   oldalvonal-soros anyahalakat   részben   hazai 
(Köröstarcsa),   részben   ázsiai   változatokból   használtuk   fel.   A   projekt   során   találtunk   egy  
oldalvonal-soros   amúrt   is.   Együttműködő   partnereink   pedig   a   zebradánió   fajból   is   izoláltak  
tükrös  változatot.   
A   rendelkezésre   álló   fenotípusok   felhasználásával   30   keresztezést   végeztünk   el.   A 
keresztezéseket   először   Magyarországon,   majd   részben   magyar   bőrponty,   ill.   annak  
keresztezett  utódjai  felhasználásával,  Szingapurban  hoztuk  létre  és  neveltük  fel.  A  szaporítás  
és   nevelés   – ellentétben   a   kirpichnikovi,   nyílt   tavakban   végzett   kísérletekkel   – végig  
kontrollált  labor  körülmények  között  történt.  Keresztezéseket  és  visszakeresztezéseket  3  éven  
át   végeztünk.      Az   ikrák   termékenyülését   és   a   kelési   százalékot   minden   esetben  
megállapítottuk   és   összevetettük   a   korábbi   modell   szerinti   várható   értékekkel.   Az egy-egy 
szaporító-pártól  származó  utódcsoportokat  elkülönítetten  neveltük.  Abban az esetben, ha egy 
családon   belül   az   ivadékok   extrém  mértékű   szétnövést  mutattak,   a   halakat   nagyság   szerint  
szétválogattuk   és   úgy   neveltük   addig   a   méretig,   amíg   a   pikkelyezettség   egyértelműen  
megállapíthatóvá   vált.      Ekkor   a   halakat   egyenként   mindkét   oldalról   lefényképeztük,   és  
belőlük   úszómintát   vettünk   későbbi   molekuláris   vizsgálatok   elvégzéséhez.      Az   egyes  
fenotípusokból  garatfogaik  vizsgálatára  is  tartósítottunk  mintákat. 



 
Ahogyan   az   várható   volt,   a   homozigóta   pikkelyes   változatok   önmagukkal   és   a   tükrös  
változatokkal   egyöntetű   pikkelyes   utódokat   eredményeztek. A harmadik és   negyedik   évben  
már   csak   az.   u.n.   érzékeny   változatokra   koncentráltunk.   Azok   keresztezési   kombinációit  
komplettáltuk,   ill.   többeket   megismételtünk,   európai   és   ázsiai   eredetű   szülőkkel   egyaránt. 
Munkánk   során   találtunk   egy   olyan   amúr   változatot,   amelyik   oldalvonal-soros   mintázatot  
mutatott.  
 
Felelős  gének keresése,  allélok  elkülönítése 
Megállapítottuk,  hogy  a  ponty   részleges  pikkelyvesztését  az   fgfr1a1 gén   (ez  a  Kirpichnikov  
által  korábban  feltételezett  ‘s’  gén)  mutációja  okozza,  mely  homozigóta  állapotban  részleges  
funkcióvesztéshez  vezet.    A  második  gént,  azaz  a  Kirpichnikov  által  ‘N’-nek  nevezett  lókuszt,  
mind  a  mai  napig  nem  sikerült  azonosítani. 
Hipotézisünk  szerint  a  második  gén  valószínűleg    a  fibroblaszt  növekedési  faktor  kaszkádon  
keresztül  fejti  ki  hatását.  Ezt  kétféleképpen  teheti  meg:   
a) a kaszkádban  szerepet  vállalva, vagy  
b)  a  kaszkádba  torkolló  folyamatokban  kifejtve  hatását. 
 

Első  lépésként  az  Fgf kaszkád  két  célgénjét  teszteltük,  hogy  bizonyítsuk:  a  második  mutáció  
valóban   ezen   az   úton,   nem   pedig   egy   független   kaszkádon   keresztül   fejti   ki   hatását.   Az  
eredmények   igazolták   feltételezésünket:   az   Fgf   kaszkád   célgénjeinek   aktivitása   lépésenként  
csökkent a pikkelyes- től  a  tükrösön  át  a  bőrpontyig.  A  fibroblaszt  növekedési  faktor  kaszkád  mindkét  
célgénje,   dusp6 és   sef, tendenciózusan   csökkenő   szintet   mutatott   a   pikkelyes,   tükrös   és   bőrponty  
egyedekben.   A   különböző   fenotípusokból származó   minták   összehasonlítása   igazolja   a   korábbi  
eredményt   az   fgfr1a1 génben  bekövetkező  mutáció  hatásáról,   valamint   arra  utalnak,  hogy  az  N  gén  
szintén  ezen  a  kaszkádon  keresztül  fejti  ki  (közvetlenül  vagy  közvetve)  a  hatását. 

Ezután  hasonló  eljárással   teszteltük  négy  olyan   jelátvivő   folyamat, ill. transzkripciós   faktor,  
egyenként  két-két  célgénjét,  melyekről  korábban  kimutatták,  hogy  az  Fgf  kaszkád  működését  
szabályozzák.   A   három   folyamat   a   következő   volt:  ’ectodysplasin’   (Eda/Edar),   kanonikus  
Wnt  és retinol  sav  (RA),  míg  a  transzkripciós  faktor  a  T-box  5  (Tbx5).  Mind  a  négy  esetben  
ugyanazt   az   eredményt   kaptuk: nem volt változás   a   három   fenotípusból   izolált   minták  
expressziója  között. 
 

Elemeztük   az   úszók   alakváltozásait   valamint   a   garatfogak   számának csökkenését.  
Megállapítottuk,   hogy   ezek   a   fenotípusos   változások   összekapcsolhatók   a pikkelymintázat  
alakulásával,  illetve  az  Fgf  allélok  expressziójával.  Úgy  látjuk,  hogy  az  általunk  megnevezett  
új  szórt  altípusok  a  hagyományos  tükröshöz  képest  megnövekedett  Fgf  jelek  következményei,  
legyenek bár   azok akár   az  Fgf út   egy   további mutációjának,   akár egy   fentről,   ebbe   az  útba  
torkolló  funkcionális  kaszkád  egyik  génje  megváltozásának  eredményei. Megjegyezzük,  hogy  
ebben  a  tekintetben  jelentős  különbségeket  találtunk  a  magyar  és  az  ázsiai  eredetű  bőrpontyok  
tekintetében.  Az   ázsiai   bőrpontyok   egészen   extrém   úszó- és   garatfog   degradációt  mutattak. 
Ezen   halak   mozgásában   komoly   problémák   léptek   fel,   ami   a   növekedési-erély   jelentős 
csökkenésével   is   párosult.   Ugyanez   a   magyar   bőrpontyoknál garatfogak   tekintetében   nem  
jelentkezett,  és  az  úszók  is  csak  kis  mértékben  deformálódtak.   
 
Izoláltunk  egy  teljes  hosszúságú  új  fgfr1 paralogot  is  pontyból.  Ez  a  paralog azonban  a  tükrös  
és  a  bőr  változatok  között  nem  mutatott  különbséget. 



Oldalvonal-soros  amúr  - bemetszés  után  regenerálódó  - farokúszójából  RNS-t  izoláltunk,  ami  
alkalmas lesz – akár  közvetlen  szekvenálása,  akár  cDNS-ének  felhasználása  révén,  a  pontyban  
talált  szekvenciákkal  való  azonosság,  vagy  különbözőség  kimutatására. 
 
Modell-készítés  
Készítettünk  egy  modellt,  ami  a  korábban  elfogadottnál  alkalmasabb  a  kísérleti  eredmények  
magyarázatára.   Ennek   képi   megjelenítése   a   mellékelt   kézirat   7.sz.   ábráján   található.   Ez   a  
modell   lehetővé   teszi   a   fokozatos   pikkelyvesztés   okának   indoklását.      Nem   tételezi   fel   a  
keléskori   letalitást,   de   az   egyes   pikkelyezettségi   fenotípusok   relatív   fitneszeinek   jelentős  
különbségét  figyelembe  tudja  venni.  A  korábban  „S”  génnek  nevezett  gén  szerepét   leírja,  és  
lehetőséget  nyújt  arra,  hogy  akár  „N”  gén  nélkül,  akár  a  jövőben  pontosítandó,  ennek  szerepét  
betöltő  génnel  a  fenotípusok  kialakulását  magyarázhassa. 
 
A  projekten  dolgozó  személyzet 
Pannon  Egyetem,  Állattudományi  és  Állattenyésztéstani  Tanszék 
Bercsényi  Miklós, a  szaporítások  és  fenoípus-értékelések  felelőse,  projektvezető (bértámogatás  nélkül),  
Németh  Szabolcs  biológus, (OTKA  bértámogatással 
Szűcs  Réka  PhD  hallgató,  fő  kutatási  témája  alapján,  (bértámogatás  nélkül) 
valamint: Meiszter  Máté  BSc  hallgató,   
Havasi  Máté,  Németh  Sándor,  és  Felföldi  Zoltán  PhD  hallgatók  (Németh  Szabolcsnak  a  projektből  való  kiválását  
követően  időszakos  megbízással,  részfeladatok  elvégzésére,  (OTKA  bértámogatással) 
 
 
Külföldi  együttműködő  partnerként, OTKA  támogatás  nélkül 
Temasek Life Sciences Laboratories, Singapore 
Orbán  László,  laborvezető,  senior  kutató,  a  molekuláris  vizsgálatok  legfőbb  vezetője/mozgatórugója 
Shubha Vij, Laura Casas, Natascha May Thevasagayam,  
Chin  Heng  Goh  és  Purushothaman Kathiresan,  beosztott  kutatók 
 
University  of  Tübingen,  Institute  of  Developmental  Biology 
Matthew  Harris  csoportvezető 
Nicholas  Rohner,  PhD  hallgató 
Christiane  Nüsslein-Volhard  intézetigazgató 
 
Publikációk 
Publikációink   feltöltve   a   honlapra.   Ezeken   túl   feltöltöttünk   egy   kéziratot   is,   amit   egy  
viszonylag  magas  impaktú  folyóiratba  szánunk,  és  ami  részletezi  a  projekt  eredményeit. 
Mivel  ez  a  kézirat  olyan  információkat  tartalmaz,  amelyeket  publikálás  előtt  nem  szeretnénk  
illetéktelenek  számára  hozzáférhetővé  tenni,  szeretnénk  kérni  az  OTKA  által  biztosított  azon  
opciót,   hogy   a   megjelenésig   – de   legkésőbb   1   év   leteltéig   – ezt   ne   hozza   nyilvánosságra.  
Mihelyt   a   kézirat   publikálásra   elfogadásra   kerül,   azt   azonnal   jelezzük   és   örömmel   járulunk  
majd  hozzá  a  közzétételhez. 
 

Jövőbeni  tervek 
Szeretnénk a  jövőben  azt  megvizsgálni,  hogy  a  természetes  módon,  vad  állapotban  is  pikkely  
nélküli   (csupasz)   halak,   pl.   több   harcsafaj   minek   következtében   veszítette   el   a   pikkelyeit. 
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Abstract 

The body of most fishes is fully covered by scales that typically form tight, partially 

overlapping rows.  While the molecular processes leading to the formation and growth of fish 

scales have been investigated, very little is known about the genetic mechanisms regulating 

scale pattern formation. Although the existence of two genes (s and N) regulating scale 

coverage in cyprinids have been predicted nearly eighty years ago (Kirpichnikov and 

Balkashina, 1935&1936), their identity was unknown until recently, when one of the was 

found to be a paralog of fibroblast growth factor receptor 1, fgfr1a1.  The current study 

describes the first steps of our continuing search towards the identification of the second gene, 

called N. 

We re-visited the original model of Kirpichnikov that proposed four major scale pattern types 

through the analysis of offspring generated by a large number of crosses involving loss-of-

scale mutants of European and Asian origin. We showed that varieties of the so-called 

scattered phenotype with a larger number of non-overlapping scales often appear in offsprings 

of mirrrors and nudes. Therefore, we divided the scattered type into three sub-types: irregular, 

incomplete scaled and classical mirror. We also analyzed the survival rates of offspring 

groups potentially inheriting two N alleles and found distinct differences between Asian and 

European crosses, indicative of the presence of a strong N allele with homozygous lethality in 

the former one and a weaker, non-lethal one in the latter. 

We analyzed the inheritance patterns, deformations of fins and losses of pharyngeal teeth and 

found that phenotypic changes show gradations in crosses as opposed to a few distinct groups. 

We propose that the new sub-types of scattered were formed due to increased levels of Fgf 

signals compared to mirrors and especially nudes, either due to an additional mutation in one 

of the FGF signaling pathway genes or that in an upstream pathway functionally connected 

the Fgf signaling.  

We isolated the full-length transcript of a new fgfr1 paralog, fgfr1b from common carp. When 

the sequence of fgfr1b was compared between mirror and nude individuals was compared, no 

difference was found. 

Finally, we describe ongoing and potential future approaches for the isolation of the N gene, 

the mutation of which leads to complete scale loss in individuals carrying homozygous 

mutations in the fgfr1a1 gene.  
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Introduction 

Cyprinid teleosts account for over 30% of worldwide aquaculture production and according to 

the FAO, common carp (Cyprinus carpio L.) is the species with the third highest production 

today (http://www.fao.org/fi/default.asp). Common carp was probably the earliest 

domesticated fish species for alimentary purposes, with records of ancient Chinese documents 

showing that cultivation of common carp in China began in the twelfth century BC (1-3). In 

Europe, common carp was first domesticated by the Romans before the sixth century (1-4).  

Today, common carp is divided into at least two subspecies: the separation of Central-

Asian/European (C. carpio carpio) and East-Asian subspecies (C. carpio haematopterus) is 

well supported by microsatellite and mitochondrial genetic data (5-8). In addition, the 

existence of a potential third subspecies (C. c. rubrofuscus or C. c. viridiviolaceus) is 

possible, but not confirmed based on the genotypes (6).  Earlier, a Central-Asian subspecies 

(C. c. aralensis) was proposed by Kirpichnikov (9). However, recent studies (5, 6, 10) have 

demonstrated that the European and Central-Asian forms of common carp are actually quite 

closely related, with the latter comprising a subset of the genetic diversity of the former. The 

authors subsequently classified both European and Central-Asian carp as subspecies carpio. 

Based on the analysis of mtDNA sequences, Froufe and colleagues (11) concluded that the 

European common carps were likely introduced from Asia. 

The domestication of common carp led to the emergence of different varieties, among them 

various scalation patterns. The wild phenotype was a fully scaled torpedo-shaped fish, but 

through artificial selection a number of scalation variants have been developed over the 

centuries. These variants, characterized by the reduction of the scale coverage, have been 

favoured as they were easier to de-scale for cooking (12). According to Kirpichnikov (9, 13, 

14), the main scalation types of common carp are: scaled, linear, scattered and nude 

(Sulpplementary File S1A-D). In addition to the above phenotypes, several additional 

varieties, including irregular and incomplete scaled have also been reported (13, 15), but they 

have mostly been regarded as deviations and therefore, have not been included in the genetic 

model (see below).  

The distribution of scales over the body of cyprinids is genetically determined. Rudzinsky 

(16, 17) was the first to point out that scaled variety of common carp is dominant over the 

mirror one. Based on data obtained by remarkably simple tools, such as survival rates and 
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phenotypic analysis of individuals grown in ponds, Kirpichnikov and colleagues (18, 19)  

proposed   a   ‘two   genes   – four   alleles’   type   model for the inheritance of scale pattern in 

common carp. According to their model, scaled fish are of SS/nn or Ss/nn genotype, scattered 

carps are ss/nn or ss/Nn, linears (or   ‘linear  mirrors’ with a line of scale running along the 

lateral line) are SS/Nn or Ss/Nn, while nudes (or   ‘leathers’ without scales) are ssNn [for 

review see: (13, 14); Supplementary File 1]. Based on their observations, NN results in 

lethality in any combination with ss, SS or Ss [for review see: (13, 14)].  

Over the next decades, the majority of textbooks took over the model and it became the most 

well-known example for two-genic inheritance in fish genetics  (see e.g. (20, 21)). Although 

some of the crosses were repeated subsequently and yielded data similar to the original ones 

(see e.g. (15, 22, 23)), according to our knowledge, nobody has re-visited the issue by 

performing a systematic analysis with a larger set of crosses. Recently, two findings 

motivated us to reconsider the model. The first result was that nude x nude common carp 

crosses performed at one of the Hungarian fish farms repeatedly failed to show either the 25% 

lethality, or the 25% of scattered phenotypes (15) expected on the basis of the Kirpichnikov 

model (13). The   second   was   the   discovery   of   a   “mirror”   variant   in   zebrafish and the 

identification of the mutant gene responsible for this phenotype: one of the paralogs of 

fibroblast growth hormone receptor 1, fgfr1a in zebrafish and fgfr1a1 in common carp (24). In 

other words, this is the   ‘s’ gene predicted earlier based on data from common carp by 

Kirpichnikov and his team (13, 14, 18, 19). This discovery has paved the way for a more 

informed search for the second member of this interesting gene pair, the so-called ‘N’  gene. 

In this manuscript, we describe the ratio of scale pattern phenotypes in offspring groups 

originating from crosses involving brooders with partial or full loss of scale sets. We also 

isolate and structurally characterize a hitherto missing member of the Fgfr1 receptor family, 

fgfr1b, and show that its sequence has not been mutated in nude individuals in comparison to 

mirrors. Finally,  we  propose  a  model  that  could  explain  the  ‘deviating  phenotypes’  observed  

in some of the crosses described above.  
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Material and Methods 

Brooders  

For the crosses performed in Hungary, common carp brooders (males and females) have been 

selected from the following sources: scaled carp - Amur wild type carp, and Tata common 

carp from the live cyprinid collection of HAKI (Szarvas, Hungary); mirror carp: Line No2 

from HAKI; linear carp - from Tiszaker fish farm (Kőröstarcsa, Hungary); nude carp - from 

Béke fish farm (Hajdúböszörmény,  Hungary). 

For the crosses performed in Singapore, a European nude male carp was shipped from 

Hungary to Singapore and used as a father for a large number of crosses. In addition to that, 

koi carps of the four major and some minor scale pattern types were purchased from XXX, 

and used as brooders.  

 

Artificial propagation 

The breeders were prepared for the artificial propagation by hypophysation according to (4). 

Small batches of eggs (ca. 50g) from each female were fertilized by 2 ml of fresh milt 

collected earlier from the chosen male(s). For the crosses performed in Hungary, two minutes 

after fertilization, the eggs were stacked onto a tulle netting that was stretched onto a metal 

frame. This provided easy and accurate tracking of embryonic development, as fertilization 

rate and hatching percent were calculated by counting the live or dead eggs using digital 

photos on the eggs stacked to the net. For the crosses performed in Singapore, the stickiness 

of fertilized eggs was first removed through a treatment with Woynarowich solution (25) and 

later they were placed into traditional Zuger jars and they were hatched there. Survival rates 

were calculated by removing a random sample of eggs and counting live vs. dead individuals 

under a stereo microscope.  

 

Hatching, larviculture and phenotyping 

Fry were hatched out in separate tanks in order to avoid potential mixing of different families. 

Feeding of fry started on the 3rd day after hatching by live brine shrimp nauplii. From the end 

of the second week, live food was gradually replaced with dry pelleted feed over a week 
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transition. In Singapore, mutants were separated from the rest and grown in smaller tanks.  As 

the rest of fish grew in the aquaria, their number was reduced systematically by random 

removal to keep the density acceptable. In Hungary, fish were transferred to earthen ponds at 

XXX age and fed with XXX. The families were reared for four months when the scale pattern 

could be clearly identified. At this timepoint, for the first two crosses performed in Singapore 

(NN1&2; Supplementary File S2) classification was performed directly through visual 

observation of the fish, whereas for the remaining Singaporean crosses and all crosses 

performed in Hungary, fingerlings were individually photographed from both sides and 

scalation was assessed based on the photos. Phenotypic analysis was performed by assessing 

the scale patterns based on a classification (see Supplementary File S3) that has been a 

modified   version   of   Kirpichnikov’s   (13), as our classification contained a total of six 

categories instead of the four used earlier. We have retained three of the four major scale 

patterns, namely, scaled, linear, and nude (Supplementary File  S1). In addition, we have 

divided  Kirpichnikov’s   ‘scattered   (or  mirror)’   category   into   three   sub-categories: irregular, 

incomplete scaled and classical mirror (Fig. 1; for descriptions see Supplementary File S3).  

In few cases, the scale pattern on the two sides of the fish were different. In these instances, 

the fish were classified based on the overall phenotype, e.g., if an individual had 10-20% 

scales on one side and 70-80% scales on the other side then it was classified as an irregular 

and not an incompletely scaled individual. Phenotype frequencies within the families as 

percentage were compared to the expected values calculated from the Kirpichnikov model. 

 

Isolation of pharyngeal teeth 

For isolating pharyngeal teeth, individuals were culled by placing them into 2% ethyl 3-

aminobenzoate methanesulfonate salt (MS222; Sigma-Aldrich, St. Louis, MO, USA) for 15 

minutes. Then, their head portion was cut off at the distal end of the operculum and 

submerged in 4% potassium hydroxide to dissolve the soft parts. After 2-3 days, the 

pharyngeal teeth were picked from the remaining mass of tissue and thoroughly washed in 

water and dried. The number of teeth was counted under a Leica M125 stereomicroscope and 

the photographs were taken with a Leica MZ 10F stereomicroscope fitted with a Nikon DXM 

1200F camera. 
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Sample collection and isolation of nucleic acids for genotyping and sequencing 

Individuals showing different scale coverage were tranquilized in 2% MS222. Their fin clips 

were collected, placed into 95%   ethanol   and   stored   at   4ºC   until   use   for   DNA   isolation. 

Genomic DNA was isolated using the standard phenol-chloroform method (26).  

For RNA isolation, the ends of caudal fins were cut using a sharp scalpel, the fins were then 

allowed to regenerate for three to five days. Following this period, the regenerated part of the 

fin was collected, immediately immersed in Trizol and stored at -80ºC  until  further  analysis. 

Total RNA was extracted from regenerating fins samples collected on the 3rd to 5th day 

following the cut by using the Trizol Reagent (Invitrogen, Carlsbad, CA, USA) according to 

manufacturer´s  protocol. 

The quality and concentration of nucleic acids was tested by spectrophotometry using a 

Nanodrop Spectrophotometer ND-1000 UV/Vis (Nanodrop Technologies, Wilmington, DE, 

USA), followed by agarose gel electrophoresis. 

 

Isolation, sequencing and comparative analysis of cDNA sequences from candidate genes 

For the isolation of the additional two presumed copies of common carp fgfr1b, specific 

primers targeting the differential regions between teleost paralogues fgfr1a and fgfr1b were 

designed. The design was based on the alignment of the two already described fgfr1a 

paralogues from common carp with fgfr1a and fgfr1b from zebrafish (Danio rerio; fgfr1a 

LG8, Ensembl ID: ENSDARG00000011027, fgfr1b LG10: ENSDARG00000011190), three-

spined stickleback (Gasterosteus aculeatus; ENSGACG00000012410, 

ENSGACG00000015518), green spotted pufferfish  (Tetraodon nigroviridis; 

ENSTNIG00000018850, ENSTNIG00000013597), Japanese fugu (Takifugu rubripes; 

ENSTRUG00000016527, ENSTRUG00000018627) and Japanese medaka (Oryzias latipes; 

ENSORLG00000014206, ENSORLG00000000321). (For the alignment of these sequences 

please see Supplementary File S4) cDNAs from the regenerating fin samples of two common 

carp individuals showing the mirror phenotype were PCR-amplified with primers fgfr1b_1F 

and fgfr1b_2R under the following conditions: Reactions were carried out in a total volume of 

25µl  using  the  AmpliTaq  DNA  Polymerase  package  (Applied  Biosystems, Foster City, CA, 

USA)   containing   1X  PCR  buffer,   2µM      primer,   100  µM  dNTP  mix,   2  mM  MgCl2,   20   ng  
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cDNA template, and 0.5 U Taq polymerase. The PCR reaction was performed in a PTC-100 

thermal cycler (MJ Research, Watertown, MA, USA) by using the following program: an 

initial  denaturation  at  94ºC  for  2  minutes  followed  by  30  cycles  at  94ºC  for  15  seconds,  62ºC  

for  45  seconds  and  2  minutes  at  72ºC  for  extension.  A  final  step  was  performed  at  72ºC  for  5  

minutes for final elongation. 

PCR products (20 µl) were separated on a 2% agarose gel (Bio-Rad, Hercules, CA, USA) in 

1X   TBE   buffer   containing   either   0.5µg/ml   ethidium   bromide   or   10nl/ml   Gelstar   (FMC  

BioProducts, Rockland, ME, USA). The gel was placed onto a UV-lamp to excise the band 

using a scalpel and the DNA content was isolated using the GFXTM PCR DNA and Gel Band 

Purification Kit (Amersham Biosciences, Piscataway, NJ, USA). The fragment was then 

ligated into the pGEM T-easy Vector System (Promega, Madison, WI, USA) and fifty clones 

containing an insert of the expected size were sequenced a minimum of five times on both 

strands using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster 

City,   CA,  USA)   according   to   the  manufacturer´s   recommendations   in   an  ABI   Prism   3100  

sequencer (Perkin Elmer, Foster City, CA, USA). Sequencing reactions were carried out in a 

total   volume   of   20µl,   containing   2µl   5X  BigDye   sequencing   buffer,   4   µl   2.5X  Terminator  

Ready   Reaction   Mix,   3.2   pmol   universal   primer   T7   or   SP6,   and   1   µl   of   purified   DNA.  

Produced sequences were edited and assembled using SequencherTM v4.0.5 analysis 

software (Gene Codes Corporation, Ann Arbor, MI, USA),  

 

RACE Procedure 

The full-length cDNAs were obtained by using the RACE Technique or Rapid amplification 

of cDNA ends. Reverse transcription and rapid amplification of cDNA ends was carried out 

using the FirstChoice RLM-RACE   Kit   (Ambion)   following   manufacturer´s   protocol.   The  

gene-specific primers provided by the user were designed based on RACE requirements using 

the Primer 3 Program (27) and their sequences are described in Supplementary File S4. 

Cloning of the RACE products was done using the pGEM T-easy Vector System (Promega, 

Madison,  WI,  USA).  Twenty   independent  clones   for  each  of   the  5′- and  3′-RACE products 

were sequenced a minimum of five times on both strands using BigDye Terminator v3.1 

Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) according to the 

manufacturer´s   recommendations   in   an   ABI   Prism   3100   sequencer   (Perkin   Elmer,   Foster  
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City, CA, USA). Sequencing reactions were carried out as previously described. The 

assembled cDNA sequences were aligned using ClustalX 2.0 software (12) and BLAST 

searched (28) against GenBank (http://www.ncbi.nlm.nih.gov/blast). 

 

Searching CarpBase XXX 

Comparative analysis was performed by sequencing PCR-amplified cDNA of the selected 

genes from three mirror and three nude common carp siblings and comparing the sequences. 

XXX 

 

Bioinformatic analysis 

Proteins were represented using the DOG 1.0 software (29). The phylogeny of fish fgfr1s was 

reconstructed using the Maximum Parsimony Method implemented in MEGA4.0.2 software 

(30). Confidence in the resulting unrooted tree was assessed by bootstrapping (1000 

replicates). The tree was represented using the Archeopteryx software (29).  
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Results 

 

Lack of expected lethality among the offspring of European common carps with nude and 

linear scale pattern types 

Altogether, we have performed XXX crosses at two different locations (Supplementary File 

S2) and estimated the survival rates of their offspring either by i) counting fertilized eggs with 

eye spots (viable embryos) and those without (dead eggs) from nets; or ii) by sorting a few 

hundred embryos randomly removed from the Zuger jar under a dissecting scope.  Analysis of 

the survival rates showed the expected 25% lethality in all nude x nude (N x N) crosses 

performed in Singapore (data not shown), but not among the offspring of European linear x 

linear (L x L), linear x nude (L x N) or N x N crosses done in Hungary. The mean survival 

rates for these latter three offspring groups were XXX+/-XXX%, XXX+/-XXX% and 

XXX+/- XXX%, respectively, not significantly different from the mean of the other types of 

European crosses tested (XXX+/XXX%; p>XXX; XXX). 

The scale pattern phenotypes of the offspring originating from seventeen different crosses 

involving XXX brooders (see Supplementary File S2 for details) were analyzed in detail. All 

of these crosses involved brooders with reduced scale pattern types: 14 were between the 

classical scalation types (i.e. linear, mirror and nude), whereas in the remaining three one of 

the parents showed the irregular scale pattern (see Supplementary File S3 for detailed 

description). When classified according to the origin of the parents, ten crosses involved 

partners originating from the same subspecies (European x European or koi x koi), three of 

them were between the two subspecies and the remaining four involved one or two F1 hybrids 

from a cross between the two subspecies.  

In several cases, we have found substantial deviation from the ratios predicted based on 

Kirpitchnikov’s  model   (XXXref).  Two  of   the   three   ‘all  European’  L  x  L  crosses   yielded  a  

majority (95% and 65%) of linear offspring with the rest showing irregular (I), incomplete 

scaled (Isc), and classical mirror (M) phenotypes (see Fig. 2 for representative examples and 

Supplementary File S3 for detailed phenotype description). The offspring phenotypes from 

the third L X L cross showed a very similar proportion of Ls (32%) and Ms (31%), while the 

rest was divided between Isc (21%) and I (14%; Supplementary File S2). No classical scaled 

offspring was found in any of the three crosses.  
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In the two crosses involving an irregular and a classical mirror type parent, the combined 

proportion the two new sub-categories (I and Isc) dominated the phenotype list  (82% and 

64%, respectively). In addition to classical mirrors, a few nudes (4% in both crosses) also 

showed up (Fig. 3A). No classical scaled or linears were found among the offspring. 

In the three European L X N crosses, instead of the expected high proportio of Ls (33-67%) 

very few of them (1-9%) showed up.  Most offsprings were classical Ms in all three crosses 

(88-99%) with a small proportion of unexpected nudes (2-9%) in two crosses. 

One of the two N x M crosses (MN36) yielded 96% Ms, 3% Ns and 1% Ls, a substantial 

deviation from the expected equal proprtion of Ms and Ns. When an irregular female was 

crossed with a nude male, both I and Isc phenotypes appeared among the offspring, resulting 

in the combined proportion of 63% scattered together with classical Ms (I+Isc+M; expected: 

50%). 

In the four N x N crosses involving at least one koi parent, 33% Ms and 67% Ns were 

expected after the initial loss one quarter of the offspring. Interestingly, one or both new sub-

categories of scattered appeared in all crosses, their combined proportion ranging from 15% 

to 53%. The ratio of nudes was lower than the expected 67% in all four crosses (range: 40-

59%). In the only cross between two European nudes (NN26), the proportion of Ns has 

increased to 87% (expected: 75%) due to the lack of lethality, but the remaining 13% of the 

offspring were all classical Ms (Fig. 3B). 

 

The deformity/disappearance of fins and gradual decrease in pharyngeal teeth count could be 

observed in all three subtypes of scattered, not just the nudes  

XXX Fig. 1J-L 

We tested potential associations between various levels of scale loss and fin deformity and/or 

loss in irregular, incomplete scaled, mirror and nude individuals from four families 

originating from crosses involving European and Asian grandparents (XXX, XXX, XXX and 

XXX). Fin defects showed a progressive increase with the decrease in the number of scales 

such that the irregular individuals had the least of these abnormalities in terms of fins being 

distorted (reduced/stunted) or absent while the nude group had the maximum number of such 
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defects. In fact, amongst the irregular, incomplete scaled and mirror groups, the dorsal fin was 

the most affected and barring it, the observed defects were <10% for the remaining fins. 

Conversely for the nudes, ~95% of the individuals had at least one fin defect with the dorsal 

fin absent from ~80% and the pectoral and pelvic pair fins missing from ~60% in the group 

(Figure 4A). Fin defects were also quanitified on a per-fish basis using an arbitrary scale by 

assigning one point for distortion of a fin and two points for each fin loss. Only ~1% of the 

irregular, incomplete scaled and mirror, but at least 50% of the nude fish had >10 points. 

Likewise, >75% of the irregular, incomplete scaled and mirror fish had >2 points (Figure 4B).  

The association between the scale pattern and the number of pharyngeal teeth was also tested. 

There was a progressive loss of pharyngeal teeth in parallel with decreasing scale coverage. 

Almost 70% of the nudes entirely lacked teeth, while the rest of them had between 1-4 teeth 

only. The teeth numbers for the other three groups were: incomplete scaled – 4-8, mirror – 5-8 

and irregular – 5-9, with almost ~70% of the individuals in each of these three groups 

showing the presence of at least 5 teeth (Figure 5). At the other end of the scale, most scaled 

individuals (XXX%) had a complete set of pharyngeal teeth, whereas the rest were missing 

just one (XXX%) or two of them (XXX%), thus the range for those was 8-10. 

We have also compared the averaged relative size of the biggest scales in the four different 

phenotypes with scale loss (I, Isc, M and N) and found that they decreased in the following 

order: Isc>I>M>N (Supplementary File S5). 

 

Isolation and structural characterization of the fgfr1b paralog from common carp  

Earlier, two Fgfr1 paralogs, fgfr1a1 and fgfr1a2, have been described from common carp 

(24). As common carp is a tetraploid species (31, 32), its genome could potentially contain 

additional two paralogs that might play a role in scale pattern formation. We have performed 

PCR-amplification of cDNAs from the regenerating fin samples of mirror carp individuals 

with primers binding to those regions of fgfr1b that were most different from fgfr1a in other 

teleost species. Analysis of the products has revealed two overlapping contings (1,562 and 

682 bp) which presumably correspond to new fgfr1b paralogue(s) in common carp. As the 

two sequences have shown a 96% nucleotide identity with 655 of 682 nucleotides being 

identical, and three different efforts of sequencing of the common carp transcriptome from 

several organs yielded only a single contig (XXXcarpbase; XXXSpaink; our unpublished 
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data), we concluded that the two contigs represented transcript variants expressed from the 

same locus. When the 1,562 bp long consensus sequence was Blasted against GenBank, it 

produced a highly significant alignment with the zebrafish fibroblast growth factor receptor 

1b (fgfr1b), mRNA (EU919571), showing a maximum identity of 88%, coverage 99% and e-

value of 0.0%. When blasted against the two existing common carp fgfr1 paralogs, fgfr1a1 

and fgfr1a2, XXX. 

Subsequent   5’- and   3’-RACE reactions have successfully revealed the complete coding 

sequence of a new fgfr1b paralogue in common carp. XXX The sequence information has 

been deposited in GenBank under accession number XXXX. XXX 

The deduced protein contained only two extracellular Immunoglobulin c2 type domains 

(IGc2a&b) compared to three in both fgfr1a paralogues (IGc2a-c) described earlier (Fig. 6A). 

In order to investigate whether the domain in question was lost or gained during the evolution 

of bony fishes, we compared the primary structure of the above proteins from several teleost 

species with their orthologs from cartilaginous fish (Uniprot accession numbers: picked 

dogfish, Squalus acanthias - D5FGJ8, D5FGF2; little skate, Leucoraja erinacea - D5FGF3). 

According to current estimates, the ancestor of the latter was separated from the common 

ancestor of bony fishes about 420 million years ago (33). The reconstructed phylogeny 

revealed that the Fgfr1 protein had originally three IGc2 domains in the ancestral fishes. One 

domain was likely lost from one of the two paralogs following the fish-specific duplication 

event (3R: (34, 35)) of the genome of the common teleost ancestor, but before the speciation 

of the bony fish species included in the analysis (Fig. 6B). Nonetheless, despite of the absence 

of one extracellular IGc2 domain, the fgfr1b paralog of common carp is likely to be 

functional, since it has been demonstrated in zebrafish that there is a functional redundancy of 

both forms during early embryonic development (24). After duplication, paralogous genes 

that are not silenced may acquire new functions through a process called neofunctionalization 

(36, 37). Others may subfunctionalize, or partition old functions as a strategy to escape 

disabling mutations that would lead to their eradication, or they can function redundantly (36, 

37). 

 

Comparative sequence analysis of full-length fgfr1b cDNAs found no difference between 

mirror and nude common carp siblings  
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The fgfr1b transcript was amplified and sequenced both from mirror and nude individuals in 

order to determine whether the latter contained mutation(s) associated with complete scale 

loss. Comparison of the 2,208 bp cDNA fragment from three mirror and three nude siblings 

did not identify any consistent difference between the two groups (data not shown), therefore 

we excluded the new paralog from among the potantial candidates of the N gene. 

 

Quantifying the expression level of downstream target genes of the Fgf pathway in irregular, 

incomplete scaled, mirror and nude common carp individuals 

Quantifying the expression level of two downstream target genes of the Fgf pathway by qRT-

PCR to find out whether we can detect differences among the Fgf signal intensities in the two 

new sub-types compared to mirror (and nudes)... 
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Discussion 

Our proposed extension of the Kirpichnikov model contains three sub-types of scattered: 

Irregular, incomplete scaled and classical mirror 

Nearly a century ago, Rudzinsky (16, 17) described the first set of data on the genetic 

regulation of scale pattern formation in common carp. Later, Kirpichnikov and Balkashina 

(18, 19) added more details that eventually led to a complete model (13) that proposed 

existence of two loci and four alleles, the combination of which resulted in four major 

phenotypes (listed in the order of decreasing scale cover): fully scaled (wild type), linear, 

scattered and nude. In addition to the four major phenotypes, several sub-types were also 

described (13) as potential deviations from linear or mirror with extra number of scales, but 

their exact relationship to the main phenotypes was not determined. 

The experiments described in this manuscript were initiated by two observations. The first 

one was the frequent appearance of sub-types among the offspring from crosses involving 

linears, mirrors and nudes that were clearly different from the four major phenotypes. (The 

second was the lack of lethality suggested by the present model, when two European nude 

individuals crossed that will be discussed in the next section.) 

Here, we propose that a model where the completeness of scale pattern is dependent on the 

overall level of Fgf signal at the locations where scales are formed. According to our model, 

although the two genes proposed by Kirpitchnikov (S and n; (13)) would be located on two 

different chromosomes, functionally they would not be fully independent, as they would act 

along the same pathway(s) regulating the overall level of Fgfs signaling and thereby the 

activity of their downstream targents (Fig. 7). This is supported by our preliminary 

experiments that detected lower transcript levels of target genes of Fgf signaling in nudes than 

in scattered (data not shown). The combination of the variable effects from the two genes 

would result in a rheostat-like system, where intermediate phenotypes could appear among 

the major ones. We argue that instead of removing the sub-types from the system and labeling 

them as aberrations, they should be included, as their analysis will help us to gain bettwer 

understand of this complex system. Accordingly, we have sub-divided Kirpichnikov’s  

scattered phenotype into three sub-types, and followed their inheritance in several crosses.  

Based on the results, we propose that the increased number of scales in the irregular and 

incomplete scaled sub-types are the result of an elevated level of Fgf signaling compared to 
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classical mirrors and nudes. This level is higher than that in the classical mirrors, resulting in 

the formation of scales at many locations over the body surface, but lower than those that are 

required for the formation of the wild type pattern. Similar phenotypes with large non-

overlapping scales were observed in carps with SssNnn genotype generated by triploidization 

of the eggs from a scaled and nude brooder, presumably due to incomplete dominance of the 

’N’ allele   over   two   wild   type   ’n’   alleles   (38). Moreover, triploid nude carps with sssNnn 

genotype showed less severe phenotypic effects (reduced scale cover and number of anal fin 

rays) than to their diploid counterparts (ssNn; (39)). 

We do not know the reason why these scales in the irregular and incomplete scaled sub-types 

are often bigger and  why  they  aren’t  arranged  in the tigth, partially overlapping order as those 

on the fully scaled wild types are. There might be  a temporal increase in one of the signals in 

these individuals during scale formation that results in the fusion of their precursors. 

Additional research would be needed to find a reason for these phenotypes. 

 

Lack  of  lethality  in  the  offspring  of  European  nudes  indicates  the  presence  of  a  new  ’N’  allele  

with milder phenotypic effect 

When two European brooders carrying the proposed  ’N’  allele were crossed, no lethality was 

observed among the offspring (Fig. 2). Also, the distortions and losses of fins (Fig. 4) as well 

as severely reduced pharyngeal teeth counts (Fig. 5) often observed in Asian nudes, were not 

observed in most of their European counterparts. These observations seem to indicate that the 

European  and  Asian  populations  contain   two  different  mutant   ’N’  alleles:  a   stronger  one   in  

the former and a weaker in the latter. The European allele causes the loss of scales, but it has 

limited, if any, effect on teeth and fin formation, whereas the strong Asian allele exerts strong, 

lasting effects on the formation of all three structures. In fact, the cummulative effects of the 

strong  ’N’  allele  are  so  strong  that those nude individuals that survive the early development 

are often not able to swim properly and exhibit a distorted body shape either due to skeletal 

deformations or as a consequence of the lack of fins. When such mutants are grown together 

with their unaffected (i.e. scattered, linear or fully scaled) siblings in larger tanks, most of 

them disappear during the first two months as they loose out in competition for food and get 

cannibalized by their stronger kins. From their observations it seems likely that the lines 
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Kirpichnikov and his colleagues worked with carried  the  stronger  ’N’  allele,  not   the  weaker  

one.  

 

The  effects  of  the  ’N’  allele  are  dependent  on  location  and  developmental  timing 

Fgf signaling is essential for several important developmental processes throughout the 

animal kingdom (40-42). For instance, in humans they have a role in bone formation, 

smelling and reproduction (review: (43)), whereas they are essential for limb formation in 

mammals and birds (XXXRef). In fish, various Fgf ligands and receptors were shown to be 

involved with the formation of i) scales (24, 44); ii) median fin fold, the precursor of dorsal 

fin (45); iii) paired fins (46) and iv) lateral line in the zebrafish model (reviews: (47-49)), as 

well as fin regeneration (reviews: (50, 51)). From the above processes, the  mutant  ’N’  allele  

exerts the most severe negative effects on scale and dorsal fin development.  

Interestingly, loss or reduction of dorsal fin has been documented from a number of other fish 

species (see e.g. (52-55)), especially those under intensive culture. The phenotype is called 

’saddleback’,   it   is   characterized   by   entirely  missing   or   severely   distorted   dorsal   fins,   often  

together with fusion of some of the vertebrae. It was first described in blue tilapia as a 

genetically inherited trait, caused by a dominant, lethal mutation (56). Although this mutation 

does not usually result in scale-loss, its additional phenotypes, including decreased stress 

resistance and increased sensitivity to infections, make it likely that it affects similar 

processes in tilapia, as in ’N’  does  in  nude carps.    

One of the advantages of scale-loss phenotypes is that they reveal preferential locations of 

scale formation that are not detectable on wild type individuals. The two locations, where 

scales tend to appear even in the case of severe scale loss are the area above the lateral line (in 

linears) and that below the dorsal fin (in scattered and some nudes). In case of the former, it 

seems likely that the increased Fgf levels are maintained during the period of scale formation, 

resulting in the formation of a line even when the general levels are reduced below the 

threshold necessary for scale fomation at most locations of the body surface. Such phenotypes 

have been observed in other cyprinids, including the goldfish 

(http://mirrorscalegoldfish.blogspot.com/) and grass carp (see Fig. 3 of (57)) and even in a 

more distantly related Patagonian species, the naked characin (Gymnocharacinus bergi, 

Steindacher, 1903). In this threatened species, the scales first develop over the whole body 
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surface, later they are re-absorbed with the exception of the area covering the lateral line 

resulting in a linear phenotype (58). The situation with the other region is more complicated, 

as there are individuals with a missing dorsal fin and a line of scale below. There are two 

potential explanation for such phenomena: a) the threshold of Fgf levels required for fin 

initiation is higher than that needed for scale formation; or b) the early effect of mutation is 

stronger that the late one.   

 

Future outlook 

It took more than eighty years after the first publication on the involvement of genetic 

mechanisms in scale-loss phenotype (16, 17) to figure out  the  identity  of  the  ’s’  gene  (24). We 

are currently working on the isolation of the second member of this gene pair by following 

three parallel routes. 

Firstly, we have isolated several key members of the Fgf signaling cascade and genes from 

those upstream pathways that were shown earlier to regulate this process (see e.g. (40, 59)). 

Comparative sequence analysis of these cDNAs from nude and mirror sibling groups might 

allow for the identification of the N gene. 

Secondly, we have generated several F2 mapping families by crossing European and Asian 

representatives of the species with partial or full scale-loss phenotype. Genetic linkage 

mapping that is becoming a routine exercise in common carp (see e.g. (60-62)) will reveal the 

chromosomal location that harbors the gene in question. Comparative bioinformatic analysis 

of the genes contained in syntenic regions of the sequenced teleost models, especially 

zebrafish might allow for narrowing down the list of potential candidates. Should that 

approach fail to identify the mutant gene, a map-based positional cloning can be performed 

for its identification. 

Thirdly, rapidly increasing sequence information from traditional (63) and NGS-based 

sequencing efforts (64, 65) have already yielded benefits for isolation and characterization 

full-length cDNA sequences. One of the short-term benefits of these activities will be a 

publicly available high quality transcriptome (65) allowing for RNAseq-based 

transcriptomics, a substantial improvement of the from the current method of choice, the 

cDNA microarray (66).  
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According to our hope, parallel application of these three approaches will soon lead to the 

identification   of   the   ’N’   gene   and  more   complete   understanding   of   the   complex   process   of  

scale pattern formation in cyprinids and possibly other teleosts. 
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Figure legends 

 

Figure 1: Kirpichnikov’s  “scattered” scale pattern can be further divided into three 
phenotypes: A-D) Irregular; E-H) Incomplete scaled; and I-L) Classical mirror. For detailed 
description of phenotyping criteria, please see Supplementary File S3. 

Figure 2: Lack of lethality in a cross involving two nude brooders. Common carp eggs were 
stuck to a nylon mesh by taking advantage of their natural stickiness immediately after 
fertilization. The meshes were immersed into separate Zuger jars and kept there for for 48 
hours. Survival rates were estimated by counting surviving embryos with eye spots versus the 
opaque ones (empty egg shells). A) Mirror x nude (MN) cross; B) Nude X nude (NN) cross.  

Figure 3: The two new sub-types of scattered are inherited to the offspring from irregular or 
even nude parents and reduce the proportion of mirrors within the scattered group. Panel A) 
In  „Mirror  x  Irregular”  type  crosses  (MI33  &  MI37)  the  irregular  scale  pattern  was inherited 
from the parent to the offspring substantially reducing the proportion of mirrors from the 
expected 100%.  The combined proportion of  irregular, incomplete scaled and mirror 
phenotypes are very close to 100%. Panel B) In the first three „Nude  X  Nude”  crosses  (NN1,  
NN2 & NN41) the irregular and incomplete scaled phenotypes appeared among the offspring, 
resulting in a deviation of the proportion of phenotypes from the expected ratio. In the case of 
NN26, two European nude individuals were crossed and no lethality was observed. As 
expected, the proportion of nudes increased in comparison to the other crosses with lethality.  

Figure 4: Association between the level of scale loss and the type and number of distorted or 
missing fins in irregular, incomplete scaled, mirror and nude phenotypes in four families. 
Panel A) The percentage of distorted/absent fins is shown across the four major phenotypes. 
Panel B) Fin defects were quantified on a per fish basis (distortion of one fin: 1 point; loss of 
one fin: 2 points) and the percentage of individuals belonging to each of the four phenotypic 
categories is shown in relation to the number of defects observed. 

Figure 5: The number of pharyngeal teeth gradually decreases with the reduction of scale 
coverage of the body surface from completely scaled to nudes.  The percentage of individuals 
representing the five phenotypes (from the right: completely scaled, irregular, incomplete 
scaled, mirror and nude) is plotted against the total number of pharyngeal teeth identified per 
individual. The lower panel shows a representative picture of the different number of teeth 
observed (from 10 to 0). 

Figure 6: Comparative analysis of the Fgfr1 paralogs of common carp and zebrafish. A) 
Domain organization of the three Fgfr1 paralogs in common carp in comparison to their two 
orthologs in zebrafish. Green circles: Immunoglobulin C-2 typedomains; blue rectangle: 
transmembrane domain and pink hexagon: tyrosine kinase domain. B) Phylogeny and domain 
architecture of fgfr1 homologs in cartilaginous and bony fishes reconstructed using a 
Maximum Parsimony approach. Confidence in the resulting unrooted tree was assessed by 
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bootstrapping (1000 replicates). Posterior probability values are shown for each branch. 
Circle denotes the teleost-specific whole-genome duplication event (3R). 

Figure 7: Our working hypothesis showing the rheostat-like action of mutations to the signals 
from the Fgf pathway. XXX 
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Supplementary Files 

 

Supplementary File S1: Typical representatives of the four major scale pattern phenotypes in 
common carp, as classified by Kirpichnikov. A) Fully scaled; B) Scattered; C) Linear) and D) 
Nude individuals. 

 

Supplementary File S2: Distribution of scale phenotypes from XXX different crosses. XXX 

 

Supplementary File S3: Description of our revised scale pattern classification 

 

Supplementary File S4: List of PCR primers used  

 

Supplementary File S5: The relative scale size in nude individuals is significantly smaller 
than that of the other three phenotypic groups (mirror, incomplete scaled and irregular). The 
height and width of three largest scales from twenty individuals representing each of the four 
phenotypes were measured and normalized by taking the standard length of the fish into 
account. The error bars represent standard deviation of the mean. Columns labeled with 
different letters indicate statistically significant values (p-value  <0.01;;  Student’s  t-test). 
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Figure 1. Kirpichnikov’s  “scattered”  scale  pattern  can  be  further  divided  into  three  
phenotypes: A-C: Irregular; D-F: Incom

plete scaled and G-I: Classical m
irror. 
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Figure 2: Lack of lethality in a cross involving tw
o nude brooders. Com

m
on carp eggs w

ere stuck to a nylon 
m

esh by taking advantage of their natural stickiness im
m

ediately after fertilization. The m
eshes w

ere 
im

m
ersed into separate Zuger jars and kept there for for 48 hours. Survival rates w

ere estim
ated by counting 

surviving em
bryos w

ith eye spots versus the opaque ones (em
pty egg shells). A) M

irror x nude (M
N

) cross; B) 
N

ude X nude (N
N

) cross.  
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Figure 3: The tw
o new

 sub-types of scattered are inherited to the offspring from
 irregular or even nude 

parents and reduce the proportion of m
irrors w

ithin the scattered group.  Panel  A)  In  „M
irror x Irregular”  type  

crosses (M
I33 &

 M
I37) the irregular scale pattern w

as inherited from
 the parent to the offspring substantially 

reducing the proportion of m
irrors from

 the expected 100%
.  The com

bined proportion of  irregular, 
incom

plete scaled and m
irror phenotypes are very close to 100%

. Panel B) In the first three „N
ude X N

ude”  
crosses (N

N
1, N

N
2 &

 N
N

41) the irregular and incom
plete scaled phenotypes appeared am

ong the offspring, 
resulting in a deviation of the proportion of phenotypes from

 the expected ratio. In the case of N
N

26, tw
o 

European nude individuals w
ere crossed and no lethality w

as observed. As expected, the proportion of nudes 
increased in com

parison to the other crosses w
ith lethality.  
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Figure 4. Association betw
een the level of scale loss and the type and num

ber of distorted or m
issing fins in irregular, incom

plete scaled, m
irror 

and nude phenotypes in four fam
ilies. Panel A) The percentage of distorted/absent fins is show

n across the four m
ajor phenotypes. Panel B) Fin 

defects w
ere quantified on a per fish basis (distortion of one fin: 1 point; loss of one fin: 2 points) and the percentage of individuals belonging to 

each of the four phenotypic categories is show
n in relation to the num

ber of defects observed.  
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Figure 5: The num
ber of pharyngeal teeth gradually decreases w

ith the reduction of scale coverage of the body 
surface from

 com
pletely scaled to nudes.  The percentage of individuals representing the five phenotypes (from

 
the right: com

pletely scaled, irregular, incom
plete scaled, m

irror and nude) is plotted against the total num
ber of 

pharyngeal teeth identified per individual. The low
er panel show

s a representative picture of the different 
num

ber of teeth observed (from
 10 to 0).  
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Figure 6: Com
parative analysis of the Fgfr1 paralogs of com

m
on carp and zebrafish. A) Dom

ain 
organization of the three Fgfr1 paralogs in com

m
on carp in com

parison to their tw
o orthologs in 

zebrafish. Green circles: Im
m

unoglobulin C-2 typedom
ains; blue rectangle: transm

em
brane 

dom
ain and pink hexagon: tyrosine kinase dom

ain. B) Phylogeny and dom
ain architecture of fgfr1 

hom
ologs in cartilaginous and bony fishes reconstructed using a M

axim
um

 Parsim
ony approach. 

Confidence in the resulting unrooted tree w
as assessed by bootstrapping (1000 replicates). 

Posterior probability values are show
n for each branch. Circle denotes the teleost-specific w

hole-
genom

e duplication event (3R).  

Laura, pls rem
ove the labels above every 
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ain, as I have already indicated them

 in 
the legend.  
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Figure 7:  O
ur w

orking hypothesis show
ing the rheostat-like action of m

utations to the signals 
from

 the Fgf pathw
ay. XXX  (Both graph and legend need im

provem
ents) 
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Supplem
entary File S1. Typical representatives of the four m

ajor scale pattern 
phenotypes in com

m
on carp, as classified by Kirpichnikov. A) Fully scaled; B) 

Scattered; C) Linear) and D) N
ude individuals.  



Relative scale size 
(normalized to standard length) 

N
ude                M

irror        Incom
plete scaled   Irregular Scale w

idth 

Scale height 

Supplem
entary File S4:  The relative scale size in nude individuals is significantly sm

aller than that of the other three phenotypic 
groups (m

irror, incom
plete scaled and irregular). The height and w

idth of three largest scales from
 tw

enty individuals 
representing each of the four phenotypes w

ere m
easured and norm

alized by taking the standard length of the fish into account. 
The error bars represent standard deviation of the m

ean. Colum
ns labeled w

ith different letters indicate statistically significant 
values (p-value  <0.01;  Student’s  t-test). 
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Figure XXX: ClustalX alignm
ent of fgfr1 sequences in carp-fgfr1a2, carp- 

fgfr1a1, zebrafish-LG8, zebrafish LG10, stickleback, O
ryzias, Fugu-iso 1, fugu 

iso-2, Tetraodon-iso 1, Tetraodon iso-2 from
 top to bottom
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Figure 8:  O
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 the Fgf pathw
ay. XXX  (Both graph and legend need im
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Classifying common carps based on their scale pattern 
(an  extended  version  of  Kirpichnikov’s  system) 

 

Scaled (Sc):  The whole body is covered with regularly arranged scales. 
Every scale partially covers the one located behind it.  

Iregular (Ir): Large portion of the body surface is covered with large 
(presumably fused) scales. The scales do not overlap, often they do not even 
reacgh each other, leaving the skin exposed among them. Occasionally, a 
more or less complete line of scales can be found over the lateral line. 

Incomplete scaled (earlier 2/3 mirror or M+; ISc): All individuals lacking 
scales over at least 33% of their body surface should be placed into this 
group. Occasionally, a more or less complete line of scales can be found over 
the lateral line. 

Linear (Li): The line of scales is clearly defined, consisting uniform scales of 
normal size. The line might be incomplete. In addition, a lesser number (<10) 
scales can be found scattered over the body surface. 

Mirror (Mi): All the fins are intact. The anal fin has five rays. There is a row of 
scales (sometimes incomplete) below the dorsal find, and occasionally 
another row above the belly (could also be incomplete). In addition to these, 
there might be other scales scattered over the body, especially the in the tail 
region. There is no uniform line of scales over the lateral line and the majority 
of the body surface (>90%) is scaleless. 

Nude (Nu): The individuals must be classified as a nude, if the phenotype is 
similar to that of the mirror, but one of the following criteria is fulfilled: 

1) There is no scale on the body surface; 
2) The scale line below the dorsal fin is missing and there are less than 

three scales on the body surface; 
3) There are less then five rays on the anal fin;  
4) The isolated pharyngeal arches have less than three teeth in total; 
5) At least three fins are severely degraded or missing.  



Primer name Purpose
fgfr1b_1F Amplification of carp fgfr1b cDNA fragment
fgfr1b_2R Amplification of carp fgfr1b cDNA fragment

5'RACE gene-specific fgfr1b
5'RACE gene-specific inner primer fgfr1b
5'RACE gene-specific Outer primer fgfr1b
3’RACE  gene-specific  Outer  Primer  fgfr1b
3’RACE  gene-specific  Inner  Primer  fgfr1b

fgfr1b_3F Amplification of carp fgfr1b cDNA (coding, full)
fgfr1b_4R Amplification of carp fgfr1b cDNA (coding, full)



Sequence (5'-3')

GGAGCATCAATCACACCTATCA
AAGTTTGCTTCCATTCACCAGT
AGCATCCTCAAAGGACACATTC
GATGGCACCTGAGGCTTTGTTT
ATCCAGGAGTGCCWGTGGAAGA


